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The paper is devoted to the shape optimization of piezoelectric and electro-thermo-mechanical devices
by the use of multiobjective evolutionary algorithm. In this paper, special implementation of multiob-
jective evolutionary algorithm is applied (MOOPTIM). Several test problems are solved in order to test
efficiency of the algorithm. The results are compared with the Non-Dominated Sorting Genetic Algorithm
(NSGA-II). The objective function values are calculated for each chromosome in every generation by solv-
ing a boundary value problem for the piezoelectricity and electro-thermal-mechanical analysis. In order
to solve the boundary value problems, the finite element method is used. Different functionals based on
the results derived from coupled field analyses are formulated. The aim of the multiobjective problem is
to determine the specific dimensions of the optimized structures. Numerical examples for multiobjective
shape optimization are enclosed.
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1. INTRODUCTION

The aim of this work is an optimal design of the micro-electro-mechanical systems (MEMS). For such
systems, necessity of taking into consideration interaction between different physical fields leads to
the formulation of many special criteria. Generally, optimization should take into account electrical,
thermal and mechanical properties of the system [7]. Important information for designers are also
related to the costs or volume of the structures. Taking into account the foregoing aspects, the
application of multicriteria optimization is indispensable. Performing single objective optimization
with respect to one arbitrarily chosen criterion while other criteria are treated as constraints, or
using weighted sum method, can be inefficient and inadequate.

Evolutionary Algorithms (EAs) become a powerful optimization tools for many different engi-
neering disciplines [11]. Many features of EAs, such as: great probability of finding global optimum,
no need of using gradient of fitness function, easy implementation, flexible operators, etc., make
them very popular comparing to other optimization techniques. EAs seem to be an excellent tool
for finding a set of Pareto optimal solutions, because they works on a population of individuals. In
comparison with the other techniques, EAs give a proper balance between two conflicting aspects
needed in successful optimization: exploitation near the likely optimum and the exploration of the
search space. For the single-objective optimization problem, these two aspects are mainly consid-
ered, whereas for the multi-objective optimization, well spread of Pareto optimal solutions is also
essential.

Two models of MEMS structures are considered in the present work. It requires solving a bound-
ary value problem for the piezoelectricity and electrical-thermal-mechanical analysis. Finite Element
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Method (FEM) [1, 13] is used to obtain solutions for above mentioned problems. Functionals are
calculated on the basis of a nodal results for electrical, thermal and mechanical quantities.

To obtain Pareto optimal solutions an own implementation of the multiobjective evolutionary
algorithm (MOOPTIM) is used. It allows designers to easily make a choice from the set of non-
dominated solutions according to their preferences and system requirements. In order to check
effectiveness of MOOPTIM, the algorithm was examined on several test functions. The results are
compared with those obtained by using NSGAII. Solutions of shape optimization of MEMS devices
are also compared for both algorithms.

2. MULTIOBJECTIVE OPTIMIZATION

2.1. Description of the multiobjective optimization problem

The process of finding a vector of decision variables that satisfies some restrictions and optimizes the
vector of functionals is called multiobjective optimization (MOO). A MOO problem is formulated
as follows

find: x = [x1, x2, . . . , xk]
T,

minimize or maximize: f(x) = [f1(x), f2(x), . . . , fn(x)]
T ,

subject to: gi(x) > 0, i = 1, 2, . . . ,m,

hi(x) = 0, i = 1, 2, . . . , p,

xLi 6 xi 6 xRi ,

where k is the number of design variables, n is the number of objective functions, m is the number
of inequality constraints, p is the number of equality constraints, xLi and xRi are minimum and
maximum acceptable values for the variable xi.

Multi-objective optimization deals with multiple conflicting objectives and usually, the optimal
solution for one of the objectives is not necessarily the optimum for any of the other objectives. For
such a case, instead of one optimal solution, many solutions are incomparable and optimal. These
solutions are called Pareto-optimal ones.

2.2. MultiObjective OPTIMization tool – MOOPTIM

A requirement for EAs in multi-objective optimization can be generally formulated as follows:
emphasize non-dominated solutions for progressing towards the Pareto-optimal front, emphasize the
less crowded solutions for maintaining a good diversity among the obtained solutions and emphasize
elites to provide a faster convergence near the Pareto-optimal front.

Good MOO algorithm should guarantee the above conditions without specifying any additional
parameters, except those typical for EA (population size, number of generations, probabilities of
evolutionary operators, etc.). Among many different types of multiobjective genetic and evolutionary
algorithms Strength Pareto Evolutionary Algorithm and Non-Dominated Sorting Genetic Algorithm

are the most popular and fulfil the above-mentioned expectations. Consecutive versions of such
algorithms SPEA2 and NSGAII have many practical applications in different engineering disciplines.

In this work, our own implementation of the MultiObjective OPTIMization tool based on evo-
lutionary algorithm (MOOPTIM) is used for optimization. Some specific methods implemented in
NSGAII are applied in MOOPTIM.
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2.2.1. Nondomination clasification

For each individual, the objective functions values are calculated. The classification of the individuals
is performed by using nondominated sorting procedure [3–5]. The population is sorted on the basis
of nondomination of the individuals. Each chromosome is assigned a rank equal to its nondomination
level (solutions of the first front represent the best level, solutions of the second front represent the
next best level, and so on).

2.2.2. Diversity preservation

In order to preserve diversity in the population, a crowding coefficient, proposed in [5], is calculated
for each solution. Sorting procedure according to each objective function value is performed for the
solutions on all fronts. The boundary solutions for each objective function have assigned infinite
distance. This ensures survival of the extreme solutions. All other solutions are assigned a distance
value equal to the absolute normalized difference between the function values of two neighboring
solutions. The total value of the coefficient is the sum of all distances in n-dimensional objective
space.

2.2.3. Core of the algorithm

The algorithm consists of two parts: an initialization and a main loop. Figure 1 shows the flowchart of
the multiobjective evolutionary algorithm MOOPTIM. In the initialization step, besides determining
all settings of the algorithm, populations Qi and Pi are generated and the fitness functions are
evaluated for population Qi. In the main loop, after evaluation of the fitness functions for Pi and
checking the stop conditions, populations Qi and Pi are combined. Selection is performed on the set
Ri, which is two times bigger than Pi. The individuals from the population Ri are put to Pi+1 on the
basis of nondomination level (membership to the certain front). If the solutions belong to the same
front, solutions with a bigger value of crowding coefficient are selected to Pi+1. Individuals from
Pi+1 are copied to Qi+1 and then evolutionary operators change the population Pi+1. Two types of
mutation are used: uniform and Gaussian, and two types of crossover: simple and arithmetic. It can
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Fig. 1. The flowchart of the multiobjective evolutionary algorithm MOOPTIM

be noticed that both algorithms (MOOPTIM and NSGAII) have common features. Compared to the
NSGAII, the proposed implementation has more evolutionary operators. It should be emphasized
that Gaussian mutation has significant influence on the effectives of searching by the algorithm.
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It was observed in previous investigations, in which the Gaussian mutation was applied to many
tests and practical problems for single-objective optimization [2]. As a consequence of applying this
operator, besides probability, the range of the Gaussian mutation have to be specified. The other
difference between these algorithms is related to the formation of population Pi+1. There is no
binary tournament selection operator in MOOPTIM. As mentioned before, solutions are selected
only on the basis of nondomination level and crowding coefficient.

2.3. MOOPTIM – NSGAII comparison

MOOPTIM was used to solve the following benchmark problems: SCH, ZDT3, ZDT4 and ZDT6
[4, 15]. In real-world engineering optimization tasks, the solutions of the boundary-value problem
may sometimes fail, e.g. finite element mesh can not be created or may be inappropriate due to
the wrong values of design variables. Incorrect solutions should not be considered and should be
eliminated from the population. In such cases the death penalty method is applied which leads
to constrained optimization. For this reason examination of the efficiency of MOOPTIM for a
constrained test problem is very important. Three test problems, namely CONSTR, SRN, TNK,
are considered [5]. Due to the similarity of MOOPTIM to NSGAII, comparison is performed only
for these two algorithms.

As mentioned before, for the multiobjective optimization, diversity in this set is essential besides
the convergence to the Pareto-optimal set. It is impossible to measure these two tasks only by one
performance metric. In the present paper, the comparison was performed by using the following
indexes, proposed in [5]: convergence metric – measures the distance to the known set of Pareto-
optimal solutions, diversity metric – measures span and spread of founded set of solutions. The
values proceed to zero show better performance for both metrics.

2.3.1. Unconstrained optimization

Four different functions are used for test bechmark problem. All functions are minimized. The
number of variables, the variables bounds, the objective functions and the optimal solutions for
the unconstrained optimization are collected in Table 1. All tests are run with the population size

Table 1. Unconstrained test problems

Variable Objective OptimalProblem k
bounds functions solutions

SCH 1
[

−103, 103
]

f1(x) = x2 x ∈ [0, 2]

f2(x) = (x− 2)2

ZDT3 30 xi ∈ [0, 1] f1(x) = x1 x1 ∈ [0, 1]

i = 1, . . . , k f2(x) = g(x)

(

1−
√

x1

g(x) −
x1

g(x) sin(10πx1)

)

xi = 0

g(x) = 1 + 9

(

k
∑

i=2

xi

)

/ (k − 1) i = 2, . . . , k

ZDT4 10 x1 ∈ [0, 1] f1(x) = x1 x1 ∈ [0, 1]

xi ∈ [−5, 5] f2(x) = g(x)
(

1−
√

x1/g(x)
)

xi = 0

i = 2, . . . , k g(x) = 1 + 10(k − 1)
k
∑

i=2

(

x2
i − 10 cos (4πxi)

)

i = 2, . . . , k

ZDT6 10 xi ∈ [0, 1] f1(x) = 1− exp (−4x1) sin
6 (6πx1) x1 ∈ [0, 1]

i = 1, . . . , k f2(x) = g(x)
(

1− (f1(x)/g(x))
2
)

xi = 0

g(x) = 1 + 9

((

k
∑

i=2

xi

)

/(k − 1)

)0.25

i = 2, . . . , k
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100 and for 250 iterations for both algorithms. For NSGAII crossover probability is set to 0.9,
mutation probability 0.1 as suggested in the papers [4, 5]. The probabilities of arithmetic crossover,
simple crossover and uniform mutation were set to 0.1 for MOOPTIM. The probability of Gaussian
mutation is 0.7 and range of Gaussian mutation is 0.2. Thirty runs of the algorithms for each
benchmark optimization problem are performed. The average values and variance of the convergence
and diversity metric are collected in Table 2. Results for SCH test problem are comparable, for ZDT3

Table 2. Results for unconstrained optimization

Convergence metric SCH ZDT3 ZDT4 ZDT6

MOOPTIM (avg) 0.008165 0.051932 0.014609 0.0030099

MOOPTIM (var) 3.7e-07 0.000444 6.0e-05 4.4e-08

NSGAII (avg) 0.007925 0.0060867 0.757388 0.077317

NSGAII (var) 1.7e-07 1.5e-05 0.398811 5.5e-05

Diversity metric SCH ZDT3 ZDT4 ZDT6

MOOPTIM (avg) 0.470163 0.881946 0.375466 0.720222

MOOPTIM (var) 0.001602 0.001697 0.003964 0.001618

NSGAII (avg) 0.491478 0.626831 0.788826 0.592125

NSGAII (var) 0.002238 0.001671 0.025975 0.000827

problem NSGAII reaches better convergence and diversity metric. MOOPTIM outperforms NSGAII
for ZDT4 and ZDT6 test problems, although NSGAII achieves slightly better diversity metric for
ZDT6.

2.3.2. Constrained optimization

For constrained optimization three test problems are chosen: CONSTR, SRN and TNK. All func-
tions are minimized. The number of variables, the variables bounds, objective functions and con-
straints are collected in Table 3. All tests are run with the population size 100 and for 200 iterations.

Table 3. Constrained test problems

Problem k Variable bounds Objective functions Constraints

CONSTR 2 x1 ∈ [0.1, 2.0] f1(x) = x1 g1(x) = x2 + 9x1 > 6

x2 ∈ [0, 5] f2(x) = (1 + x2) /x1 g2(x) = −x2 + 9x1 > 1

SRN 2 xi ∈ [−20, 20] f1(x) = (x1 − 2)2

+ (x2 − 1)2 + 2

g1(x) = x2
1 + x2

2 6 225

i = 1, 2 f2(x) = 9x1 − (x2 − 1)2 g2(x) = −x1 − 3x2 6 −10

TNK 2 xi ∈ [0, π] f1(x) = x1 g1(x) = − x2
1 − x2

2 + 1

+ 0.1 cos (16 arctan(x1/x2)) 6 0

i = 1, 2 f2(x) = x2 g2(x) = (x1 − 0.5)
2
+ (x2 − 0.5)2 6 0.5

Probabilities of the operators for both algorithms are identical as in unconstrained optimization.
Figure 2 shows Pareto-optimal solutions obtained by the use MOOPTIM and NSGAII for tests
CONSTR and SRN. The obtained results are also comparable for the TNK test problem.
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Fig. 2. MOOPTIM-NSGAII comparison for the constrained test problems

3. MULTIOBJECTIVE OPTIMIZATION OF MEMS STRUCTURES

3.1. Boundary-value problem

MOOPTIM is applied to the shape optimization of MEMS structures by the minimization or maxi-
mization of an appropriate functions. In the present work two types of boundary value problem are
considered:

• electrical-thermal-mechanical analysis,

• piezoelectricity.

Both problems are described by the appropriate partial differential equations. These equations
with arbitrary geometries and boundary conditions are usually solved by numerical methods. Finite
element method is used to solve both boundary-value problems in the paper.

Coupled electrical-thermal-mechanical analysis (Joule-mechanical) combines electrical-thermal
analysis (joule heating) with thermo-mechanical problem. The problem is weakly coupled, which
requires solving electrical, thermal and mechanical analysis separately [10]. Coupling is carried out
by transferring loads between the considered analysis and by using staggered procedures. Matrix
equations of electrical-thermal-mechanical problem can be expressed as follows:

KEV = I, (1)

KTT = Q+QE, (2)

KMu = F+ FT, (3)

where KE is the electrical conductivity matrix, KT is the thermal conductivity matrix, KM is the
stiffness matrix, QE is the heat generation vector due to current flow, FT is the force due to thermal
strain vector, V, T, u, are the nodal vector of voltage, temperature, displacements, respectively, I,
Q, F, are the nodal vector of current, heat fluxes and applied forces, respectively.

The electrical, thermal and mechanical boundary conditions for the equations (1), (2) and (3)
take the form:

Γφ : φ = φ̄, Γω : ω = ω̄, (4)

ΓT : T = T̄ , Γq : q = q̄, Γc: q = α(T − T∞), (5)

Γt : t = t̄, Γu : u = ū, (6)
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where φ denotes the electric potential, ω is the charge flux density, T , q, α, T∞ denote the tem-
peratures, the heat fluxes, the heat transfer coefficients and the ambient temperatures respectively,
t denotes the tractions and u denotes the displacements.

Γφ, Γω, ΓT , Γq, Γc, Γt and Γu denote parts of the boundary where the potentials, the charge flux
densities, the temperatures, the heat fluxes, the heat transfer coefficients, the ambient temperatures,
the tractions and the displacements are specified. These parts of the boundaries fulfil the following
relations

Γ = Γφ ∪ Γω = ΓT ∪ Γq ∪ Γc = Γt ∪ Γu,

Γφ ∩ Γω = ∅, ΓT ∩ Γq ∩ Γc = ∅, Γt ∩ Γu = ∅.

Piezoelectricity couples electrical and mechanical fields. The problem is solved by using strong
coupling method [8, 12] . It requires the usage of coupled finite elements, which have all mechanical
and electric degrees of freedom (displacements and electric potential). Coupled field equations of
static piezoelectricity can be expressed as follows

[

Kuu Kuϕ

Kϕu Kϕϕ

] [

u

Φ

]

=

[

Fu

ρϕ

]

, (7)

where Kuu is mechanical stiffness matrix, Kuϕ, Kϕu are piezoelectric stiffness matrices, Kϕϕ is
dielectric stiffness matrix, Fu is force vector and ρϕ is charge flux vector. Equation (7) is completed
with electrical (4) and mechanical boundary condition (6).

Both boundary value problems are solved using FEM software ANSYS [6]. In order to evaluate
fitness functions, several tasks are performed (Fig. 3). Genes in individuals are design variables,
which are responsible for the generation of the geometry. On the basis of geometry, a finite element
mesh is generated. Next, the boundary conditions are applied to appropriate parts of the model. All
necessary settings of the analysis are specified before solving the direct problem. Fitness functions
are calculated on the basis of post-files with the use of electric, thermal and mechanical quantities.
All steps of computation are aided by ANSYS Parametric Design Language (APDL) [6].

applying
BCs

mesh
generation

read
results

solving
boundary-value

problem

geometry
generation

design
variables

functions
evaluations

Fig. 3. Steps in calculation of the fitness functions

3.2. Fitness functionals

In the present paper, the following functionals are defined: the minimization of the maximum value of
the equivalent von Mises stress, the maximization of the deflection of the structure, the minimization
of volume of the structure

min
x

f1
def
= max (σeq) , (8)

max
x

f2
def
= max (ui) , (9)

min
x

f3
def
=

∫

Ω

dΩ. (10)
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3.3. Numerical examples

3.3.1. Example 1

The MEMS structure modelled as microelectrothermal actuator whose geometry is shown in Fig. 4.
Coupled electrical-thermal-mechanical analysis is assumed. The structure is made of polycrystalline
silicon with the following material properties: Young’s modulus – 158 × 103 MPa, Poisson’s ratio –
0.23, thermal expansion coefficient – 3.0 × 10−6 K−1, thermal conductivity – 140 × 108 pW/(µmK),
resistivity – 3.3× 10−11 TΩµm. The deflection of the actuator is produced when the electric potential
difference is applied across the two electrical pads (EP1, EP2). It is possible due to high electrical
resistivity and different thermal expansion between thin and wide arms. The device is subjected
to the electrical, thermal and mechanical boundary conditions. The electric potential difference
between electrical pads is 5V, temperature of the pads is fixed at 300K, pads are fixed in space
for all degrees of freedom. The length of the actuator is 260µm, electrical pad is 20µm×20µm. Six
design variables are assumed. Limitations of the design variables are as follows: Z1, Z2, Z3 – 1.0÷3.0,
Z4 – 12.0÷18.0, Z5 – 30.0÷100.0, Z6 – 2.0÷8.0. The multiobjective problem concerns determining

Z1

Z4

Z6

200

EP1

EP2

Z3

Z5

Z2

20

20

Fig. 4. Geometry and design variables of the thermal actuator

of the particular dimensions of the structures, considering different pairs of the proposed functionals
(8), (9), (10). MOOPTIM and NSGAII is used for the optimization tasks. Size of the population
and number of iterations are 50 for both algorithms. The further parameters of MOOPTIM and
NSGAII are identical as in Section 2.3.1. Figure 5 shows the results of optimization.
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Fig. 5. Pareto-optimal solutions for the electrothermal actuator: (a) volume minimization (10) and
deflection maximization (9), (b) volume minimization (10) and equivalent stress minimization (8)

3.3.2. Example 2

In the second optimization problem L-shaped piezoelectric structure is considered (Fig. 6). The
length of the structure is 10mm, whereas the thickness of the thin arm is equal to 1mm. Left
side of the structure (segment AF) is clamped. Electric potentials: 1000V and 1000V are applied
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on the segments AF and CD, respectively. Four design variables: vertical coordinate of point A
(range 0÷6.0), vertical and horizontal coordinates of point B (ranges 1.0÷6.0 and 1.0÷5.0), hori-
zontal coordinate of point C (range 5.0÷9.0) are assumed. The PZT-5 ceramic material is applied.
In this example also both algorithms (MOOPTIM and NSGAII) are used for the optimization

A

F

B

D

E

C

10

1

Fig. 6. Geometry of the optimized piezoelectric structure

tasks. Parameters of the algorithms are identical as in Example 1. Figure 7 presents the results of
multiobjective optimization for different pairs of functionals.
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Fig. 7. Pareto-optimal solutions for the L-shaped piezoelectric structure: (a) volume minimization (10) and
equivalent stress minimization (8), (b) equivalent stress minimization (8) and deflection maximization (9)

4. CONCLUSIONS AND FUTURE TASKS

In the present work the MOOPTIM algorithm has been used for multiobjective shape optimization
of MEMS structures. The effectiveness of MOOPTIM has been compared to NSGAII on several
benchmark test problems. The obtained results show the effectiveness of MOOPTIM for both un-
constrained and constrained optimization tasks. For some test problems, MOOPTIM significantly
outperforms NSGAII.

The application of the MOOPTIM to the real-world engineering problems, such as multiobjective
optimization of MEMS structures, shows its usefulness. The results obtained by using MOOPTIM
are slightly better comparing to the results obtained by using NSGAII. For these problems, besides
the convergence, especially distribution of the Pareto-optimal solutions is more extensive (Fig. 5),
(Fig. 7). The presented set of final solutions is obtained only for 2500 fitness functions evaluations, so
it may not be global. The quality of the Pareto fronts can be improved by increasing the population
size or by extending the optimization process.

The application of the FEM software requires evaluation in several steps for each single solution
(modification of the geometry, creating finite element mesh, etc.). It can be a very-time consuming
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task, especially for more complicated geometry. Solution of the coupled problems such as electro-
thermo-mechanical or piezoelectric analysis is more time-consuming compared to the single-field
problem. To reduce the time of the optimization, parallel computation or approximative surrogate
evaluations can be used. Apart from above techniques, authors considered the application of such
approach also in grid environment [9].
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