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We consider the numerical approximation of thin plate and shell structures. The plate model is described
following the Reissner-Mindlin assumptions while the shell is described using the Naghdi formulation.
It is well known that the numerical approximation witly standard finite elements suffers of the so-called
locking phenomenon, i.e., the numerical solution degenerates as the thickness of the structure becomes
smaller. Plates exhibit shear locking and shells show both shear and membrane locking. Several techniques
to avoid the numerical locking have been proposed. Here we solve the problems using a family of high
order hierarchic finite elements. We present several numerical results that show the robustness of the finite
elements, able to avoid in many circumstances the locking behavior.

1. INTRODUCTION

In recent years high order finite elements, both as separate elements or in the so-called p-version
of the finite element method, have been introduced and succesfully applied in several fields, e.g.,
for elasticity and Kirchhoff plate problems (see [1, 3, 7, 15]). In previous papers (see [8-10]) we
have dealt with the Reissner-Mindlin plate problem combining its plain formulation with the use of
hierarchic high order finite elements. In the papers [5,6] we have considered the shell model arising
from the Naghdi formulation. A displacement finite element scheme has been developed using
continuous finite element of hierarchic type of degree ranging from one to four. It is known that,
despite its simple approach, the discretization of the Reissner-Mindlin model is not straightforward
both in plate problems and in its extension to shell problems. The inclusion of transverse shear
strain effect in the finite element models introduce an undesirable numerical effect, the so called
shear locking phenomenon. Finite element schemes for shell problems also suffer of the so-called
membrane locking, i.e., the finite element approximation of the membrane component of the energy
is unstable with respect to the thickness of the shell.

High order finite elements strongly reduce the locking phenomenon in the plate problem and the
numerical performances are quite effective for all practical values of thickness. In the case of the shell
model, the use of the finite elements of hierarchic type, especially for the elements of higher degree,
shows a good agreement with all the available benchmark results. To keep low the number of degrees
of freedom we have used finite elements of Serendipity type, where the number of internal shape
functions is highly reduced. A natural idea is to test complete finite elements, i.e., elements using
complete polynomial approximation spaces, for comparing their performances against Serendipity
elements. Such a problem has been recently addressed and carefully analyzed by Babuska and
Elman [2] in the framework of the so-called h—p version of the finite element method. Here we
consider an intermediate family of finite elements obtained adding suitable bubbles functions. We
focus our attention on the performances of these finite elements applied to the Reissner-Mindlin
plate and Naghdi shell problems. Due to the hierarchic structure the various finite elements of the
family are close one to each other. A remarkable improvement of the quality of the results has been
achieved. When cost versus accuracy is considered, intermediate elements are more convenient: the
gain in convergence outnumbers the increase of cost due to the larger number of degrees of freedom.
The elements exhibit a weaker form of locking and produce satisfactory results.
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The outline of the paper is the following. In Section 2 we recall the features of the finite elements
of hierarchic type and introduce the new family of hierarchic finite elements. Sections 3 is devoted to
a brief presentation of the plate bending problem in the Reissner-Mindlin formulation. In Section 4
we recall the Naghdi shell problem. Finally, in Sections 5 and 6 several numerical results are reported
for both plate and shell problems.

2. THE HIERARCHIC FINITE ELEMENTS
In [5, 13] we have introduced a family of rectangular hierarchic finite elements to overcome the lock-

ing of the numerical approximation of the Reissner-Mindlin plate and the Naghdi shell, respectively.
More precisely the finite elements have the following features:

only polynomial functions are used to construct the approximation spaces;
- the same spaces are used to approximate normal deflection and rotations;

— the family is hierarchic, i.e., new shape functions are added to increase the degree of approxi-
mation, leaving unchanged the previous functions;

— the functions used are based on the family of Legendre polynomials; this class presents good
properties from the point of view of roundoff error accumulation;

— the orthogonality properties of Legendre polynomials are transferred to the elementary stiffness
matrix;

— finite elements of Serendipity type are used in order to minimize the number of internal degrees
of freedom.

We denote the elements of the family with the names S4, S8, S12, S17, where S stands for
Serendipity element and the number refers the degrees of freedom (of each field). A modification
of the previous family of finite elements is obtained adding suitable internal functions. Only the
number of internal functions is modified, while nodal and side functions are left unchanged. The
internal functions are frequently named bubble functions, since they vanish along the whole bound-
ary of the finite element and are different from zero only in the interior of the element. The use of
bubble functions is known to be rather effective (see, e.g., [2]). This family of modified elements
is intermediate between the Serendipity and complete family. We have named the new elements
B9, B15, B22, where B stands for bubble. We observe that the element corresponding to p=1 does
not include internal degrees of freedom, since the space of bilinear functions is fully described by
four shape functions. Therefore the elements is the same in both old and new family. The family
{B4, B9, B15, B22} is still hierarchic, i.e., the stiffness matrices of lower degree are submatrices of
the one of higher order.

Let P, denote the space of polynomial of degree less or equal p in the two variables. Let S, be the
polynomial spaces of the Serendipity hierarchic shape functions of degree p. Let Q, be the standard
complete space of polynomials of degree p in each of the two variables. Let B, be the intermediate
space, obtained by S, adding only a limited number of bubble functions. Due to the construction,
for a given degree p, the following relation holds between the finite dimensional spaces:

Pp,CSp,CBy, CQp
and therefore
dimP, < dim S, < dim B, < dim Q.

In Table 1 the dimension are given for some values of the degree p. Moreover, the number of internal
functions is reported.
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Table 1. Total number of shape and bubble functions for the spaces Sy, By, Qp

r p shape functions bubble functions

Sp B, o Sp By, 9

12 15 16
17 22 25

W N -
oo
©

- o o @

o W = O

© A = O

For a general value of p the dimensions of each space are:
dimS, = 4p+ 5(p—2)(p—3)
dimB, = ip(p+7) =4p+3p(p—-1)
dim Qp = (p+1)2=4p+(p-1)°

To obtain the space B, we take all monomials of the space S, and we add the following monomial
terms:

p = 2: {z%*);

p = 3: {222, 2% 2%}

p = 4: {d%, 2%, 2"y’ 2%’ 2%y}
In Table 2 the single monomials terms of the spaces Sy, By, @ are listed. More precisely, for the
standard hierarchic space S, the monomials are added to increase the degree p. For the spaces B,

and Qp only the monomials to be added to the correspondent space S, and B,, respectively, are
listed.

Table 2. Monomial terms of the spaces Sp, By, @p

p | Serendipity space Sp intermediate space Bp complete space Qp
1 {1,2,y,zy}

2 | {z% 2%, 2% 9%} {=*y"}

3 {2®, 2%y, 2%, 1%} (2?2, %2, %) (%%}

4 | {z*, 2%y, oy, vt 227} (%%, 2%%, 2%°, oty?, %y} (%, 2%, oy}

Let us describe the main features of the new elements compared with the old ones. We consider
the standard square reference element [—1,+1] x [—~1,+1].

Element B9. The classical Serendipity element of degree two has eight degrees of freedom. The
improved element is obtained by adding the sole bubble function of degree two, i.e., the function

bi(z,y) = 1 —2%) (1 -9?)

In Fig. 1 both Serendipity and complete element are shown. We recall that for the plate problem at
each node three degrees of freedom are present, one for the displacement and two for the rotations.
For the shell problem two other degrees of freedom have to be added to approximate the in-plane
displacements.
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Fig. 1. Serendipity and complete element for p = 2

Element B15. The classical Serendipity element of degree three has twelwe degrees of freedom. The
improved element is obtained by adding three bubble functions. Since we are dealing with hierarchic
elements we keep the previous function b;(z,%) and to obtain B15 we add the following functions:
ba(z,y) = z X bi(z,y)
b3(.’E, y) =yX bl("z,y)

In a different way, the bubble functions we have added can be described as the product P; ®b; (z,y).
In Figure 2 the elements are shown.

2 2
252 2{32
S12 B15

Fig. 2. Serendipity and intermediate element for p = 3

Element B22. The classical Serendipity element of degree four has seventeen degrees of freedom
and includes the bubble function b;. Adding five bubble functions we get the element B22. We keep
all the previous bubble functions and add:

ba(z,y) = zy x bi(z,y)
bs(z,y) = z° x bi(z,y)
bﬁ(zay) = y2 X bl(.’L',y)

The set can be described as the product P; ® by (z,y). In Figure 3 the elements are shown.

3 3
353 3.3
S17

B22
Fig. 3. Serendipity and intermediate element for p = 4
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3. THE THIN PLATE PROBLEM

Hereafter we shortly recall the problem. Details can be found, e.g., in [4, 17]. We consider the
Reissner-Mindlin assumptions for the plate bending problem. This plate theory takes into account
the transverse shear deformations. The theory uses the hypothesis that particles of the plate orig-
inally on a line that is normal to the undeformed middle surface remain on a straight line during
deformation, but this line is not necessarily normal to the deformed middle surface. Let  denotes
the domain of the plate, E the Young’s modulus, ¢ the thickness of the plate, v the Poisson’s ratio,
k the shear correction factor (usually taken as 5/6). Let w(z,y) denote the vertical displacement,
¢. and ¢, the in-plane rotations. Taking into account the contribution of the external load f(z,y),

after scaling, normalizing some physical constant and setting (Z; = (¢z,¢y) the problem can be
stated as:

-~ 2
Find(4,w) € (H} () x H{(Q) such that:

min 3 A, 8) + 172 1Vw = I3 - (f,w)]
(Sw)e(HY ()" xHY ()

-

where A(, 1) is the form

Lyisidy E
A(p,9) = 2017 /Q {d’z/z%/x + by ytysy v (d)x/z%/y + ¢y/y¢z/z)

-V
+IT(¢z/y g ¢y/:c)(¢a:/y + "»by/z)} dl‘dy
Despite its simple approach the discretization of the Reissner-Mindlin model is not straightfor-
ward. The inclusion of transverse shear strain effect in standard finite element models introduces
undesirable numerical effects. The approximate solution is very sensitive to the plate thickness and,
for small thickness, it is very far from the true solution. The phenomenon is known as locking of
the numerical solution.

4. THE SHELL PROBLEM

In recent years several types of numerical approximations have been proposed for dealing with shell
problems. It is well known that a shell is a three-dimensional structure where one dimension, the
thickness, is smaller compared with the remaining two dimensions. It can be derived from a thin
plate by initially forming the middle plane to a curved surface. Under the action of external forces
the shell, initially at rest, is subject to deformation according to the laws of the three-dimensional
elasticity. Although the same assumptions regarding the transverse distribution of strains and stress
are again valid, the way in which the shell supports external loads is quite different from that of a
flat plate.

A class of models is based on the classical non linear shell theory and employs the notion of
surface introduced by Cosserat. The inclusion of transverse shear strain effect in the finite element
models introduce an undesirable numerical effect, the so called shear locking phenomenon. Among
other Naghdi has developed this model (see [12]). We consider the shell model arising from the
Naghdi formulation. The deformations field is represented by the displacements @ = (u1,ug,u3)
of the midsurface of the shell and by the rotations 8 = (61,602). Let us use the convention that
Greek indices range over 1 and 2. Denoting with V' the space of the admissible deformations, the
variational formulation of the Naghdi model is the following:



156 C. Chinosi, L. Della Croce and T. Scapolla

( Find (@,0) € V such that :

B " n
mza(ﬁ, 0)L5(7,%) Vadédé,

a®Bé | L . .
‘ /n 1o Les(® )Tr6 (7, 9) Vadéidés + 53 [

\ +tl2 Qaaﬂ75Aaﬂ(ﬁ)A76(6) Vadédé, = /Qf'z')'\/c_zdéldﬁz V(@,9) €V

where T is the change of curvature tensor, X is the transverse shear strain tensor, A is the membrane
strain tensor and

gobro = _E [aavaﬂs + 0B 4 ﬁ’_aaﬂaw]
2(1+v) 1-v

We deal with the classical Scordelis—Lo problem, a test which is extremely useful for determining

the ability of an element to accurately solve complex states of membrane strain.

5. NUMERICAL SOLUTION OF A PLATE PROBLEM

As a plate problem we consider a unit square with uniform decomposition in quadrilateral elements.
Due to the symmetry of the domain the computations have been performed on a quarter of plate
only. Hereafter we present some results related to the clamped plate problem. The clamped plate is
the most effective test to check the robustness of finite elements with respect to the locking effect.
For a clamped plate we impose the following condition on the boundary 0€ of the plate

'LU((L‘, y) == ¢.’E(m7y) = ¢y(l‘,y) =0 on 0N

Several tests with different values of thickness have been performed to analyse reliability and
robustness of finite elements. For each test, among others, displacement at the center C of the plate
and the discrete strain energy have been computed. Let wex(C) denote the exact displacement at
the center of the plate (see [16]) and wy(C) the finite element solution. The relative displacement
error is defined as

_ wex(C) — wa(C)

E = x 100
4 Wex(C)

The exact strain energy was not available. Using the computed values of the strain energy an
extrapolation has been made in order to get an estimated value of the exact energy. Let us denote
with Eex the extrapolated value of the energy and let Ej, be the computed discrete energy. The
relative energy norm ||e|| of the error e = wex — wp, can be expressed in the following way:

_ 1/2
Eo = |lell = (ET@&) % 100
ex

Pointwise evaluation of the displacement error is, of course, a local error indicator whereas the
energy norm error is a global indicator. Figures 4 and 5 give the displacement error £ versus the
number of degrees of freedom and the energy norm error &, versus the reciprocal of the mesh size
parameter, respectively. In each picture the dashed line refers to the Serendipity elements, the
continuous line to the new “bubble plus” elements, except for the S4 element where only one line is
present. We consider a thickness of value ¢ = 0.0001 (very thin plate), for which some Serendipity
elements show a locking behavior. The numerical results show that the performance of the “bubble
plus” elements is substantially improved with respect to the Serendipity elements in the cases p = 2
and p = 3, the element S17 already exhibiting a good behavior. Always the locking phenomenon
is kept under control. The cost of the increase of the number of degrees of freedom is negligible
compared with the improvement of the results.
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Fig. 4. Relative displacement error vs. d.o.f.; ¢ = 0.0001; p=1-4.
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Fig. 5. Energy norm error vs. mesh size; ¢t = 0.0001; p=1-4.
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6. NUMERICAL SOLUTION OF A SHELL PROBLEM

The problem deals with a cylindrical shell known in the literature as Scordelis-Lo roof. The shell
is described in Fig. 6 with the corresponding physical data. This typical shell is used in civil
engineering using conventional processes proposed by Scordelis and Lo (14]. The shell is simply
supported on rigid diaphgrams and is free on the other sides. The shell is loaded by its own weight.
The barrel vault is a portion of cylindrical shell, with the region corresponding to the midsurface
described as follows:

2r

Q= {(61,62) : —-;i <= g,—R—g— <& < R%’r}

R =251t
L =50ft
v =0
E = 4.32 x 10® Ib/ft?
t = 0251t
2 |
0p = —m rad

9

/ 5 5 / —
_ 2 RIGID : X

load = 90 Ib/ft DIAPHRAGM \ {’3—’ Xq

Fig. 6. Scordelis-Lo roof

The barrel vault has a symmetric structure; thus the computations have been performed only on a
quarter of the shell. The following symmetry conditions have been assumed:

u2(£1,0) = 62(£1,0) =0, u1(0,&2) = 6:(0,&5) =0

and the following boundary conditions are prescribed:

uz(L/2,&2) = u3(L/2,&2) = 02(L/2,&) =0 (1)
For each test, among others, displacement at the midpoint B of the free edge has been computed.
Let ug*(B) denote the exact displacement at the point B of the shell (see [11]) and u3(B) the finite
element solution.

In Fig. 7 we report the normalized displacement versus the reciprocal of the mesh size parameter.
The line marked with circles refers to the Serendipity elements, while the line marked with stars to
the new “bubble plus” elements. We observe that in this classical case (t/R = 10~2) the Serendipity
elements perform very well and match all the available benchmark results. The use of the bubble
functions is not crucial and the advantage of the new elements of degree p = 3, p = 4 is evident
only when coarse meshes are employed. In order to analyse the shear and membrane locking arising
in this test problem we have considered different values of the ratio t/R. In Figures 8 and 9 we
present the results related to the values t/R = 1073 and t/R = 104, that exemplify the behavior of
“bubble plus” elements. In the case t/R = 1073 the use of the new elements gives an improvement
of the rate of convergence when p = 3, while for the degree p = 2 the added bubble is not able
to improve the convergence. In the case t/R = 10~ the performance of “bubble plus” elements is
substantially improved with respect to the Serendipity elements of degree p = 3, p = 4.
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Fig. 7. Normalized vertical displacement vs. mesh size; t/R = 0.01; p=2-4.
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