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Numerical results on the locking for cylindrical shells
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We investigate the performance of the Naghdi shell model using a family of hierarchic high order finite
elements. We solve two cylindrical shell problems, representative of extremely discriminating situations:
the membrane dominated Scordelis-Lo problem and a bending dominated problem already tested by Leino
and Pitkdranta. As it is well known, these problems are hard tests for shell elements, especially when the
thickness of the shell is approaching to zero, since the presence of hidden constraints can lead to numerical
convergence problems, known as shear and membrane locking. The numerical results show the robustness
of the finite elements developed, able to avoid the locking behavior.

1. INTRODUCTION

In this paper we have considered the shell model arising from the Naghdi formulation. A displace-
ment finite element scheme has been developed using C? finite element of hierarchic type of degree
ranging from 1 to 4. In order to analyze the behavior of our finite elements respect to the membrane
and shear locking, we have dealt with two test problems often used to assess the performance of
numerical formulations based on the degenerated solid approach. The two tests are representative
of extremely discriminating situations.

The first one is the well known Scordelis-Lo problem. It is a membrane dominated problem and
it is used to evaluate the ability of the shell elements to capture complex membrane state of stress.
We have evaluated the values of the displacement for different values of the thickness of the shell.
The numerical results, especially for the elements of degree 3 and 4, show a good agreement with
all the available benchmark results.

The second test refers to a partially clamped hemicylindrical shell. It is a bending dominated
problem and it is a severe test for a shell element performance with respect to both membrane and

-shear locking (see 2, 4]). Our numerical experiences indicate that high order elements perform very
well in both the test problems.

The outline of the paper is the following. In Section 2 first we describe the Naghdi’s model for
cylindrical shells; then we recall the mathematical model and introduce the finite elements used
for the numerical approximation. In Section 3 we present an extensive set of numerical results. We
consider a bending-dominated problem and a membrane-dominated problem. For each of the two
tests we analyze in details the behavior of the finite element results versus the thickness of the shell
structure.

2. NAGHDI’S MODEL FOR CYLINDRICAL SHELLS

2.1. The geometrical problem

Let us consider some model problems where the shape of the shell is cylindrical. In a system of
Cartesian coordinates (O, z1,z2,z3) the region occupied by the shell is in this case
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where L, R and ¢ denote the length, the radius and the thickness of the shell respectively.
Let us take a curvilinear coordinate system (&1, &2) placed at the centre of the midsurface, with

£ =11

& =R  0€|[-m,m]. @)

The midsurface S of the shell is described by the mapping:
B(é1,€2): QCR? — S CR3, (3)
p1(€1,&2) =&,
(é1,&2) = Rsin &
p2(81,82) = R’ (4)
a8 &2
©3(é1,62) = Reos 7 .
With such choices the region Q C R? corresponding to the midsurface S is the rectangle

a={E&):-F<a<3

'2—, —Rm < fz < RW} (5)

and the covariant basis at the point @(&;,&2) of the midsurface S is

C_':1 B (17 07 0),

i A 5_2)

ay = (0, cos R., st ; (6)
as = (0, sin%, cos %) i

It is known that @3 is normal to the undeformed middle surface. For each point (£1,&2) € Q we
consider a third coordinate {3 along the direction @3 normal to the surface S at the point @(¢1, &).
The set (§1,&2,&3) defines locally a system of curvilinear coordinates.

2.2. The mathematical model

The Naghdi model describes the deformation of a shell subject to a transverse loading when trans-
verse shear deformation is taken into account. In Naghdi’s approach constant shear deformation
are allowed across the thickness of the shell. The main assumption is that particles lying on the
direction @3 remain on a straight line during deformation, but the line does not necessarily keep
normal to the deformed middle surface. With such an assumption the normal unit vector s is
allowed a rotation 6 with covariant components 60y, 6, i.e., § = 0,a,.

The displacement U of a point belonging to the three-dimensional shell has the form:

U = u;id; + £300Ga (7)

where u; are the covariant components of the displacement @ = (uy, ug,u3) of the point @(£1, &) of
the middle surface S.

Let us suppose that the shell is homogeneous and isotropic. As usual we denote by E, v and k
the Young’s modulus, the Poisson ratio and the shear correction factor respectively. Hereafter the
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value k = 1 is taken. The external forces acting on the shell can be written in terms of its covariant
components p;, i.e.,
P = pid; . (8)

For an arbitrary displacement field @ = (u;) and rotation field 6 = (6,), with u;, 0, in H (),
we define the change of curvature tensor Y, the transverse shear strain tensor ¥, the membrane
strain tensor A:

Y11(@,0) = 61,1,

~ 1 1
T12(d, f) = 3 (01’2 “p 02,1 + Ru2,1) )

Lo 1 1
Yoo(d,0) = b2 + R (Uz,z + Ew) 3

Zl(ﬁa 0) = u3,1 + 61,

1
22(1_1:, 0) = us2 — EUQ + 65,
Au(@) =,

E(Ul,z +uz,1),

1
A22 (’U.) = U2,2 + E’U,;; &

The strain energy E of the shell can be written as the sum of three contributes: bending, shear and
membrane energy. The energy functional has the following form

E@,9) = EP(@,9)+ES(@,4) +EM(7,9),

~ 3 ~ -~
EP(5,9) = b %:5,9),
RSP (10)
ES(’Ua’lp) = 53(v7¢;va¢)7
T
The bilinear form associated to the bending component of the energy is defined as
~ , ~ E 2 L~ L~ 2v L L~
435,59 = gy o (1o T @ Tu@ ) + 7=, Yal@, ) Tu, )
L 5 2v Lo Lo~
+47T12(4,0) Tra(7,9) + 11— T11(4,0) Yoo (7, 9)
2 =
+ 17— T22(@,0) To2(7, 1/’)) dé1dés - (11)
The bilinear form associated to the shear component of the energy is the following
o eLstnmuoil ER e ~ Lo
s(d, 0;9,9) = m/ﬂ (21(%9) 1 (%, %) + Ba(, 6) Z2(0,1/))) d¢;dée (12)

and the bilinear form associated to the membrane component of the energy is

o Bk R
it i) = 2(1+V)/Q<1_VA11(u)A11(v)+1_ Aas(@) Av1 (3)

+ 4 Agp(@) Ar2(9) +

1 A11( i) Aga (V)

E > Mg (1) A22(17)) d¢1dé, - (13)

T
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The load energy has the form
BY(5,9) = /Q PTVadtdés . (14)

Setting f =5 31313' and scaling likewise the strain energy E, the total energy functional can be
written as:

B@9) = 5B6,9) - [ fivadade. (15)

According to the energy principle, the shell assumes a state of deformation such that the total
energy E is minimized. We suppose that the shell is clamped on the subset of the boundary Sy =
@(To) x [—%, £] where Ty = 89 is a non empty subset of 9.

We define the spaces:

V ={veHYQ): |, =0}.
V® = {(#,9) : vi,9a € V}.

The solution of the Naghdi model is the pair (@, ) such that

The corresponding variational formulation of the problem assumes the form

Find (i,6) € V5 such that :
b(,0; 7, %) + = (@, 0;7,9) + m(a,7) = /Q fodede,  V(@,9) € VO

2.3. The finite elements and the stiffness matrix

Let Q be a polygonal domain. Let us introduce a decomposition 7} of Q) into quadrilateral elements
Qy, such that Ug, e, @n = 2. We consider the space

Vh = {("7ha'l:[;h) : (vn)i, (¥n)a € Wp("ﬁ)} (19)
where
Wy(Th) = {w € H'(Q): wlo, € S5(Qu) VOrE€Th}, p=1234 (20)

and S,(Qp) is a space of Serendipity type functions of degree p on each Q) € Tj.

The space Sp(Qp) is constructed as follows. Let P, be the spaces of polynomials defined on the
square [—1, 1] x [-1,1] of degree less or equal p in the two variables. We take all monomials of the
space Pp and we add the following monomial terms:

1. the monomial {zy} in the case p = 1;
2. the monomials {z”y, zyP} in the case p > 2.

Let us give a matrix form of the approximation of the problem (18). We consider a basis for the space
Wp(Tr) and let denote by F the corresponding vector of shape functions, i.e., F= (F1, Fs,...,FN),
where N is the dimension of the approximation space W,(73). The expression of the elementary
stiffness matrix for an element Qj € 7}, is given in Fig. 1, where the following notations have been
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used:
B = [ FTFdzdy,
(o]8
B, = | FTF)dady, B, = | FTF),dzdy,
(9] (9] (21)
By, = /Q hﬁ};ﬁ/, dzdy, By = /Q hﬁﬁﬁ,y dagly,
By = /Qhﬁﬁﬁ/y dzdy, By: = /QhF%ﬁ/z dzdy,
and
E Ekt™2 Ekt—2
— P——— — = —, 22
Co 12(1 —12) Cs 2(1+v)’ ™12 (22)

The previous integrals are computed exactly using Gaussian classical quadrature formulas of order
(P+1) x (p+1).

3. NUMERICAL RESULTS
3.1. The bending-dominated problem and the membrane-dominated problem

Referring to the expression of the energy of a shell problem (see (10)) we recall the usual classifica-

tion of such a problem (see [2, 4]). The deformation field (#,6) is named ineztensional if and only
if it satisfies both the shear constraints and the membrane constraints, i.e., if

ES(#,4) + EM(#,9) = 0. (23)

The problem is called bending dominated if the bending part of the energy dominates the total
energy, i.e.

EB(#,9) > ES(5,9) + EM(7,4). (24)

In bending dominated shell problems the deformation field is inextensional. As it is shown
elsewhere (see [6]) the membrane locking phenomenon is related to an inadequate representation of
inextensional deformation. Thus the numerical approximation of this class of problems is prone to
the membrane locking.

The problem is called membrane dominated if the membrane part of the energy dominates the
total energy, i.e.

E5(#,9) < ES(3,9) + EM(7,4). (25)

This case is more natural and it is more frequently found in real cases. Since a substantial part of
the strain energy is membrane energy, the representation of inextensional modes is not crucial in this
problem and the membrane locking does not affect severely the results. Indeed, some elements with
strong membrane locking will converge at a moderate rate in this type of problems. Nevertheless
when the transverse shear strain effect is taken into account in the finite element model, the so
called shear locking phenomenon occurs. We note that the discrimination between the bending and
membrane dominated problem depends in general: (i) on the shell geometry; (ii) on the boundary
conditions; (iii) on the load.



Numerical results on locking for cylindrical shells 37

3.2. A membrane-dominated problem

We consider the Scordelis—Lo problem [1, 3, 5]. It deals with a cylindrical shell known in the
literature as barrel vault. The shell is described in Fig. 2. We have the following data.

(i) Shell geometry. The region corresponding to the midsurface S is the rectangle

L 2w 2w }

Q= {(ﬁl,ﬁz)i —g < € 7 R iy R

9 9 (26)

(ii) Boundary conditions. The shell is simple supported on rigid diaphgrams and free on the other
sides.
(iii) Load. The shell is loaded by its own weight.

The test is know as a membrane dominated problem [6] because a relation likewise (25) holds.
Table 1 shows the physical data assumed in the test.

.
AL

Fig. 2. Scordelis-Lo roof

Table 1. Physical data

quantity name value

Young’s modulus E 4.32 x 108 1b/ft?

Poisson’s ratio v 0.0
radius R 25 ft
thickness t/R 1072 +1074
length L 50 ft
angle 6o 2 rad

specific weight s.w. .20626
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The barrel vault has a symmetric structure; thus the computations have been performed only
on a quarter of the shell using a uniform decomposition. The following symmetry conditions have
been assumed:

ug(&1,0) = 602(£1,0) =0,
u1(0,&2) = 61(0,&2) = 0.

In order to analyse the shear and the membrane locking arising in this test problem we have
considered different values of the ratio ¢/R, although an interesting case is the one with the value
of t =.25 (i.e., t/R = 1072).

The value of thickness ¢t = 2.5 (i.e. t/R = 1071) has not been dealt with since the case of thick
shell does not give rise to locking phenomena. In Fig. 3 we present the numerical results relative to
the case t = 0.25 .

(27)

) ———exact solution *E2 +E3 0E4 t/R=1.e-2
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Fig. 3. Computed vertical displacement at the point B of Scordelis-Lo roof for ¢ = .25 ft

We observe that the displacement at the midpoint B of the free edge has been computed and
that the corresponding exact solution is 0.3024 ft (see [3]). More precisely, we show the behavior of
the computed displacement at the point B, compared with the exact value, against the number of
degrees of freedom, for the elements of degree p = 2, 3,4. Let us denote, here and in the following,
by E2, E3, E4, the finite elements of degree 2,3,4, respectively. We note that in this case we get
satisfactory results with E2 and remarkable improvements are obtained with E3 and E4. This
means that, in the range of values of practical interest, the finite elements are able to prevent the
locking phenomenon. In Fig. 4 we show the results corresponding to the thickness ¢ = 0.025 (i.e.,
t/R=107%).

The thinning of the shell causes a small loss of convergence for E2, while using E3 and E4 no
evidence of locking is exhibited. Finally, Fig. 5 shows the results obtained with ¢ = 0.0025 (i.e.,
t/R = 10%), a very thin shell. As far as we know the exact solution is not available for this test.
However, the results show good convergence properties for p = 4, while the results for lower values
of p are unsatisfactory.
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Fig. 4. Computed vertical displacement at the point B of Scordelis-Lo roof for ¢t = .025 ft
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Fig. 5. Computed vertical displacement at the point B of Scordelis-Lo roof for ¢ = .0025 ft
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The test has been dealt with to analyse the behavior of both shear and membrane locking.
Trying to emphasize the role of membrane locking, the finite element E3 has been computed using
a reduced integration on the shear component; let us denote by E3r such an element. The element
E2 gives, as expected, very poor results, corresponding to a strong locking effect. The element E4
shows a good convergence: both types of locking are not appearing. The element E3r exhibits a
small loss of convergence due to the membrane locking.

3.3. A bending—-dominated problem

As an example of bending-dominated problem we consider the test presented in [2] and described
in Fig. 6. This test is characterized as follows.

(i) Shell geometry. The region corresponding to the midsurface S is the rectangle

L

o= {En&): -3 <a<F -RE<a <RI} (28)

2

(ii) Boundary conditions. We assume the straight part of the boundary at z3 = 0, denoted by I'g,
to be clamped. The curved ends of the cylinder are free.

(iii) Load. In order to have a bending-dominated problem, we consider the following type of load

fi=0, fo=0, fa= (1 + %) cos (—2.%) . (29)

Table 2 shows the physical data assumed in the test.

Fig. 6. The shell geometry

Table 2. Physical data

quantity name value
Poisson’s ratio v 0.3
radius R 1. ft
thickness t/R 1071 +10~*
length L 1. ft
angle 6o § rad
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For sake of simplicity computations have been carried out after normalizing with respect to the
material constant

E

K= na—w

and with uniform decompositions. N

As discussed in [2], we should expect the solution (i, 6) to be, for small values of ¢, nearly inde-
pendent of ¢, since the problem is bending dominated. We emphasize that the discriminations (24)
and (25) are global characterizations; therefore it is convenient to compute the scaled deformation
energy

E(@,0) = ||(@,0)|* = b, 6; @, 0) + t~2(s(, 6; G, ) + m(i, @)

Figures 7 and 8 show the values of the discrete energy corresponding to fixed values of the dis-
cretization parameter h, with values 1/4 and 1/5, respectively. The figures describe the behaviors
of the finite elements E2, E3, E4, versus the (opposite of the logarithm of the) thickness of the
shell. For h = 1/4 (Fig. 7) the elements E2 and E3 exhibit locking and the energy approaches the
zero value. The element E4 shows good convergence properties. In Fig. 8 (h = 1/5) only E2 does
not work properly; E3 shows a qualitatively correct behavior while E4 give satisfactory results.
In Figs. 9-11 we show the performances of the finite elements E2, E3, E4, respectively versus the
(opposite of the logarithm of the) thickness for different values of h = 1/n with n = 2,...,8. In
Fig. 9 it is shown that the element E2 does not converge, even with very fine decompositions. The
performance of E3 is shown in Fig. 10. As the numbers of finite elements of the decomposition
grows the solution improves its quality. It is interesting to observe that only for h > 1/5 the locking
effect is appearing. The behavior of E4, shown in Fig. 11, is quite good for A < 1/4, reasonable
for h = 1/3 and poor for h = 1/2. Such conclusions agree with the remarks made in [2] where
the Koiter-Sanders—Novozhilov model is applied. We note that this model differs from the one
used here for the curvature component Yo in which the extra term (1/R)[ug22 + (1/R)u3] appears.

*E2 +E3 oE4 h=1/4
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Fig. 7. The scaled deformation energy vs. (—logt) for E2, E3, E4 elements, h =1 /4
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Fig. 8. The scaled deformation energy vs. (—logt) for E2, E3, E4 elements, h = 1 /5
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Fig. 9. The scaled deformation energy vs. (—logt) for the element E2 for different values of h
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Fig. 10. The scaled deformation energy vs. (—logt) for the element E3 for different values of h
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Fig. 11. The scaled deformation energy vs. (—logt) for the element E4 for different values of h
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A comparison with the results presented in [2] shows an improvement with the finite elements
we have used. We conjecture that the better performance of our elements is due to the different
approximation of the curvature of the shell obtained by adding an extra term.
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