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In this paper we discuss sparse matrix computational methods, and their parallel implementations, for
evaluating matrix-vector products in iterative solution of coupled, nonlinear equations encountered in finite
element flow simulations. Based on sparse computation schemes, we introduce globally-defined precon-
ditioners by mixing clustered element-by-element preconditioning concept with incomplete factorization
methods. These preconditioners are implemented on a CRAY T3D parallel supercomputer. In addition to
being tested in a number of benchmarking studies, the sparse schemes discussed here are applied to 3D
simulation of incompressible flow past a circular cylinder.

1. INTRODUCTION

Distributed-memory, massively parallel supercomputers have become major players in large-scale
flow simulations. Finite element flow computations are well suited to parallel architectures since
they involve similar operations applied to a large number of elements.

Earlier examples of Single-Instruction-Multiple-Data (SIMD) implementations within a data
parallel paradigm on the Thinking Machines CM-200 and CM-5 can be found in Behr et al [1].
Flow simulations using a Multiple-Instruction-Multiple-Data (MIMD) implementation within a
message-passing model on the CRAY T3D were reported in Tezduyar et al [2].

Krylov space based iterative update techniques are now widely used for solution of the equation
systems arising from finite element discretizations. Here, the global coefficient matrix of such an
equation system is needed solely for matrix-vector product evaluations. Implementations involving
matrix-vector products at the element level, followed by global assembly, are simple to parallelize
but memory intensive. Furthermore, these implementations involve superfluous operations and
storage, because a typical node is shared by multiple elements. Matrix-free implementations [3]
alleviate the memory crunch, but at the cost of repetitive operations and increased execution time.

In the sparse computation schemes discussed here, the global matrix is stored using a node-
based data structure. Both memory needed and operations performed in matrix-vector product
evaluations are reduced (compared to element schemes) by a factor of ~ 2 for hexahedral meshes
and ~ 7 for tetrahedral meshes.

We also explore in this paper sparse schemes for globally-defined advanced preconditioners. In
virtually all of our earlier incompressible flow computations on parallel platforms we used diagonal
preconditioners. These have lower overheads, but in some cases an exhaustive number of iterations
is required to achieve convergence. A number of advanced element-by-element (EBE) and clustered
element-by-element (CEBE) preconditioners for flow computations have been proposed earlier 4,
5, 6]. Efficient parallel implementation of these preconditioners remain as a challenging research
area. Here we introduce a preconditioning method based on mixing CEBE preconditioning concept
with incomplete factorizations with zero fill in (ILUO) [7]. We call this preconditioner CEBE-ILUO.
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We also assess the performance of a variation of CEBE-ILUO which we call L-ILUQ. The L-ILUO
is a local (cluster level) preconditioner where all the off-diagonal terms for mesh nodes lying on
cluster boundaries are set to zero. In our implementation, a single cluster of elements is assigned
to each processor. We will also refer to these clusters as “partitions”.

In Section 2, the Compressed Sparse Row (CSR) data structure [7] for sparse storage is re-
viewed, and its modification to accommodate the nodal-block structure of the matrices arising
from finite element formulations is explained. The CEBE-ILUOQ preconditioner is described in Sec-
tion 3. Parallel implementations using a message-passing paradigm on the CRAY T3D are discussed
in Section 4. Scalability and performance of the computations based on sparse schemes with diago-
nal preconditioners are demonstrated in Section 5. Performance of the CEBE-ILUO preconditioner
and its effectiveness compared to diagonal preconditioning is assessed in Section 6. In Section 7,
we describe application of sparse schemes with diagonal preconditioner to 3D simulation of time-
dependent incompressible flow around a circular cylinder. Concluding remarks are presented in
Section 8.

2. DATA STRUCTURES FOR SPARSE SCHEMES

In our computations, the CSR data structure is used together with the nodal-block structure. The
CSR data structure consists of an array A (nz) which contains the non-zero entries, an array ja (nz)
which contains the column indices of the non-zero entries, and ia (n + 1) whose entries point to
the beginning of the rows in A and ja. Here nz is the total number non-zero entries, and n is the
number of equations.

For finite element meshes, the patterns for ia and ja (and hence for A) is deduced from the nodal
connectivity. When there are ndf unknowns per node, we can exploit the nodal-block structure of
the matrix and modify A (nz) to A (ndf,nz, ndf). The arrays ia and ja described above are now
used to traverse the second axis of A.

To avoid repetitive computation of locations in the global matrix during the assembly opera-
tions, the map from element stiffness matrix to global (sparse) matrix is computed and stored in
e2g (nen, nen, ne). Here nen is the number of nodes per element and ne is the number of elements
in the finite element mesh.

3. CEBE-ILUO PRECONDITIONER

The CEBE preconditioner, developed by Liou and Tezduyar [6], was successfully used, with the
GMRES update technique [8], for both incompressible and compressible flow computations. Here
the mesh is decomposed into clusters of elements. The element-level matrices are assembled to
cluster-level matrices, and the CEBE preconditioners are formed as sequential products of these
cluster-level matrices. The CEBE scheme is rather memory intensive, owing to the fact that the
cluster-level matrix storage is not sparse (since complete factorizations are required). Furthermore,
it was shown [6] that the larger the cluster size, the more effective the preconditioner.

Bearing the above factors in mind, we propose a preconditioning method utilizing the CEBE
concept. Here, a single (significantly large) cluster resides on each processor. No additional data
structures and communications are required for the formation of the preconditioner. Instead of
complete factorizations of the cluster-level matrices, we use only incomplete factorizations, namely
ILUO. The CEBE-ILUO preconditioner is outlined below.

Consider the system:

Ax =b. (1)

Such a system needs to be solved at each step of the Newton-Raphson method used for iteratively
solving a coupled, nonlinear equation system. The nonlinear equation system is formed at every
time step or pseudo-time step.
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In scaled form, the system can be written as:

Ax = b, ()
where

A=W AW 3, (3)

X.= W%x, (4)

b = W-3b, (5)
and

W = diag(A). (6)

The finite element mesh is partitioned into N, contiguous clusters (partitions) of ne, elements.

Each partition is assigned to a processing node. The global matrix A is expressed as an assembly
of partition matrices:

NP
A =3 A, (7)
p=1
where:
nep
Ao 22 ®)
e=1

Consider the incomplete factorization of the sparse partition matrix:

(1+4,-W,) = LU, 9)

where Ly and Uy are the lower and upper incomplete factors respectively.
The preconditioner is then written as:

P~1Ax = P1b, (11)
Remarks:

1. In the implementations, P~1 is not formed explicitly, instead its action is effected through the
incomplete factors.

2. Our experience with one-sided and two-sided scaling indicates that both perform comparably,
hence one-sided scaling, which needs fewer operations, is normally the method of our choice.

3. In the L-ILUO preconditioner, all the off-diagonal entries of partition boundaries are set to zero.
Diagonal preconditioning is used for these nodes, while ILUO preconditioning is used for interior
nodes.
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4. PARALLEL IMPLEMENTATIONS ON THE CRAY T3D

An efficient parallel implementation of a finite element solution technique should incorporate the
features listed below.

e Arrangement of data across processors in a fashion which maximizes data locality and maintains
load balance.

e Data structures and communication strategies which maintain a favorable ratio of on-processor
to off-processor operations.

e Scalable performance with increasing machine size.

In a distributed memory implementation, three levels of data structures are required at each of the
N, processors.

e Element-level data structures. The finite element mesh is divided into NN, contiguous, evenly-
sized partitions of elements. Each partition is assigned to a unique processor. The goal of par-
titioning is to obtain minimal number of boundary nodes (i.e. the nodes shared across mesh
partitions) since these nodes are sources off-processor communication. The nodes comprising a
partition are reordered locally on each processor. The interior nodes are numbered ahead of the
boundary nodes. The element connectivity for the partition is based on this reordering.

e Partition-level data structures. The partition-level data structures store information for the
nodes comprising the partition mesh. The CSR data structures described in Section 2 are setup
(locally) for each partition. Partition vectors and sparse matrices can be assembled indepen-
dently on each processor, free from any off-processor interaction.

e Global-level data structures. These are required for the solution of the global equation system.
Each processor is associated with a set of global nodes. A majority of these nodes are the
interior nodes of the partition corresponding to that processor. This ensures favorable ratio of
on-processor to off-processor operations.

Communication of data between the element and global levels occurs in the two stages listed
below.

o Global-level = Partition-level. These involve off-processor communications. As a preprocessing
step, the communication routes are computed based on the assignment of the global nodes.
Off-processor communication is achieved using the PVM [9] message-passing library.

e Partition-level &= Element-level. These involve only on-processor operations. Note that no in-
formation is stored at the element level. When element-level data is required for element-based
computations, it is obtained from partition-level vectors using local connectivity.

The transfer of data from the global-level to the partition-level (and subsequently to the element-
level) is called a gather operation, and the reverse transfer a scatter operation. Communication
is also required for computing the inner products of global vectors. These are called reduction
operations. For the reduction operations, processors are arranged in a tree structure. Each processor
computes its component of the global inner product; these are then communicated through the levels
of the tree and summed. This requires O (log, (INp)) communication steps.

Computation of global matrix-vector products comprises gathering the partition components
from the global vectors, followed by sparse partition-level matrix-vector multiplications, and scat-
tering back to global vectors.

The preconditioning phase is implemented as follows. As explained earlier, the preconditioning
matrix is formed as a series product of partition matrices. For all the interior nodes, multiplication
with the corresponding partition component of the preconditioning matrix is executed in parallel.
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However, the boundary nodes have to be dealt with in a sequential fashion. For this purpose, the
processors are colored such that no two processors in the same color group share nodes.
The Greedy Algorithm [7] is used to color the processors (clusters) as described below:

e Establish the connectivity between clusters, where clusters are declared to be neighbors if they
share nodes.

o Apply Greedy Algorithm

1. Initialize:

do i= l..;Np
Color(i) = 0;
end do
ncol = 1;

2. Color Clusters:
dol= 1;2;...Np

Search all the neighboring clusters and determine the first color (mincolor) not present;
If there is no such color then

necol = ncol + 1;

Color(i) = ncol;

else

Color(i) = mincolor;

end if

end do

Information on the boundary nodes shared by processors of different color is processed, and a
communication trace similar to the gather setup is stored. An ILUO factorization is performed in
parallel for each partition component of the preconditioning matrix. The forward and backward
solves are thus implemented as follows:

1. Parallel forward solve for all interior nodes on the partitions.
2. Sequential loop over colors; for each color:

e Forward solve followed by a backward solve for all boundary nodes of partitions with the
current color.

e Update the boundary nodes on unprocessed colors.
3. Parallel backward solve for all interior nodes on the partition.
Remark:

1. With the L-ILUO preconditioner, the sequential solves and corresponding communications are
totally avoided.

5. SCALABILITY AND PERFORMANCE OF THE SPARSE SCHEMES WITH DIAGONAL
PRECONDITIONERS

In this section, we evaluate the scalability and performance of the sparse schemes with diagonal
preconditioners. These schemes are used for stabilized, finite element formulation [10] of incom-
pressible flow simulations. The timings are based on a single step of a Newton-Raphson iteration
sequence. All the stages involved in that Newton-Raphson step are accounted for in the timings.
These include element-based computations, assembly of partition-level matrices and vectors, for-
mation of the global residual vector, and solution of the resulting linear equation system with the
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GMRES update technique. One point quadrature is used for tetrahedral meshes and eight points
for hexahedral meshes. Four different meshes are used for the evaluations. Table 1 gives a brief
description of each of these meshes which are drawn from typical finite element flow simulations.
The Krylov space size in the GMRES update is set to 20. The timings (measured in seconds) are
split into the components listed below.

e COMM: Time for the communication-based components.

e FORM: Time for the formation of the equation system.

e MV: Time for partition-level matrix-vector products.

e COMP: Total time for all the computation-based components

TOTAL: Overall time (COMP + COMM)

Table 1. Description of the meshes used for performance evaluations of sparse schemes with diagonal

preconditioners.
MESH | GEOMETRY TYPE NODES | ELEMENTS
1 AIRCRAFT TET 192,595 1,110,046
2 AUTOMOBILE | TET 448,695 2,815,518
3 SPHERE HEX 509,432 495,000
4 PARACHUTE HEX 1,114,241 1,085,016

From Table 2 we observe that the computation-intensive components (FORM and MYV) exhibit a
nearly linear speed-up with the machine size. For a given mesh, communication costs increase with
machine size due to the increase in the number of boundary nodes. The proportion of computation
is higher for hexahedral meshes due to larger number of quadrature points. Provided the mesh is
sufficiently large to load the processor, close to linear speed-up is obtainable for overall performance.
The memory requirements are ~ 4.5 Kbytes/node for tetrahedral meshes, and ~ 6.5 Kbytes/node
for hexahedral meshes.

Table 2. Timings (measured in seconds) for the performance evaluations of sparse schemes with diagonal

preconditioners.
MESH | PN | COMM | FORM MV | COMP | TOTAL | COMM(%)
1 32 2.10 10.72 3.96 15.96 18.06 11.07
1 64 2.14 5.36 | 2.00 8.02 10.16 21.06
2 64 3.48 13.64 5.15 2027 23.75 14.65
2 128 3.84 6.84 | 2.92 10.52 14.36 26.74
3 64 3.56 3739 | 8.60 47.70 51.26 6.95
3 128 4.00 18.73 4.46 24.04 28.04 14.26
4 128 5.87 41.02 | 10.68 53.60 59.47 9.87
4 256 6.98 21.54 5.47 27.97 34.95 19.97
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6. PERFORMANCE OF THE CEBE-ILUO PRECONDITIONER,

In this section, the performance of the CEBE-ILUO preconditioner is evaluated and compared with
diagonal preconditioning.
Three test problems which are listed below are considered.

e Flow around a SPHERE at Re = 400.
e Flow around a CYLINDER at Re = 300.
e Flow around a ram-air PARACHUTE at Re = 107.

The problem descriptions are given in Table 3.

Table 3. Description of the problems used for evaluating the performance the CEBE-ILU0 preconditioners.

MESH | GEOMETRY | TYPE | NODES | ELEMENTS EQNS | N, | NCOLOR

1 SPHERE TET 43,282 258,569 162,096 | 32 T
2 CYLINDER HEX | 197,948 186,240 760,017 | 64
3 PARACHUTE | HEX | 469,493 455,520 1,833,216 | 128 9

The normalized timings (seconds/GMRES iteration) and percentage cost of various components
of the solution step are shown in Tables 4 and 5. These correspond to a Krylov space size of 50.

Table 4. Normalized timings (seconds/GMRES iteration) for the solution step with the CEBE-ILU0
preconditioner.

CASE MV GS | REDN | HESS | PCBE | SCBE | CCBE | TCBE

SPH .0493 | .0251 .0141 | .0075 .0459 | .1388 .0764 .2611
CYL 1885 | .0636 0777 | .0686 | .1515 | .3981 .1810 .7306
PARA | .2027 | .1390 .0932 | .0838 1829 | .6042 4303 | 1.2174

Table 5. Percentage costs per iteration for the solution step with the CEBE-ILU0 preconditioner.

CASE MV | GS | REDN | HESS | PCBE | SCBE | CCBE | TCBE

SPH 13.80 | 7.02 3.94 2.10 | 12.85 | 38.86 21.39 73.12
CYL 16.69 | 5.63 6.88 6.07 | 1342 | 35.26 16.03 64.72
PARA | 11.67 | 8.00 5.37 4.83 | 10.53 | 34.80 24.78 70.12

We define below the symbols used in these tables which were not defined previously in Section 5.

GS: Gather and scatter operations.

REDN: Reduction operation.

HESS: Formation and solution of reduced Hessenberg system.

PCBE: Parallel forward and backward solves in CEBE-ILUO preconditioning.

SCBE: Sequential forward and backward solves in CEBE-ILU0 preconditioning.
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e CCBE: Communications involved in CEBE-ILUO preconditioning.
e TCBE: Total time for CEBE-ILUO preconditioning.

The times for MV, GS, and TCBE vary linearly with the Krylov space size (ikg), while the times
for REDN and HESS vary quadratically with ikg. Our observations from Tables 4 and 5 are given
below.

1. Approximately 60-70% of the time is spent in the preconditioning phase. This means CEBE-
ILUO preconditioning takes 2.5-3.5 times more time than diagonal preconditioning.

2. A significant amount of time is spent in the sequential solve phase (~ 50-60% for SCBE +
CCBE). This time is proportional to the number of colors. If ncol is the number of colors used
to color the processors, each processor will be active for only 1/ncol of the time during sequential
solves. A more efficient scheme would entail allowing more than one cluster per processor. Each
processor would then hold clusters belonging to every color and would be active throughout the
preconditioning phase.

3. Figures 1-3 show the performance of CEBE-ILUO, L-ILUO and diagonal preconditioners as
functions of CPU time and number of iterations. For the test cases presented, the diagonal
preconditioner works out to be most economical for a convergence level of 2 orders of magnitude,
followed by L-ILUO for a convergence level of 3 orders of magnitude. However, the CEBE-ILUO
preconditioner exhibits superior performance in terms of overall convergence.
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Fig. 1. Convergence of CEBE-ILUO and L-ILUO preconditioners for 3D flow past a sphere at Re = 400.
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Fig. 2. Convergence of CEBE-ILUO and L-ILUO preconditioners for 3D flow past a cylinder at Re = 300.



Parallel iterative computational methods for 3D finite element flow simulations 181

-0.5 -0.5

> o ; ; . : ; . . o
41 lu0 - ] -
i cebe-ilu0 -----

A5k

2t -

3 g
= E 25|}
o> (= \
] LS
35}
41 L SRR G e S T
45 : L L 3 " L H L L -4.5 L L " L " L L L
0 10 20 30 40 50 60 70 80 90 100 0 20 40 60 80_ 100 120 140 160 180 200
Iterations CPU (sec)
Fig. 3. Convergence of CEBE-ILUO and L-ILUO preconditioners for flow past a ram-air parachute at
Re =10".

7. EXAMPLE APPLICATION: 3D TIME-DEPENDENT FLOW PAST A CIRCULAR CYLINDER

In this section, results from the 3D simulation of time-dependent incompressible flow around cylin-
ders at Reynolds numbers 300 and 800 are presented. Earlier results with matrix-free computations
were reported in Kalro and Tezduyar [11]. A hexahedral mesh with 197,948 nodes and 186,240
elements is used. This simulation requires solution of 760,107 coupled, nonlinear equations at ev-
ery time step. Diagonal preconditioning is used in the iterations with GMRES update technique.
These computations take 33.15 sec/time step on a 64-processor CRAY T3D. Visualization of the
isosurfaces of vorticity clearly indicates 3D effects in the form of spanwise waves along the axis of
the cylinder. These structures are regularly spaced at Re = 300 (see Fig. 4). At Re = 800 (see
Fig. 5) there is a breakdown in structure and the wake is turbulent.

Fig. 4. 3D flow past a cylinder at Re = 300



182 V. Kalro and T. Tezduyar

=

AN
‘~\’. -
b

Fig. 5. 3D flow past a cylinder at Re = 800

8. CONCLUDING REMARKS

In this paper we presented parallel methods for computing matrix-vector products using a sparse
storage scheme. The conventional CSR storage format was modified to utilize the nodal-block struc-
ture of matrices arising from finite element discretizations. The resulting sparse-scheme-based flow
solver shows good scalability and enables carrying out large-scale simulations in short turn around
times. The sparse schemes also enable use of sophisticated preconditioners, such as CEBE-ILUQ
and L-ILUO. Tests involving typical flow simulation applications indicate that these preconditioners
are capable of yielding better convergence rates. However, depending upon the convergence level
desired, they may not necessarily be more economical than diagonal preconditioning.
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