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The eigenvalue optimization problem for anisotropic plates has been dealt with. The variable thickness of
a plate plays the role of a design variable. The state problem arises considering free vibrations of a plate.
The demand of the lowest first eigenfrequency means the maximal first eigenvalue of the elliptic eigenvalue
problem. The continuity and differentiability properties of the first eigenvalue have been examined. The
existence theorem for the optimization problem has been stated and verified. The finite elements approx-
imation has been analyzed. The shifted penalization and the method of nonsmooth optimization can be
used in order to obtain numerical results.

INTRODUCTION

The optimal design of a construction depends on the analysis of the link between design variables
(the geometrical form of the construction, material cofficients) and state variables determined by
the laws and rules of mechanics. Mathematically, the response of the construction to the design
variables is modelled by ordinary and partial differential equations or variational inequalities. In the
case of free vibrations of constructions the state problem is the eigenvalue problem. The variable
thickness of the plate appeared as a design variable in the papers [1, 2, 5, 8]. One of the main
problems in this case is the choise of a suitable admissible set of thickness-functions in order to
obtain the existence of the optimal thickness as well as the best possible numerical approximation.
The kind of differentiability of the eigenvalues plays a crucial role in the sensitivity and numerical
analysis of the problem. These questions have been investigated in papers [4] and [9].

The numerical analysis has two basic tasks. Firstly, to approximate the originally infinite di-
mensional problem by a finite dimensional one with respect to both the design and state variable.
Secondly, to choose suitable numerical algorithms involving all the prescribed constraints.

1. STATE PROBLEM FORMULATION

Let us assume free vibrations of a thin anisotropic plate. In the case of Kirchhoff model ([6, 10]),
the deflection function y = y(t,z1,z2) is a solution of the hyperbolic equation

p(z)e(z)0uy — T%div(p(x)e:’(m)gradatty) + 0;(€* () AijuiOry) =0, teR, z= (z1,22) € Q,
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where p(z) is the density, e(z) is the variable thickness of the plate, {2 its middle plane and A;;y; are
material coefficients. The summation convention through the indices i, j, k,! € {1, 2} is considered.
The third-order tensor A;jy; is symmetric and positively definite, i.e.

Aijrl = Ajikt = Aktij (1)

Az‘jleikal > o TTij, a>0; for all 7 = (111, 712, 721, T22) € ngm. (2)
Expressing the deflection-function y in an oscillating form

y(t,z) = c e“'w(z), c€C, w>0;

we obtain, setting A = w?, the eigenvalue problem

85 (e%(z) AijriOry) = Np(@)e(z)w(z) — div(p(z)e’ (z)gradw(z))], z € Q (3)
w=>8w =0 onl (4)
w = M(w) =0 onTy (5)
M(w) = T(w) =0 onTj, (6)

where ' =T, UT, UT; ([; N Ij =0, i # j) is the Lipschitz continuous boundary of the region
(see [10]), I'; is not a line segment, v(z) = (v1(z),v2(z)) is the unit outward normal vector at the
point z € T,

M(w) = e3(:c)Aijk16,~jwuku,
is the bending moment and
T(w) = —ak[e3(m)Aijkla,~jwul — 8,,[e3(m)A,-]-k,6,-jwukal]

is the effective shear force of the plate, o = (01,02) = (—v2,v1) is the unit tangential vector with
respect to I'.

In our further considerations we shall use the following spaces of the real functions (see [10] for
details). All considered functions are defined on the Lipschitz region {2 or on its closure @ = QU :

(1) C(Q) — the space of all continuous functions f : @ = R, C(R) is a Banach space with the
norm

Iflle@) = r;lgglf(w)l-

(2) C%!(2) — the space of all Lipschitz continuous functions f : @ — R characterized by constants
Ly > 0 such that

|f(z) — f(v)| < Lglz —y| forallz, yeQ.

(3) C™(2) — the space of all m-times continuously differentiable functions f : @ — R.

(4) C§°(Q2) — the space of all infinitely times differentiable functions f : @ — R with a compact
support Ky C © (K is a bounded and closed subset of 2 such that f(z) =0 for z ¢ Kj).
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(5) Lo(f2) — the space of all measurable functions f :  — R such that [q f?dz < 00. Ly(R) is a
Hilbert space with a scalar product

(f)g)ozAfgdxa f7 !JELQ(Q)
and the norm
Iflo= [ fds, feLa(@.

(6) H™(R), m € N; — the Sobolev space of all functions f € L(f2) such that there exist all
partial derivatives (in the sense of distributions) D¥f € Ly(f), |k| < m. It should be stressed
Hkr+k2 f

that for the multiindex k = (k1, k2), k1 >0, ko > 0; we set |k| = k1 + k2 and DFf = 6_’“13—’“—2
T1 0Ty

H™(Q) is a Hilbert space with a scalar product
(f,g)m= Z (Dkf’Dkg)Oa I gEHm(Q),

k| <m

and the norm

“f“m 3 V (f,f)ma f € Hm(Q)

We have identified C™(Q) C H™(2) with classical derivatives as the distributive derivatives defined
for the functions from H™(Q). The relations H*(Q) cc H*=1(Q2), H°(Q) = Ly(£2) hold simulata-
neously. It results that the space H¥(Q2) is imbedded compactly into the space H k=1(Q), i.e. each
sequence of functions weakly convergent in H¥((2) is (strongly) convergent in H E=-Ha):

The space H2() plays a crucial role in the theory of plates. Every function f € H?*(R) is
continuous on € (after changing it in the zero-measure set when necessary). Moreover we have
H?(Q) cC C(02) which means that every sequence of functions weakly convergent in H 2(Q) is
uniformly convergent on Q, this being equivalent with the convergence in the norm |[|.|| o g)-

In order to formulate the boundary conditions in a generalized (weak) form, for the functions
from Sobolev spaces we can define their values on the boundary I' of €2 in the form of traces.
If v € H(Q), then v|p is a function from the space L?(T') such that there exists a sequence
{va} C HY(Q) fulfilling the convergence v, — v in H 1(Q) and v,|r — v|r in L%(T). It is possible

0 ; 7
to formulate = € L*(") for the functions v € H2({2) in a similar way.
Finally we introduce the spaces of functions fulfilling the zero boundary conditions on I'. We set

Hy(Q) = {ve H'(Q) : vlr =0}

and
2 2 31)

H(Q)={ve H Q) : v[r= | =0}

81/ T
Let us come back to the eigenvalue problem (3)-(6). We set

ov
V ={veH*Q) : v|r,ur, =0, v W 0}.
14 r

The functions from V fulfil the geometrical boundary conditions (4), (5) in the sense of traces. It
can be verified that V is a Hilbert space with a scalar product

2 2 2
(v,w)=/ —B;—a—g—dz, v, weV;
Q t4=1 3.’1:, Z g a.'IJi Zj
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and the norm

2 % i
= V.
Il = ( [, 32 oy 420) s ve
We denote by V* the Banach space of all linear bounded functionals over V with a norm

|fls = sup (|f,v)|.
lvli=1

After multiplying the equation (3) by the functions v € V and integrating on 2, we obtain the
generalized (weak) form of the eigenvalue problem (3)—(6):

a(e;w,v) = A(e)b(e;w,v) forallv eV, Me) €R, w=w(e) #0, weV; (7
with
a(e; w,v) / p(:t: )Aijk10ijwigv dz,

bleiw,0) = [ p(a){5e’ (@) gradu - gradv) + e(2)u(@)o(z)] da,

Let us denote U = C(Q2). The bilinear forms a(e;u,v), b(e;u,v) can be represented for every
e € U by the operators

Ale): V > V*,
B(e) : HY(Q) = V*,
V cc HY(Q) : (A(e)w,v) = a(e;w,v), (B(e)w,v) = b(e;w,v); w, vEV.

The operators A(e), B(e) are linear bounded symmetric and positively definite on V and H'((),
respectively:

(Ale)w,v) = (A(e)v, w),

(A(e)v,v) 2 ao(e)llvl®,  aole) > 0;
lA(e)lls < ar(e)llvll, v,weV;
(B(e)w,v) = (B(e)v, w),

(B(e)v,v) > Bo(e)llvll}, Bole) > 0;
IB(e)llx < Bu(e)llvlly, v, we HY(Q);

Moreover, the operator B(e) is compact on the Hilbert space V due to the compact imbedding

V cc HY(R).
Now, we can reformulate the generalized eigenvalue problem (7) in an operator form:
A(e)w(e) = Me)B(e)w(e), A(e) €R, 0# w(e) e V. (8)

Using the inverse operator A(e)~! : V* — V the problem can be expressed as the eigenvalue
problem for the linear compact operator in the Hilbert space and we can apply the spectral theory
of compact operators in Hilbert spaces.
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Theorem 1 There exist sequences {\,(e)} of eigenvalues and {wn(e)} of eigenfunctions solving
the problem (7) and satisfyng the relations

0< )\1(6) < )\2(6) <.<\<.. (9)
Jim An(e) = o0 (10
(Ae);(e), wn(€) = (Ble)us(e), wn(e)) =0 for all j # k 1)
Aie) = vg‘;?e)(A(e)v,v) = (A(e)wi(e), w1 (e)), (12)

K(e) ={veV:(B(ewv,v) =1}.

The set {wn(e)} is the basis of the Hilbert space V and every eigenvalue A, (e) has a finite multi-
plicity, i.e. the space of its eigen-functions is a finite-dimensional one.

2. THE OPTIMAL DESIGN PROBLEM

Before formulating the optimal design problem with the eigenvalue problem (3)-(6) or (8) in the
role of state problem and the thickness-function e as the design variable, we recall the result of the
continuity analysis in the case of eigenvalues depending on the operator coefficients ([4]).

Let us take into account that the set U = C({2) is a Banach space with the norm

lelly = g le(2)| (13)

Theorem 2 (Continuity of the first eigenvalue). Let e,, € U be the sequence of thickness-functions
of the plate and

nlLrglo en=¢" inU. (14)
Then
nlgréo A(en) = A1(e*) inR. (15)

In order to achieve the existence result for the following optimal design problem, we restrict the
set of admissible thickness e € U. We introduce the admissible set

Usa = {€ € C¥ Q) : 0< emin < |lelv < emax, |0ie] < C;, i =1,2; /Qp(x)e(a:) dz =Cs}.

The set U,q is convex and compact in the Banach space U.

One of the basic control problems for eigenvalues is to determine the control parameters in
such a way that the first eigenvalue is maximum that corresponds to the minimum possible first
eigen-frequency of the construction. We are looking for e* € U,q fulfilling

)\1(6*) = elélg.z(d /\1(e) . (16)

Setting the cost functional in the form
J(e) = M(e)7}, e € Ung,
we obtain the equivalent
Optimal Design Problem P. To find e* € U,q such that
J(e*) = min J(e) (17)

e€Uyq
Using the method of compactness, it is possible to obtain the existence result in the same way

as in [1, 2, 5].

Theorem 3 Let \;(e) be the first eigenvalue of the problem (8). Then there exists a solution of
the (maximum) problem (16) or (minimum) problem (17).
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3. ON THE FINITE ELEMENTS APPROXIMATION

We shall assume that the domain § is polygonal and divided into a regular partition of rectangulars
Qi € 77La h € (O)hO) :

1(h)

i=1

We assume that 7}, is consistent with the partition of the boundary I' = T, UT3 UT3. Further we
set P;(Q) the spaces of bilinear (k = 1) or bicubic (k = 3) polynomials on Q. The admissible sets
U,q and V are approximated by

Uh ={e€U.a: elg, € Pi(Qi), 1<i< I(h)},
Vi={veV: vl €Ps(Qi), 1L <i<I(h)}.

We formulate the

Optimal Design Problem P;. To find a thickness-function e}, € UR, such that

Tuleh) = min Ja(e) (18)
ecUy :

Ju(e) = M ()™}, e€ U, (19)

Ni(e) =, min_ (A(e)v,v) = (A(e)w}(e), wh (@), (20)

Kp(e) = {v € Vs : (B(e)v,v) =1}

M:(e) is the first approximated eigenvalue obtained by the Raleigh-Ritz method.

The existence of a solution e} € UL, of the Problem P} can be established in the same way as
that of a solution e* of the original Problem P. The following theorem describes the convergence of
the method.

Theorem 4 Let {e};, } C U:d be an arbitrary sequence of solutions of the Problem Py, hy, — 0.
Then there exists a subsequence (again denoted by e}, ) such that

e, — €' inU (uniformly on Q), (21)
An (ef,) = M(e") inR, (22)
wp, (ef) = wi(e*) inV, (23)

where [e*,w;(e*)] € Uaa X V is a solution of the Optimal Design Problem P.

Proof: The set U,q is compact in U and hence there exists a subsequence {ej } such that (21)

holds.
We shall verify that e* is a minimizing element of the Problem P. The approximative eigenvalue
i (e ) and the correspondent eigenfunction wj, = wy (e, ) fulfil the relations

(A(e;;n)w}‘n,v) = Al(e;*ln)(B(e;;n)w,lln,v) for every v € V3, (24)

(B(e, )wh,,wh,) = 1. (25)
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The last relations as well as the convergence of the Raleigh-Ritz method and the continuity of the
operators e — A(e), e — B(e) imply the convergence of the subsequences:

Aier,) = A, wp —w* inV, wy, —w* in HY(Q)
and further
A(e')w* = N*B(e*)w*, (B(e")w*,w*)=1

which implies the relations (22), (23). Let 7 € Uaq be an arbitrary function. Then due to interpo-
lation properties of finite elements, there exists a sequence {m} C U:g such that

nlgrgonn =9 nU=0%R).
One gets the relations

Jha(€h,) < Jpa(m), n=1,2,.. (26)

Due to the continuity of the relation e — A;(e) and the convergence of the Raleigh-Ritz method,
we obtain, after taking the limit in (26), the inequality

J(e*) < J(n) for every n € Uad

and hence e* is a solution of the Optimal Design Problem P what completes the proof. O

4. NUMERICAL REALIZATION OF THE FINITE ELEMENTS METHOD

Thickness-functions e € U,q and deflections w € V of the plate are approximated by the functions
ep € Ual}d and wy, € Vp:

N
en(z1,72) = Y qiVi(e1,22), N =N(h)

i=1
M

’th(.'L‘l,.’II2) = Zriq)i(wl,l‘?)’ M= M(h)7
=1

where {¥;}¥, and {®;}X, are basic functions of the spaces U and V}, respectively. We denote
Up={e€C*(Q): elg, € Pi(Q:), 1 <i<I(h)}

We set further
q=[q1,92,--+9n] € RN, r'=[ry,73,...TM] € RM

and introduce the matrices
An(q) = {alen; ®i, ®;)}_1, Bu(@) = {blen; ®i, ®;)}i=1,

and the vector d” with the coordinates

d?:/ ¥;dz, i=1,..,N.
Q
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The approximating admissible set U;‘d can be expressed in the form

Uh = {qeRY: gg=1-% <0, i=1,2,..,N;
€min
gi=%N_1<0, i=N+1,..2N;
max

9i = 4r(i-2N) — 9igi—on) — C1h1 <0, i=2N+1,..,2N + Ny;

9i = 4fi-aN-No) — IL(i—~2N-No) — C1h1 <0, i=2N+ No+1,...,2(N + Np);

9i = 4K (i-2N-No) ~ 9k (i-2an—2np) — C2h2 <0, i =2N+2Ng+1,...,2N + Ny + Ny;
9i = 4 (i—aN-No—N,) ~ 9K (i-2N-2No—N;) — C2h2 <0,

i =2N +2Ng+ N; +1,..,2(N + Ny + Ny);
N

gi=Y dj(h)gj —C3=0, i=2(N+Ny+N)+]1.
Jj=1

ar@), - 9L(Ny) € {41,..-,qn} are values of the function e, in all such nodal points (z;,y;) that
(zi — h1,Y5) € Q. If q1,j) = en(zi, y;), then %) = en(@i — h1,y;).

Similarly aK(1)s 9K (N,) € {q1,..,qn} are values of the function e, in all such nodal points
(zi,y;) that (z;,y; — he € Q. If aK(j) = en(Ts,y;), then () = en(zi,y; — h2), where hy and hsy
are lengths of the sides of rectangulars of the partition in the directions Oz; and Oz respectively.

We formulate the goal function in the form

Lr(q) = Ah(q) = inf{Ax(q)r, r)gv : r€RM, By(q)r, r)gm =1} (27)

Then the corresponding finite dimensional optimal control problem can be formulated as follows:
Problem PY. To find ¢* € RV :

Lr(q*) = max Lx(q), (28)
qeUl,
[An(@) = MBr(@r=0, MeR, reRM, r+#0. (29)

The method of shifted penalization ([3, 7]) can be used solving P}. The shifted penalized cost
functional has the form

]:((L P, KZ) = Eh(Q) - %K'K(qv p)v (30)
where
2(N+No+N1)
K@p)= > [max(0,gi — pi)* + (go(n+Notn1)11 ~ DAN+No+N)+1)°

=1

with a penalization coefficient x > 0 and a fixed vector p € R2(N+No+N)+1
Instead of Problem P}¥ we solve the penalized

Problem P}, :

max{F(q,p,x) : q € R"} (31)

with the constraint (29). Following steps describe the solving of ’P,’:f .
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Step 0.
p=p", k=Ko, lp€(0,1), B€(0,1), e€(0,1) fixed.
We set &k = 0. .

Step 1.

H(q") = max{H(q) : q € R"}, H(q) = F(q, Pk, k) (32)
Step 2.

If |gi| <lg, i =1,2,..,2(N+ No+ Np)+1
then pxy1 = BPk, lk+1 = Blk, Kky1 = Kk,
else Prt1 = Pky lkt1 = lky Kkt1 = € kg

k:=k+1 and go to 2.

In the same way as in [3], the convergence of the method can be verified.
Let 0%(q) be the subgradient of the functional # at q € R". Lemarechal algorithm ([7]) is to
be used solving the problem (32). It can be described in a following way:

Let o € RN, v >0, p>0, & € OH(qo), i =n=0.
Step 1.
tn = P,(0) — projection of 0 € R" on the convex hull of {&mi» - &n}. If |tn| < p then terminate.
Step 2.
Tn = arg max{H(qn + 7tn) : 7 2 0}, Qn41 = Qn + Tatn.
Step 3.
bnt1 € OH(gn +1) 1 nt1 ta)gy =0, n:=n+1.
Step 4.
If (z,qn — qm,.)]ﬁ’ < v, go to Step 1, else
Step 5.

Set i :=1¢+ 1, m; =n, go to Step 1.

Remark 1: Using the G-convergence J. Myslinski and A. Sokolowski solved in [9] the problem of
maximizing the first eigenvalue on less smooth set of admissible functions. The admissible thick-
nesses are approximated by partly constant functions. The resulting method is convergent only
considering the thickness-functions involved in stiffness matrices. Also the resulting optimal control
is not a thickness-function but the stiffness matrix.

5. NUMERICAL RESULTS

We have chosen for simplicity an isotropic plate. The approximating Optimal Design Problem 'P,IIV
in (28), (29) has been solved for a rectangular plate with a middle plane Q = (—a,a) x (—b,b) and
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for the following boundary conditions on the sides parallel to the axis o, and oy:
1. Simply supported, simply supported.

2. Simply supported, clamped.

3. Free, clamped.

4. Clamped, clamped.

The geometrical and mechanical data are:

a=3m, b=2m, epjp =0.1m, enax = 0.25m.
The initial constant thickness: eg(z) = 0.2m.

The coefficients of admissibility conditions, penalization and convergence are set:
p? =0.20, I =0.35, 3=0.30, X = 10°, e =0.25.

The computing was finished if |g;| < 0.001. The achieved results are displayed in Tables 1-
4 and compared with the results in [8] where, using the G-convergence approach, the constant
thickness distributions on the individual elements were considered, whilst in this paper the thickness
was approximated by bilinear polynomials. The symmetry of the boundary conditions enabled to
calculate only with one quadrant of the rectangular region (2.

The analysis of the numerical results:

1. The material is concentrated at places near the clamped part of the boundary and the center
where the curvature function attains its extreme value for a fixed eigenfunction.

2. The extreme increasing of the eigenfrequency is

(a) 22.62% in the case of plate clamped on the part z = 0, = = a of the boundary and free on
the part y =0, y = b.
(b) 18.34% for a wholy clamped plate. The difference is influenced also by the value of the

maximal possible thickness emax. The value of the first frequency is greater for greater
values of emax-

3. It is confirmed that the variable thickness of the elements of the region is more suitable then the
constant case. On the contrary the method of gradient projection used in [8] is more effective
from the computational point view than the method of shifted penalization.

Table 1. Optimal thickness of a simply supported plate

Boundary conditions: simply supported, simply supported

The least Constant thickness 26.88 Hz

eigen- Optimal thickness 29.64 Hz

frequency Optimal thickness [8] 29.94 Hz
z\y 0.00 0.75 1.50 2.25 3.00
2.00 0.1103 0.1272 0.2502 0.2502 0.2502
1.50 0.1313 0.1169 0.2041 0.2502 0.2502
1.00 0.2502 0.1724 0.1133 0.2502 0.2502
0.50 0.2502 0.2502 0.2049 0.1467 0.2497
0.00 0.2502 0.2502 0.2502 0.1049 0.1234
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Table 2. Optimal thickness of a simply supported and clamped plate

Boundary cond. simply supported, clamped

The least Constant thickness 32.60 Hz

eigen- Optimal thickness 36.10 Hz

frequency Optimal thickness (8] 36.70 Hz
z\y 0.00 0.75 1.50 2.25 3.00
2.00 0.2502 0.2502 0.1123 0.2502 0.2502
1.50 0.2502 0.2502 0.1119 0.1917 0.2502
1.00 0.2502 0.2502 0.1498 0.1214 0.2491
0.50 0.1533 0.2502 0.2502 0.1357 0.1390
0.00 0.1183 0.2407 0.2502 0.2129 0.1185

Table 3. Optimal thickness of a free and clamped plate

Boundary cond.: free boundary, clamped boundary
The least Constant thickness 18.83 Hz
eigen- Optimal thickness 23.09 Hz
frequency Optimal thickness [8] 23.37 Hz
z\y 0.00 0.75 1.50 2.25 3.00
2.00 0.2501 0.2502 0.2098 0.1429 0.2207
1.50 0.2502 0.2502 0.2074 0.1112 0.1433
1.00 0.2502 0.2502 0.2083 0.1117 0.1378
0.50 0.2502 0.2502 0.2114 0.1280 0.1739
0.00 0.2501 0.2502 0.2339 0.1705 0.2358

Table 4. Optimal thickness of a clamped plate

Boundary cond.: clamped boundary
The least Constant thickness 49.10 Hz
eigen- Optimal thickness 56.92 Hz
frequency Optimal thickness [8] 59.05 Hz
z\y 0.00 0.75 1.50 2.25 3.00
2.00 0.2502 0.2502 0.1423 0.1424 0.1613
1.50 0.2502 0.2502 0.1452 0.1412 0.1013
1.00 0.2048 0.1324 0.2291 0.2462 0.2435
0.50 0.1417 0.1841 0.2502 0.2502 0.2502
0.00 0.1033 0.2104 0.2502 0.2502 0.2502
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