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Compaction is the method of in-situ soil modification to improve its engineering properties. Two key com-
pactibility parameters are: the maximum dry density ρd max and the corresponding optimum water content
wopt. They are basic parameters for designing, constructing and controlling the compaction quality of earth
structures (e.g. earth dams, highway embankments). Soil compactibility can be determined from the labo-
ratory compactibility curve basing on Proctor’s test. However, this test is destructive, time-consuming and
expensive. To facilitate the determination of the cohesionless soil compactibility parameters, correlations
between ρd max and wopt and the basic parameters characterizing soil grain-size distribution (CU, D10,
D20, D30, D40, D50, D60, D70, D80, and D90) were developed. Artificial neural networks are applied to
determine models with good prediction quality. The neural models have higher accuracy than the classic
statistical models.

Keywords: Geotechnical engineering, cohesionless soil, compactibility characteristics, Artificial Neural
Network

1. INTRODUCTION

Compaction is an efficient method for improving subsoil and soil materials in earth structures. The
purpose of soil compaction is to decrease the soil porosity, deformability and water permeability,
and also to increase its load-bearing capacity. Soil can be compacted by static (kneading with static
rollers or tyre rollers) or dynamic methods (vibration rollers, heavy ramming or explosions). The
degree of compaction, D (or relative compaction, Cr) is used for checking-up the compaction of
cohesive and cohesionless soils in compacted and erected embankments [1, 2]. It is defined as the
following ratio:

D =
ρd

ρd max

, (1)

where ρd is the dry density of solid particles in embankment (Mg/m3) and ρd max (Mg/m3) is the
maximum dry density tested by Proctor’s method [3–5]. However, density index, ID (or relative
density DR) is used for estimation of compaction of cohesionless soils built in ground, naturally
compacted as a result of geological process [5, 6].

2. PARAMETERS OF SOIL COMPACTIBILITY

Compactibility describes the ability of soil to reach certain values of ρd. This dry soil density
depends on the energy used and its transfer to the soil for compaction, the type of soil and the
soil moisture at compaction. Two key compactibility parameters are: the maximum dry density
ρd max and the corresponding optimum water content wopt. They define the optimal compaction
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point. Compactibility depends on physical soil properties: grain and lithology compositions, grain
shape and soil origin. The ρd max and wopt can only be determined experimentally, using Proctor’s
method from the compaction curve (i.e. density moisture relationship) [3, 4]. There was developed
a standard Proctor’s method in this study. Proctor’s test is laborious, time-consuming and leads to
significant delays in construction; therefore simpler methods of testing the compaction parameters
are needed.

The purpose of this research is to analyze the influence of soil grain-size distribution on its
compactibility, and to determine the relationship between parameters characterizing grain-size dis-
tribution of granular (cohesionless) soils and their compactibility parameters.

3. GRAIN-SIZE DISTRIBUTION

Grain-size distribution is defined by the following parameters: uniformity coefficient CU, curvature
coefficient CC, and grain diameters Dx (mm), below which x% of soil mass is placed, for x = 10,
20, 30, 40, 50, 60, 70, 80 and 90. Parameters CU and CC are defined as the following ratios:

CU =
D60

D10

, (2)

CC =
D2

30

D10D60

. (3)

Two methods of testing grain-size distribution were used: sieve analysis for gravels and sands with
grains > 0.071mm, or aerometric analysis for cohesive soils and silty sands with grains < 0.071mm.

4. INFLUENCE OF GRAIN-SIZE DISTRIBUTION ON COMPACTIBILITY OF

COHESIONLESS SOILS

Dependence models of compaction parameters have been in use for many years. Empirical models
to predict optimum compaction characteristics of fine-grained (cohesion) soils in relation to their
properties and the compaction energy, were constructed for cohesive soils. There are statistical
correlations [7–9] and models basing on artificial neural networks for estimating of the Proctor’s
parameters ρd max and wopt [10, 11]. There are studies, which modelled the compaction curves rather
than only the compaction characteristics, too [12].

The uniformity coefficient CU significantly influences the compactibility of cohesionless soil [13];
the higher is the CU value, the higher will be the ρd max and the lower – the wopt. Soil grain-size
distribution has significant influence on the compactibility parameters, see [3].

5. EXPERIMENTAL METHOD

Laboratory tests were conducted for cohesionless soils. The origin of soils was post-glacial, from
northeast Poland. Range of examinations is shown in Fig. 1. Compactibility characteristics and
grain-size distribution parameters for 121 soils from six tested groups were analyzed. Soils from
the following groups were tested: silty sand (21 samples), fine sand (47 samples), medium sand
(24 samples), coarse sand (13 samples), sand and gravel mix (11 samples), and gravel (5 samples).
All soils were compacted using the standard Proctor method [3, 4]. The examples of grain-size
distribution curves of tested soils are given in Fig. 2. The values of analyzed geotechnical parameters
are given in Table 1.
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Fig. 1. Range of laboratory tests

Fig. 2. Grain-size distribution curves of selected tested soils from groups 1–6

6. STATISTICAL ANALYSIS OF TESTS RESULTS

The compactibility parameters ρd max and wopt were tested for dependence on the soil type (i.e.
grain-size distribution) by statistical analysis, using linear simple and multiple regressions. The sta-
tistical analysis, discussed in the presented paper, was performed using the STATISTICA computer
system [14].

6.1. Influence of soil type upon geotechnical parameters

Testing of difference significance [15, 16] for soil groups was carried out to determine whether com-
pactibility parameters are dependent on the soil type. The following steps were performed: (i) ρd max

and wopt were divided into six subsets, depending on soil type, (ii) fitting of analyzed variables to a
normal distribution, in the whole data set and in six subsets, using tests of normality (Kolmogorov-
Smirnow and W Shapiro-Wilk) and nonparametric tests of goodness-of-fit (Kolmogorov-Smirnow)
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at the significance level α = 0.05. The ρd max and wopt were normally distributed neither over the
entire data nor in most data subsets, (iii) nonparametric test of significance (Kruskal-Wallis) was
used to check the null hypothesis, that separated subsets from the same population. The result
indicated that soil type (i.e. grain-size distribution) had a statistically significant effect on average
of ρd max and wopt, as depicted in Figs. 3 and 4, where the average value, ȳ, and standard deviation,
s, are expressed as

ȳ =
1

N

N
∑

i=1

yi, (4)

s =

√

1

N
(yi − ȳ)2, (5)

where yi are the measured values and N is the number of pattern.
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Fig. 3. Average values of wopt for groups of soils 1–6
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6.2. Simple correlations

The matrix of correlation coefficients r is shown in Table 2. These coefficients allow to analyze the
relationships between the variables [17–19]. The more the correlation coefficient is close to value 1,

Table 2. Matrix of correlation coefficients r, between the compactibility parameters and the grain size
parameters

Variable wopt ρd max CU CC D10 D20 D30 D40 D50 D60 D70 D80 D90

wopt 1.00

ρd max -0.82 1.00

CU -0.68 0.85 1.00

CC 0.26 -0.25 -0.21 1.00

D10 -0.67 0.73 0.55 -0.21 1.00

D20 -0.70 0.79 0.66 -0.01 0.94 1.00

D30 -0.69 0.80 0.78 0.11 0.86 0.97 1.00

D40 -0.68 0.82 0.79 0.05 0.84 0.95 0.99 1.00

D50 -0.69 0.84 0.84 -0.02 0.83 0.93 0.96 0.99 1.00

D60 -0.71 0.87 0.88 -0.10 0.81 0.89 0.93 0.97 0.99 1.00

D70 -0.71 0.87 0.90 -0.16 0.78 0.84 0.88 0.92 0.95 0.98 1.00

D80 -0.67 0.84 0.86 -0.20 0.74 0.77 0.80 0.85 0.89 0.93 0.98 1.00

D90 -0.56 0.73 0.69 -0.14 0.62 0.65 0.68 0.69 0.72 0.75 0.82 0.88 1.00

the stronger will be the linear correlation between the tested variables. Correlations between the
variables are calculated by means of formula

r =

N
∑

i=1

(xi − x̄) (yi − ȳ)

√

N
∑

i=1

(xi − x̄)2
N
∑

i=1

(yi − ȳ)2

, (6)

where x̄, ȳ are the averages of the xi and yi values. The obtained matrix of correlation coefficients
indicate that:

(i) there are statistically significant simple correlations between compactibility parameters (ρd max

and wopt) and granulation parameters (CU, D10, D20, D30, D40, D50, D60, D70, D80, and D90).
All diameters Dx similarly influence the compactibility parameters and none of them is clearly
different,

(ii) there are negative correlations between wopt and Dx, and positive correlations between ρd max

and Dx,

(iii) CC has weak correlations with compactibility and with granulation parameters. This indicates
that CC does not contain any important soil information and consequently, will be not further
analyzed,

(iv) CU significantly influences wopt and ρd max. Linear dependences and best non-linear dependences
[17–20] are presented in Figs. 5 and 6.

The coefficient of determination R2 applied as a criterion of the model evaluation

R2 = 1−

N
∑

i=1

(

yi−
⌢
y i

)2

N
∑

i=1

(yi − ȳ)2
, (7)
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where yi is the actual value,
⌢
y i is the predicted value of y, and ȳ is the mean of the yi values. A

perfect fitting corresponds to R2 equal 1, a good fitting is near 1, and a poor fitting is near 0.

6.3. Multiple correlation models

Multiple linear regressions [17] were then carried out, where the applied variables were all grain-size
distribution parameters:

wopt = 17.7 − 1.2CU − 18.3D10 − 1.6D20 − 2.9D30 − 4.7D40

+ 9.2D50 − 0.3D60 − 2.0D70 +D80 − 0.1D90,
(8)

ρd max = 1.518 + 0.054CU + 0.445D10 + 0.259D20 − 0.112D30 + 0.317D40

− 0.386D50 + 0.109D60 − 0.021D70 − 0.003D80 + 0.005D90.
(9)

The multiple linear regression relation (8) has R2 = 0.64. Only CU and D10 are statistically sig-
nificant, other variables are not. The model (9) has better predictive value with R2 = 0.85. Only
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CU and D50 are statistically significant in this multiple regression model, too. Comparison between
the tested wopt values, those values predicted by Eq. (8), as well as tested ρd max values and those
predicted from Eq. (9), are presented in Figs. 7 and 8. The relative errors calculated by the formula
(10) are used in Figs. 7 and 8. The values of wopt are predicted basing on Eq. (8) with relative error
about 35%, and the relative error of ρd max prediction related to Eq. (9) is about 10%.

RE =

∣

∣

∣

∣

∣

⌢
y i −yi

⌢
y i

∣

∣

∣

∣

∣

· 100%. (10)
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Fig. 7. Comparison between the tested wopt values and predicted values from Eq. (8), with ±35% RE line
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7. SOME REMARKS ON ARTIFICIAL NEURAL NETWORKS

Artificial neural networks (ANNs) are calculated using the principle of simultaneous work of in-
dividual neurons. Artificial neurons act as specific converters of signals [21–23]. The neuron body
is composed of two boxes: summing junction Σ and activation (threshold) unit F . In the AN
model, the following variables and parameters are used: x = {x1, . . . , xj , . . . , xN} is input vec-
tor, w = {w1, . . . , wj , . . . , wN} is vector of synaptic weights, N is the number of input vari-
ables, b = −θ = w0 is bias (threshold parameter), F (ν) is the activation function of neuron,

ν = u+ b =
∑N

j=1wjxj − θ is the potential of neural network.
Work of the neurons in the network can be described in the following way. Every input xi is

connected with weight wi, by which the input signal is multiplied. Signal is transferred in the form:
amplified (when wi > 1), reduced (when wi < 1), opposite to signals from other inputs (when
wi < 0), and a lack of connection between neurons (when wi = 0). After multiplying by weights,
the signals are summed up in a neuron. From this sum, the threshold value is deducted. The sum
of signals processed in this way is the total stimulation of neuron. The signal of the total neuron
stimulation is then transformed by the activation function into an output signal. Activation functions
can be of scalar product or radial function forms. They are most frequently in the form of identity,
sigmoid (logistic or binary sigmoid) or bipolar sigmoid functions.

ANNs significantly extend the application of traditional regression modelling, due to their ap-
proximation abilities [24]. Regression problems can be solved using the following neural networks:
linear networks, multi-layer perceptrons (MLP), radial basis functions, generalized regressional neu-
ral networks [21–25] . MLP has been applied in the present study. MLPs are feed-forward networks,
where signals flow from input to output. The neural analysis was performed by using the STATIS-
TICA Neural Networks computer program [26].

The process of constructing MLP networks consists of several stages. Stage 1 is a selection of
representative set of training data (input and output signals), which may fully represent the solved
issue. The ANN is trained on examples, thus creating a model composed of a certain number of
cases, described by input and the respective output values. The whole set of cases is divided (most
commonly at random) into three subsets: learning (L), validating (L) and testing (T ). For this
study, 50% (L = 61) of the original data patterns were extracted at random to train the neural
networks. The remaining 50% of the data patterns were used as follows: 25% for the validation
subset (V = 30) and 25% for the testing subset (T = 30).

Stage 2 is the selection of the network architecture. The number of hidden layers, the number
of neurons in particular hidden layers and the activation function used in neurons of hidden and
output layers, should be defined to select the architecture of MLP neural network. The number of
input neurons (usually equal to the number of independent variables) and output neurons (usually
one neuron) are determined by the type of problem. Determination of the number of hidden layers
(usually 1–2) and the number of neurons in these layers is empirical. Three-layer neural networks
with input layer, hidden layer and output layer, were applied in the present study. For the ANN
models developed in this study, a bipolar sigmoid activation function was used for the hidden layer
neurons.

Stage 3 is an automatic process of network training. The aim of the training is determination of
the weighting, which gives output values closest to the observed values of the dependent variable.
The training process is stochastic, since its course and final result are not precisely determined.
Training algorithms have an iterative character, within each iteration (i.e. epoch) all cases of the
learning set are presented to the ANN.

The most effective method was the Variable Metric Method with algorithm of the Broyden-
Fletcher-Goldfarb-Shanno (BFGS) in this study [27, 28]. A V set controls the training progress.
During training there is a simultaneous decrease of error for L and V sets. The iteration process is
stopped when validation error begins to increase, which indicates ‘overfitting’ and that the network
is losing ability to generalize the training results. The T set is used only once for the final evaluation
of the trained ANN.
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Stage 4 is the evaluation of the trained network using the selected quality measures. The accuracy
of the network predictions was quantified by the root of the mean squared error difference RMSE,

according to Eq. (11), between the measured yi and the predicted values
⌢
y i, the determination

coefficient R2, according to Eq. (7), and the relative error RE of the sample, according to Eq. (10),
independently for L, V , and T sets:

RMSE =

√

√

√

√

√

N
∑

p=1

M
∑

i=1

(

yi−
⌢
y i

)2

NM
, (11)

where p is the number of pattern (p = 1, . . . , N), i is the number of output neurons (i = 1, . . . ,M).

8. NEURAL MODELLING OF COMPACTIBILITY PARAMETERS

Neural networks were used to obtain models with better prediction quality than the statistical
models. These models were to predict the parameters ρd max and wopt on the basis of parameters
describing the soil grain-size distribution: CU, D10, D20, D30, D40, D50, D60, D70, D80, and D90.
MLP neural networks were optimized in the number of input variables and the number of neurons
in the hidden layers.

8.1. Neural networks with one output

Tests optimizing the ANN architectures were carried out for selected networks with one output
variable, ρd max or wopt. For modelling the particular parameters ANNs with 10 inputs (CU, D10,
D20, D30, D40, D50, D60, D70, D80, and D90), one hidden layer and one output were applied. During
optimization of ANN architecture, useless variables (as a result of zero weights) were ignored in some
models.

The architecture of the selected best ANNs model for predicting wopt is denoted by 5-4-1 to
refer to the number of nodes in the input (CU, D10, D20, D70, D80) and in the hidden and output
layers, respectively. The topology of the best ANNs model for predicting ρd max is denoted by 10-4-1.
Accuracy statistics of the best ANNs with one output are given in Table 3 (see page 29).

8.2. ANN with two outputs

For simultaneous modelling of pairs of compactibility parameters, ANNs with one hidden layer
and two outputs ρd max and wopt were applied. During optimization of ANN architecture, useless
variables (as a result of zero weights) were ignored in some models. The architecture of the selected
ANNs model is denoted by 8-9-2. Accuracy statistics of the best ANN with two outputs are presented
in Table 3.

8.3. Comparison of models

Analysis of the data from Table 3 (especially for the testing set) indicated that: (i) all the selected
models had sufficiently good prediction quality, (ii) quality of the network modelling of the de-
pendence of wopt on five input variables was slightly worse than the network modelling of ρd max

dependence on the whole set of ten grain-size distribution characteristics, and (iii) qualities of net-
works with one output ρd max or wopt were comparable to the network that simultaneously modelled
these two parameters. Comparisons between the experimental compactibility parameters and those
computed by ANN are shown in Figs. 9 to 12. The progress of the training process was moni-
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Fig. 9. Comparison between experimental values of wopt and the values calculated by 5-4-1 ANN model,
with ±30% RE line
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Fig. 10. Comparison between experimental values of ρd max and the values calculated by 10-4-1
ANN model, with ±8% RE line
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Fig. 11. Comparison between experimental values of wopt and the values calculated by 8-9-2 ANN model,
with ±30% RE line
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Fig. 12. Comparison between experimental values of ρd max and the values calculated by 8-9-2 ANN model,
with ±8% RE line

tored by observing the RMSE at every iteration of the learning process. Figure 13 represents the
variation of error measure during training. Besides, performance of the network during training was
also evaluated using the validation patterns, as shown in Fig. 13. During this process it was vital
to observe the signs of ‘overfitting’. Table 3 shows, after how many epochs the learning process was
stopped.

9. CONCLUSIONS

Soil compactibility parameters ρd max and wopt are the basic parameters for designing, constructing
and controlling the compaction quality of earth structures. Soil compactibility can be determined
from a laboratory compactibility curve using Proctor’s test. However, this is a destructive, time-
consuming and expensive procedure.

In order to more easily determine compactibility parameters of the cohesionless soil, correlations
between ρd max or wopt and basic parameters characterizing the soil grain-size distribution were
developed. Thus compactibility parameters can be determined by sieve analysis results.

Statistical analysis of the test results of the analyzed soils indicated that: (i) soil grain-size
distribution significantly influenced wopt and ρd max, (ii) there were statistically significant linear
correlations between wopt or ρd max and grain-size distribution parameters CU, D10, D20, D30, D40,
D50, D60, D70, D80, and D90 (with correlation coefficients r = −0.58 to −0.71 and r = 0.71 to
0.88, respectively), (iii) linear and nonlinear correlations between wopt and CU (with determination
coefficients R2 = 0.46 and R2 = 0.51, respectively), and correlations between ρd max and CU (with
R2 = 0.72 and R2 = 0.73, respectively) were developed, and (iv) statistically significant multiple
regression models (with R2 = 0.64 and R2 = 0.85 for wopt and ρd max, respectively) were developed.

Artificial neural networks were applied in order to obtain models with better prediction quality.
Optimizations of ANNs were performed and the following networks were selected: (i) 5-4-1 network
modelling wopt with R2 = 0.65 in testing set, (ii) 10-4-1 network modelling ρd max with R2 = 0.89
in testing set, and (iii) 8-9-2 network modelling simultaneously wopt or ρd max with R2 = 0.73 and
0.89 in testing set, respectively. The neural models had slightly higher prediction accuracy than
the statistical models. Relative error of wopt prediction was about 30% and relative error of ρd max

prediction was about 8%.
The present study showed that ANNs could analyze regressions in geotechnics and to solve

practical engineering problems. The correlations developed can be used for quick determinations of
compactibility parameters in cohesionless soils, without performing Proctor’s test. Additional test
data for different soils can train the ANNs for new soils and make their application more universal.
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Fig. 13. Variation of RMSE with iteration for learning and validation stages for ANNs: (a) 5-4-1,
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