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The paper describes an implementation of the variant of the speed method in shape optimization for plane
elastic structures, based on harmonic transformations. It is coupled with special method for solving the
singular elliptic problems resulting from geometric features like e.g. reentrant corners. Both approaches are
based on the works of the author. The interactive system has been built, based on MATLAB environment,
and the examples showing the robustness of the algorithms were solved.

1. INTRODUCTION

The subject of shape optimization for elastic structures has a very long and rich history and
therefore has accumulated enormous literature, to vast to discuss it here. We shall cite here an
excellent survey [9] and the papers [3, 4], where the problem is treated from the more engineering
point of view, as a sample of, by no means exhaustive, references.

In this work we concentrate on the specific method proposed by the author [11], which may
be called the harmonic transformation method. In addition, some algorithmic improvements have
been developed, which improve the accuracy in cases, when the stresses have singularities, see
(14, 13]. We have created a set of computer programs which may be used to solve quite general
plane elastic shape optimization problems. They allow interactive design of triangulations for two
dimensional domains, with consecutive mesh refinement and improvement. After defining in this
way the plane domain together with its discretization, it may be used as an initial design for
optimization. To this goal one may interactively set material properties (Lame coefficients), loading
conditions, as well as the fixed part of the boundary. This is enough for solving the state equation,
i.e. finding displacement, stresses and area of the domain. If the yield criterion is also set (of the
Huber type), then one gets the initial values of three functionals, representing the area of the
domain, maximal displacement and integral of the yield criterion. Their linear combination with
user definable coefficients will serve as a goal functional, while other, also selectable combinations,
define constrains.

There remains to designate the variable part of the boundary. It is done interactively. The user
points to the nodes, which should be allowed to move, and shows on screen the proposed direction
of movement. Then he shows the upper and lower limit of movement along the given direction.

Having thus defined the problem, he may now start the optimization process, and observe, how
the shape gradually changes. While the program works, it is possible at any time to refine the mesh,
to smooth the design, to see the history and compare the current result with the initial point. Also
the mesh may be at any time corrected.

The originality of the work lies in a consistent concentration on the robustness and correctness
of the approach, starting from the harmonic transformation method, which takes into account
singularities, through the algorithmic improvements to the FEM calculations, and ending in a
modified Pshenichny optimization algorithm.
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In the paper we show some examples of solutions obtained in this way. As a platform for
writing the programs we have chosen the MATLAB system of MathWorks Inc.. This allowed us to
concentrate on essentials, and facilitated the design of the graphical user interface. As an additional
honus we have got transportability of the system, since it works on any hardware with Matlab
installed (tried on Windows 95, SUN, Hewlett-Packard Apollo).

2. PROBLEM FORMULATION

Let there be given a connected two dimensional domain 2 with piecewise smooth boundary, satis-
fying for example the uniform cone condition [1] in order to exclude the degenerate cases. On such
a domain we define the general elasticity problem

AT D Au=f inQ (1)
u=g¢- on I
BT.D-Au=h on TIs.

Here u = (u1,u2)T — denotes displacement, g — given displacement on a fixed part of the boundary,

h — given traction on the loaded part of the boundary, and f — volume forces. In addition we
introduce the following differential operator

0
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and the matrix of material (Lame) constants
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as well as the matrix used in projecting stress on the boundary

BT AT n o, 0 , N2
S b
O @, g 50wy
where n = [nl,ng]T — outward normal versor. In this notation stress o = [011,022,012]T,

strain € = [e11, 522,'712]T and the surface traction are given by
g ='A-u, ron='D-g; t = B0 (2)

We shall also introduce the norms used for approximating the displacement in the given direction
and yield criterion,

lully = «" - U-u, |lolls = o"-S-0. (3)

For example, if we are interested in the displacement in the direction z; only, then

1,0
o= Lo s);
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while S corresponding to the Huber yield criterion has the form

1y 1 8
S=1-1/2,,1 ,0
- g gt SN

Now let us allow the domain Q to vary, that is we shall consider a family of sets ; € Il,4, where
IIag is for the moment unspecified. In this way we get also a family of boundary value problems

AT D - Auy=f in
w =g on I% (4)
BT.D.Au;=h on Tt

For their solution we define functionals

(@) = [ o, %)
Q¢
1/2p
@) = | [l | ©
S
Jo(@0) = [ lloulf ag. ¢
Q

They represent the area of the domain, the approximation of the maximal displacement and the
integral of the yield criterion respectively. From these functionals we create a vector

) =l b LT,
Now we are ready to define the optimization problem

min el - J(), (8)
Qt = Had

subject to the constraints
R-J(u) < 1, (9)

where R — 3x3 real matrix, r € R® - constant vector and ¢ € R3 — vector of prices (goal coefficients).
The family IT,q we will specify after discretization.

3. SENSITIVITY

The first step in calculating the sensitivities is to parameterize the family I1,4. We shall use here
the variant of the speed method [9, 11]. Let €, t € (—e, ¢) has the form

Q= 0(Q)
where Q is a fixed reference domain, and the mapping ® is expressed as
Qi(z) = = + t-s(x),

s(x) = [s1(z),s2(2)]". (10)
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Here s is a C? — regular vector field given on a certain bigger domain containing all ;. Next we
define material derivative of the function u; = u(;x) as

; d
w(Q;x) = 5 u(Q; Po(2))|i=0- (11)
The derivatives of the domain functionals are defined as

J(Qt) = /F(U(Qt,q)t(ﬂ’}))dQ e J(Q) = %J(Qg)'t:(]. (12)
Q4

In further derivations we shall need also the formulae for the transport of differential forms, see
e.g. [9].

D&, = Ds,

det(D¥;) = V-3,

mo® = (n'-Ds-n)n—Ds-n,
v ey OB , PO - N - "
To® = Vf-s

S_(;IT) = V.s—nT Ds-n.

Here S(®,) denotes the differential form for the arc length, and Ds is a derivative matrix for s.
The elasticity problem (4) may be formulated in a more convenient weak form: find u; € Ui(9)
such that

p T. . T. — .
({(Aut) D - ApdQ +I{h ¢ dS ({fT dQ,

for any ¢ € Uy(0), where

Ug) = {¢ € [W3(Q)*|¢=g on T}

After transformation of variables this weak formulation may be rewritten in a reference domain Q
as

—/(W)T QT NT.D-N-Q;- (V) - det(D®;) dQ
Q

v /(h o ®;)- & S(®:)dS = /(f o ;) - §- det(D®y) dS, (13)
T'a Q

where ¢ € Up(0).
We have used here some additional notation

a:utoét, ¢:¢O(Dt’
Vu = diag{Vui, Vus},

e DB iy 8 ]

0%\, De;"
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so that Au = N - Vu.
Now we shall take the material derivative of the weak formulation (13). Denoting

. —DsT | 0
@ = [ Qi —dgt )
and
D(s) = (V-8)-NTDN +Q-NTDN + NTDN - Q,
S(8) = V.-s—nT.Ds-n,

and keeping in mind transport formulae, we get [11] the weak equation for w: find % € Uo(Dg - 3)
such that

] / Q(AG)T - D - Au+ (V)T - D(s) - Tu] d2
+/[(Dh-s)+S(s)h]T-¢dS:/[Df-s+(V-s)f]T-¢dQ, (14)
Iy Q

for all ¢ € Uy(0).
Obtained in the same way expression for J(£;) reads

g /(DuF-u+F-(V-s))dQ. (15)
Q

Now we introduce the adjoint equation: find w € Up(0) such that
—-/(A¢)T &, 10 /DuF- édQ), (16)
Q Q

for all ¢ € Up(0). Then by standard argument it is possible to get
J= / [F(u) - (V- 8) + (Vw)T - D(s) - Vu]dQ
Q

+ [ U™} 9)+ (Df 97 - u] an
Q
= / [(Dh-8)T -w+ S(s) - (BT - w)]dS

+/(Dg-s)T-BT-D-AwdS. (17)

Now we shall make the additional assumptions, purely for the simplicity sake.

1. The loaded part of the boundary does not change.

2. The Dirichlet data on I'y are null, i.e. at this part of the boundary the structure is fixed (but
'Y may change).

3. The volume forces are absent. This assumption is made purely for the convenience.
Then the formula (17) takes on a simple form:

; / [F@) (V- 5) + (Fw)T - D(s) - ] a (18)
Q

which will be used in later parts of the paper. The above assumptions are not as restrictive as they
look like, and are satisfied in most practical problems.
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4. HARMONIC TRANSFORMATION METHOD

The expression (18) is linear with respect to the C? - regular field s. However, it is difficult to
construct such a field in a way, which gives accurate control over the movements of the boundary
0. But precisely these movements, not the global field s, are of primary interest.

In order to overcome these difficulties, we construct the field in a special way, using harmonic
functions. Let us recall, that the boundary of  consists of finite number of smooth arcs, separated
by vertices: 71, V1,72, V2,..., where ; — arcs, V; — vertices. Let a vector field d = [dy,d2]T be
defined on the variable part of the boundary, constituting the desired movement. Furthermore, we
assume:

e d is C! on each ~;,

e d\,(V;) = d,,,,(Vi), compatibility conditions.

Then we construct a vector field v = [vy,v2]T using the equations
A9;'= 0 in‘Q, (19)
v =dy oonl; i=1,2.
The functions v, v2 may be extended for our class of admissible domains on larger sets containing
Q. It has been proved in [11], that such a field v may be substituted into (18), thus giving way to
defining the material derivative of the functional
J = Jw).

The questions of regularity concerning both u and v will be discussed in the next section.

As a result of (19), the vector field v depends linearly on its boundary conditions d. Therefore
also J is a linear function of d, but this dependence is implicit. We may make it explicit by the
following construction. Assume, that the boundary I' consists of Ny arcs I'j, j = 1,... , No. Let
also every arc have a parametrization

nit i-13 — T j=1...,N.
By patching together all functions 7; one gets a parametrization
n: [0, N(]] — I

Now let us use basis functions (for example splines) {4}, defined on [0, Ng| for approximating 7.
This leads to formulae

dl & Zdlkwka
k

dy =~ dok¥r-
k

The coefficients {dyx,dar} should satisfy some additional conditions, so that the changed domain
remains admissible. For such basis we formulate boundary value problems

Av* = 0 in Q,
v* = on I.
As a result, after introducing notation
Su =od{fiF0h),
Sak = J((0,0"]"),
one gets
2

J B e RS (20)

i=1l k
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In this way we have achieved the goal of expressing the derivative of J as a linear function of
boundary variations. Furthermore, let us notice, that the field v is defined over the whole €. This
means, that as an additional bonus we have obtained the method for moving the triangulation
during the optimization process. And these movements are the smoothest possible over the whole
domain, what is important from the numerical point of view.

5. SINGULARITIES - THE SPECIAL APPROACH

Let us now return to the questions of regularity concerning u and v. As it is well known [5, 10],
and has been discussed in detail in [11] for this specific case, both functions may have gradient
singularities. They are of the form:

2o ik p A

v o rl/2H5 (21)

The value of § > 0 depends on the size of reentrant corners (for both v and ) and types of boundary
conditions on the sides of these corners (for u). However, as it has been pointed out in [11], the
possibility of substituting s := v in (18) depends crucially on the positivity of §. Hence also in
numerical approximations the rate of convergence is very sensitive with respect to 4. It would be
very beneficial to remove this dependence, and make the convergence the same, as in the case when
u,v belong to WZ(Q2) Sobolev space.

To this goal we propose the infinite element method, as developed in [6, 13, 12]. All reasoning
will now concern the discretized problem. Let the domain © be triangulated, and consider the

polygon P consisting of all triangles having one point (say (0,0) ) in common. Such a domain is
star shaped, with the centre inside or on the perimeter, see Fig.1.

¥ P

Fig. 1. The star-shaped domains with infinite discretizations

Now we construct from the outer boundary I'y the consecutive cuts of these domains by similarity
transformations, I'; = r* - I'g, where 0 < r < 1. Between I'; and I';y; lay the ring-like parts of P,
denoted by P;. These rings are also similar, and sum up to the whole P.

Our goal is to solve the elasticity and Laplace equations in such polygons using the finite element
method. Let the parts between cross-sections k and k+1 be triangulated and linear shape functions
used for approximations. We shall denote by ur the vector of all nodal values of the solution
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corresponding to the k—th cross—section (be it Laplace or elasticity case). Now the energy of the
whole body after discretization can be written as

o0
E' ="N"Eglu, ups1), (22)
k=0

where Ej. denotes the energy of the k—th ring. Let us concentrate on Eg. By eliminating internal
nodes between sections I'g and I'; we get

1 Ug
Ey = E[uOT,u-’{“]-M- [ul ]

where the 2n x 2n symmetric stiffness matrix M (n = dim(u)) has the form

LA, B
A/I—|:BT ) A2],

with symmetric, positive definite Ay, As.

The crucial observation and the basis of the whole approach consists in the fact, that for linear
elements the matrix M is the same for all rings, i.e. Ej, has the exactly the same form for all .
Hence the energy of the whole P may be written as

T
U A] B Uuo

(751 BT A B ul
: j BT : )

N | =

where A = Ay + As.
Now we shall try to solve elasticity equation in P imposing boundary conditions on ug. The
necessary condition for the minimum of energy takes on the form

Ap B uy ~BT
BT A B Uug 0
Moo - oo = gT ‘., e : - Ug.
As a result, after putting u; = Q; - uo, @ =1,2,..., we must solve the matrix equation of infinite
order
A B Q1 ~BT
prvAr '8 Q2 0
My + Qoo = B ) : = : : (24)

It is well known [2] that such systems may have infinitely many solutions. Therefore we impose
the physical condition, that the consecutive energy terms diminish, or that the necessary condition
gives minimum, not a saddle point or maximum for elastic energy. As it will turn out, this makes
the solution unique.

To this goal we embed the problem into the framework of operations on infinite series [8]. Let us
establish the correspondence between infinite vector foo = [f1, f2, .- JT and the formal power series

ge * Poir
4 e fiG-_—l)—!-

=1
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Differentiating this series gives
) 7i—2
RIG) = 2 hgmaye
=2

or in vector representation,

foo:[flsz,'--]Ts wa:[f27f37"']T'

This allows the differentiation to be represented as multiplication by the matrix

01

and similarly for integration

0 0
/foo: 10. . o o

Now M, has a block structure, and therefore in order to use this representation we must introduce
the whole vector of functions

oo ]
xJ
wh(z) = E 1 T

j=1 ? (.7 & 1)'
and write u; = [w},...,w?], so that
1
Al i
w"(z) ot

If we neglect the first n rows, the system (24) is equivalent to
BT/u+A-u+B-Du=O.

Now we substitute % = [ u and obtain
B-a"+A-# +BT.a =0

The solution must have form @ = r) - exp(\z), where dim(ry) = n, and X is the root of the 2n—th
order characteristic polynomial

det(B- X2+ A-A+BT) = 0, (25)
and r, are the corresponding right eigenvectors
B-X+A-A+BT).ry = 0.

In general, (25) has 2n roots. However, from the symmetry of the equation it follows, that they occur

in pairs (A;; 1/X;), @=1,...,n. Let us eliminate at this point the roots greater than 1, and consider
the rest. The root A = 1 appears with multiplicity 2 for the Laplace equation (it corresponds to the
constant solution) and the eigenvector 4 = [1,...,1]. For the elasticity equation the root A = 1

has in R? the multiplicity 4 and the eigenvectors e;, e, corresponding to the rigid translation in
the directions of the first and second axis.



294 A. Zochowski

Now we select n eigenvalues \; < 1 and their eigenvectors. The solution constructed from them
has the form

% = €1,17x €Xp(MZ) + ...+ Cn,172, €XP(AnZ). (26)

The constants ¢j,1,...,Cn,1 are chosen in such a way, that the first n rows in (24) are satisfied.
However, the equation has n right-hand sides. Hence double subscript: cpq s responsible for the
p-th constant corresponding to the g-th column on the right.

Let us now denote

Ry =[ragve-asTaly C=leirlik=1,..m
A = dlaglA1, - s Aals

If we return to (26) and replace exponentials by their power series, and then recall correspondence
between vectors and series, we get the solution to the infinite matrix equation (24) in the form

Qi=Ry-A-C, Q=Ryx-A%.C,... Qun=Ryx-A"-C,...

The choice of the matrix C results from the requirement
AQ: + BQ2 = 0,

BTQ: + AQz + BQs = 0,
which leads to

(ARAA + BRAA?)(I — CR)\)AC =0,
and, as a consequence C' = R;l. This gives fundamental relations

Q¢ 2.8 A AN B, Qi=a d= 1B (27)
Let us now return to the expression (22) for the energy. Taking into account relation uy = Q - uo,

we get

B (g, up41) = %uoTQ"T [Al +QTBT + BQ + QTAzQ] Q" uo.
The energy over the whole polygon P has the form

E = —;—ug - S - ug,

where

o0
S=Y QRQY, R=A1+QTBT+BQ+Q"AQ.
k=0

In fact, the series for S may be very nicely summed, giving a short result
S = A + BQ. (28)

The convergence of the series requires comment. It follows from the fact, that A = 1 does not
contribute to energy (constant solution or rigid motion), and therefore only A <1 count.

In this way we get the stiffness matrix for the superelement P. When the centre coincides with the
singularity, it is suitable for representing singular solutions. In [13] it has been shown, that indeed it
raises the convergence rate to the highest possible level. And the application is very simple: replace
some triangles in sensitive points by superelements. Observe, that the dimensionality of the system
does not increase, but in fact decreases by 1 with every superelement. The “star centre” disappears
from the equations, but the value of the solution in this point can be retrieved with ease.
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6. SEQUENTIAL OPTIMIZATION ALGORITHM

At this point we know, how to compute the sensitivity of the functional, how to treat special points
(reentrant corners, change of boundary conditions) in the domain, and may begin optimization. As
our main tool we have chosen here the sequential quadratic programming algorithm, in the form
first proposed by Pshenichny. Take the problem

min fo(z)
st glk) % 0.
The functions are linearized around current point xx and written in the form
min {¢"h -+ A%} (29)
s.t. Ah < —g(ag),

where z = z; + h, A = Dg(x}). Observe, that the Hessian is replaced by I. After the direction
h is obtained, the step is subdivided by the powers of 2 until the success criterion is satisfied
(Th41 = 21 +27¢),

Jo(@k41) + NG(2k41) < folar) + NG(zx) — 1) |hl|?,
where 7 € (0, 1) is an algorithm parameter,
G(ze) = max[{gi(2x)},0],

and the constant N must at any iteration be greater than the sum of dual variables for (29). The
stop criterion is ||A|[? < e.

It turns out, that this algorithm is reasonably simple and quite robust. Some properties of our
implementation are discussed in [11].

7. IMPLEMENTATION — GENERAL DESCRIPTION

Before description of the final implementation we must describe the family of admissible domains
ITaq. Let us begin with the discretized domain Q. In the first step we select the boundary points that
are allowed to move, say {p1,po, ..., Pk} Then for every point we define the direction of movement,

represented by the versor a;, i = 1,..,k, ||a;|]| = 1, and the range of movement ¢;,{;, so that the
position of p; is

pit) = pi+ti-ai, §<ti<t. (30)

Hence the domains Q"(t) are defined by the vector of variables ¢ — [t1,...,t]T and T,y by the
inequalities ¢t <t <. We see, that the movement of the boundary is represented by simple linear
finite elements (1-dimensional) and no attempt is made to use spline representation. This is done
intentionally, in order to test the robustness of the method unmasked by the additional smoothness
of splines.

With respect to the Matlab realization, let us mention here only, that it consists of two parts.
MESHER serves as an interactive triangulation construction tool. SHAPER, using defined already
discretization, allows to define on screen all the data needed to define in optimization and to
perform consecutive optimization steps, controlling interactively the process. It is also possible to
refine, (double) the discretization at any time during the optimization, as well as view the history
of the goal functional and functional constraints. Among many other options are: showing the yield
function distribution and the solution of the pure elasticity problem, remeshing in order to improve
triangulation.
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8. EXAMPLES OF RESULTS

We shall describe below three examples, illustrating the main features of the method and its im-
plementation.

Nonsimply connected domain. The initial problem consisted of a rectangular beam fixed at
both left and right sides and containing a rectangular hole in the middle. The vertical, downward
directed load was uniformly distributed on the upper edge. For the initial domain (see Fig.2) we
have computed JO,J, JO and then formulated the design problem as (A =1, p =4, § - Huber
criterion):

m{%n Jult)

Bt Tl S s
JDaS Jg
T <0 I,

As a design parameter (variable part of the boundary) we have chosen lower edge and the shape
of the hole. In fact, the goal was to find the stiffest structure of a given volume.

The results are shown in Fig. 2. The gain in terms of J, was 20%. It turns out, that only the
volume constraint was active. Such a formulation of the design goal leads, as we have found out
also in other cases, to a good distribution of stresses.

44
\

=

B - - - -
s —w-p-w-E-R-E-E-R-w

Fig. 2. Simultaneous design of the inner and outer boundary

Implant. The peculiarity of this example lies in the fact, that the fixed part of the boundary
could vary. Therefore the shape of insertion in the rigid support changed. This time the problem
was (the same A and S):

m{%n Jelit),
st CY Ry
Ju(Q) < J3 +big,
Jo(Q) < 2.

The results are shown in Fig. 3, and here one can also see which part of the boundary was variable.
The gain was about 17% . Worth noting is the way the support condition has changed, in order to
eliminate singularity.
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Fig. 3. Implant — design of the fixed part

Fig. 4. Handle - two reentrant corners

Handle. This time the initial domain had C-like shape, see Fig. 4. From one side it was fixed,
from the other it was pulled by the end. The problem (with again the same A and S ) was

m{%n Jo (S2),
EE Ry x gl

Lu(Q) < JY,

J(Q) < J2.

The result was 50% better as an initial design.

Conclusions:  All these examples contained singularities, so they illustrate also how the
algorithm copes with such cases. It must be stressed, that no attempt of smoothing the obtained
shapes has been made. Their appearance confirms the reliability of the proposed combination of
algorithms. As a conclusion we may state, that the implementation of the shape optimization
system as described above, which was meant as a technology demonstration, validated the claims
concerning the robustness and generality formulated in the introduction.
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