Computer Assisted Mechanics and Engineering Sciences, 5: 45-54, 1998.
Copyright © 1998 by Polska Akademia Nauk
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The optimization of the nozzle shape was carried out using the finite element incompressible viscous
flow solver, with discretization of total derivative, with the originally developed software. Optimization
procedure used conjugate gradient method, with finite difference approximation of gradient of objective
function. The mesh generator, specially adapted for chosen shape parametrization in the form of splines
using Bezier cubic curve segments, has been used in optimal shape design of the nozzle. The examples
of optimization with constraints, the nozzle shape optimization, and the unconstrained optimization of
the confusor are presented. All test cases showed good convergence properties that qualifies the proposed
methodology as appropriate for shape optimization in viscous flow problems.

1. INTRODUCTION

The shape optimization technique is today accepted engineering tool. It is a promising method for
the engineer designer because it can supplement his experience and guide him when designing new
geometry or trying to improve the efficiency of the existing one. For the simple geometry and simple
flow models, such as 2D airfoils or wing profiles, the shape optimization methods are widely used,
but they remain quite unused for complex configurations or complex flow models. For 2D domains
and potential flow models a good theory exists for a shape optimization, Pironneau [10] and a lot
of papers can be found in literature, e.g. Weeber and Hoole [14], Mr3a [6], Bugeda et al. [1], Mrsa
and Sopta [9] and Sopta and Mrsa [12]. Approach of using a cheap direct flow solver and very
general robust constraint methods is accepted in 3D industrial aerodynamics design, Fol et al. [4].
A review of recent advances for modeling of aeronautical flows can be found in Dervieux [2], where
genetic algorithms have been shown to be surprisingly useful tool for many optimization problems.
However, reports on shape optimization for viscous flow problems are rare, although there are
many cases in mechanical and civil engineering design that are subject to minimization of the
energy losses of the flow around obstacles or through orifices, nozzles and like apparatus.

The finite element incompressible viscous flow solver, with discretization of total derivative,
Pironneau [11], has been tested on many test cases showing good convergence properties and
robustness, Mrsa [7]. Optimization software with conjugate gradient optimizer and specially tailored
mesh generator for chosen shape parametrization, using domain decomposition technique, originally
developed by authors, has been successfully used in cases of turbomachinery spiral casing optimal
shape design, with 3D potential flow model.

The aim of this work is to find optimum nozzle shape for laminar viscous flow. Mathematical
model for laminar flow of incompressible viscous fluid, the boundary value problem for Navier-
Stokes equations, is given in chapter two. For a numerical solution, the finite element method has
been developed utilizing quadrilateral isoparametric elements. In chapter three, the application of
the Galerkin weighted residual method with discretization of directional derivative of velocity is
presented. The formulation of the shape optimization algorithm is given in chapter four. Using
incompressible viscous flow solver and conjugate gradient method, the energy losses, defined as the
difference of total mechanical energy fluxes in inflow and outflow cross-sections, are minimized in
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the set of admissible nozzle shapes. The shape of the nozzle is parametrized by splines using Bezier
cubic curve segments, their coefficients being optimizing parameters.

2. MATHEMATICAL MODEL OF THE INCOMPRESSIBLE VISCOUS FLUID FLOW

The partial differential equations set governing viscous, laminar, steady, axisymmetric flow of in-
compressible fluid, known as Navier-Stokes equations and equation of continuity, are, Taylor and
Hughes [13],
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where u and v are velocity components, p pressure, fz, f, body force components, v viscosity and
p density of the fluid. The boundary conditions treated in this work are

(u,v) = (a,9), givenon I, , (4)
o 9 du .
(8_'::’ 8_Z> = (%, a—;) given on I';, , (5)

where I', UT',, = 02 is the boundary of  and n is the outer unit normal to the ). These equations
are particularly difficult to integrate in the case of typical application, especially for small values of
v, because of the boundary layers and turbulence. Even the mathematical study of Navier-Stokes
equations is not complete.

3. FINITE ELEMENT APPROXIMATION WITH DISCRETIZATION OF DIRECTIONAL
DERIVATIVE

We introduce a discretization of domain as union of finite elements in the usual manner with the
use of quadratic shape function and so called eight node serendipity isoparametric finite element
approximation for velocity components and superparametric four node for pressure:
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for corner nodes 7 = 1, 3,5,7 and for midside nodes
1 .
(67 ) (1 = 62)(1 + 77177) g‘i = Oa = 21 6a

Ni(€,m) = 1u+&au+¥L W 4y,



Shape optimization method for nozzle design 47

and

1 .
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The use of lower order finite element approximation elements for pressure is to avoid the pressure

solution oscillations which occurs for equal order approximation [11].

3.1. Discretization of directional derivative

Let X(z,y,t;7) be the orbit (or the trajectory) of the flow field w(z,y) = (u,v) such that
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Then the directional derivative of velocity becomes, Pironneau [11]:
0
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Thus we can write
(- V) = 2 fu(z,y) - w(Xs(z), 0

where X;5(z,y) is an approximation of X(z,y,t;7 — §). Euler scheme is chosen for approximate
solution:

Xg(:l,‘, y) o o w(x7y)6' (9)

Euler scheme is of order O(6%). The equation above is solved iteratively. First wq is assumed.
Knowing wy, X;+! = z — w"(z,y)d is calculated and w™*! as the solution for velocity field. If the
convergence test is satisfied the iteration stops, otherwise continues.

3.2. Galerkin weighted residual approach

Applying Galerkin weighted residual approach to the Navier-Stokes equations and the equation of
continuity we get the system of algebraic equations

Ap=b+c,
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where C and D are 3 x 3 matrices with non-zero components:
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Right hand side vectors, due to body force densities and given normal derivative of the velocity,
are

where f and q are
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In the above formulas the outer summation (index e) goes over all N, elements, N, is the number
of nodes in Q\ Ty, Ny, is the number of midside nodes.
The shape function N; denotes the upstream advected shape function Nj :

Nj = Nj OXJ,

that is

Nj(z,y) = Nj(z — u(z,y)d , y — v(z,y)d).

To solve linear system the frontal method is used.

4. GEOMETRY DEFINITION
The geometry of the nozzle is defined by spline curve with cubic Bezier curve segments in the form
of

3
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where n denotes total number of curve segments, Bj3(s) is j-th Bernstein basis function

Bja(s) = ( ; ) (1—s)s! (11)
with parameter s defined as
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where t; are the knot values ty,?1,...,t, of the global curve parameter ¢ at the ends of segments.

The Q3(i—1)+j, % = 1,...n, j = 0,1,2,3, are 3n + 1 curve defining vectors Qo, Q1,...Qsn, Ya-
maguchi [15]. The connection conditions, the continuity of the shape and curvature vectors are
expressed by following system of equations:

hi(Q3i+1 — Q3i) = hi+1(Q3i — Q3i-1), i=12.n-1,

h; h;
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(12)

where

hi =t —ti_1.
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5. FORMULATION OF THE SHAPE OPTIMIZATION ALGORITHM

The objective functional is defined as energy losses of the flow, Landau [5],
o= lp/ Vv + Vvi2dV,
2" Ja

with u dynamic viscosity coefficient, v velocity, that is for stationary flows equal to the difference
of the energy fluxes between outflow and inflow cross-sections

e=¢e,—€;. (13)

The energy flux through given cross-section A is defined as
D kil
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where g is gravitational acceleration, z height, and v, normal velocity component.
The geometry of the nozzle is parametrized by 2(3n + 1) parameters,

Qij ={Qio, Qiry-.-s Qign}s i=1,2,

in the form of the parametrically defined plane curve given with (10). The formulation of the nozzle
shape optimization is as follows:

Find optimum nozzle shape, i.e. 2(3n + 1) parameters Q;;, i = 1,2, j = 0,...,3n, that
minimize the objective functional e, given by (13).

This problem is usually subject to constraints resulting from the conditions of specifying cer-
tain points or tangent lines of the desired curve. The convergence of conjugate gradient procedure
is dependent on the smoothness of the gradient of the objective function. Therefore it should
be calculated with care. Because the gradient depends on the mesh, the general mesh genera-
tor, i.e. the automatic unstructured mesh generator is not adequate, since it may change the
mesh abruptly in the process of automatic meshing by adding new elements. The smooth be-
havior of the gradient is achieved here by specially tailored mesh generator. In the process of
conjugate gradient solution, the gradient of the objective functional is approximated by finite dif-
ferences.

6. NUMERICAL RESULTS

Two different cases were tested: the standard nozzle and the confusor with continuously varied
cross section (Fig. 1). The starting shape of the nozzle was chosen on the basis of the standard
shape given in the norm ISO 5167 (DIN 1952 [3]), and in particular the ISA 1932-nozzle suited for
turbulent flow measurements with Re > 20000. In this analysis we have chosen Re = 100 (based
on the nozzle opening diameter d), leading to the laminar flow regime with the flow losses due to
recirculation predominant over the flow losses due to wall shear. We concentrated our attention
on the optimization of the curved part of the nozzle, excluding the cylindrical afterbody from the
analysis. The start and end points of the curved nozzle generatrix have been taken fixed and the
starting shape was chosen as a 90 degree circular arc, leading to the opening f = d/D = 0.5 (see
Fig. 1).

We used n = 2 curve segments in (10) to define the nozzle and confusor geometries. Fixing the
start and end points and their tangents as well as the z coordinate of the middle point, using the
equations (12), reduced the number of optimization parameters to 4 : = coordinate of the point
@1, y coordinate of the point @3, y coordinate of the point Qs in the case of the nozzle and z
coordinate of the point @5 in the case of the confusor, and ratio of the parameter intervals of the
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two Bezier segments (Fig. 2). In order to normalize parameter intervals new set of parameters is
introduced:

Qi1=1-M)Qis+MQ10, Q21=0.75

( )
Q23 = (1—X3)Q20 + A3Q26, Q13=0.25  for nozzle,
Qa5 = (1 —A2)Q20 + A2Q26, Q15=05, for nozzle,
Q23 =(1—-A3)Q20 +X3Q26, CQi13=1 |, for confusor,
Q15 =(1—X2)Qi6+ XQ10, Q25=15,  for confusor,
ha
22
hl :

Unconstrained shape optimization with quadratic Bezier curve segment led to the degenerated
nozzle shape in the form converging to optimal confusor shape, Mrsa [8]. With given fixed start and
end points the shape tended to form bulb like configuration. Therefore, we constrained the nozzle
axial length. Further on we used projected conjugate gradient method, Pironneau [10].

The optimal shape is given in Fig. 3. The streamlines and pressure contour on the axes of
symmetry are plotted in Figs. 4 and 5. The inflow to outflow cross-section pressure drop is the
measure of the flow losses, since the velocity profile recovers almost completely at the outflow
boundary.

The optimal nozzle shape parameters and objective functional value are given in Table 1.
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Fig. 3. Optimal nozzle shape

Fig. 4. Streamlines for optimal nozzle shape

Table 1. The optimal nozzle shape parameters (A;) and functional value e

A1 A2 A3 A4 e
0.8628 0.5063 0.2278 1.3115 59.014
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Table 2. The optimal confusor shape parameters ();) and functional value e

A1 A2 A3 M e
1.0 0.16105 0.42076 1.03285 55.85
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Fig. 6. Optimal confusor shape
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The calculation was carried out using specially tailored mesh generator for the nozzle shape.
The number of elements used in the calculation was 704 with 2253 nodes. In order to check the
convergence mesh dependency, the calculations with finer mesh, 1008 elements with 3197 nodes,
were carried out, showing very good agreement. Near optimum results were achieved after few
iterations of conjugate gradient method, while for optimum result ten iterations on average were
necessary.

In the case of the optimization of the confusor different confusor lengths were tested, since the
losses are dependent on it. The one that is presented here has length to smaller diameter ratio
equal 2 : 1.5. Here unconstrained optimization was adequate since all the parameters A were in the
interval 0,1. The number of Bezier cubic curve segments was two as in the nozzle case too. The
optimal parameters are given in Table 2.

The starting and optimal shape of the confusor are shown in Fig. 6. Note that the vertical unit
length is twice the horizontal.

7. CONCLUSION

The finite element incompressible viscous flow solver, with discretization of total derivative, was de-
veloped originally and has been tested on many test cases showing good convergence properties and
robustness. Optimization with conjugate gradient method, with finite difference approximation of
gradient of objective function and specially tailored mesh generator for chosen shape parametriza-
tion, has been successfully used. The optimal shape was searched for in the space of the splines
made by cubic Bezier curve segments. Optimization with different initial values of parameters was
carried out to test the convergence property. All solutions converged to the same result in ten itera-
tions on average. The optimal shape for two cases: nozzle and confusor was calculated. All test cases
showed good convergence properties what qualifies the proposed methodology as appropriate for
shape optimization in viscous flow problems. The authors are developing the code for optimization
of the nozzle shape for turbulent flow.
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