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The paper deals with the identification of material constants in simple and hybrid laminates. It is assumed
that identified constants are non-deterministic and can be described by means of different forms of the
information granularity represented by interval numbers, fuzzy numbers or random variables. The Two-
Stage Granular Strategy combining global (Evolutionary Algorithm) and local (gradient method supported
by an Artificial Neural Network) optimization techniques is used to solve the identification problems. Finite
Element Method in the granular form is used to solve the direct problem for laminates. Modal analysis
methods are employed to collect measurement data for the identification process. Numerical examples
presenting effectiveness of the strategy are enclosed.
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1. INTRODUCTION

In many engineering problems it is necessary to identify some parameters, such as material prop-
erties, geometrical parameters or boundary conditions. If the parameters of the system can not be
determined precisely, the uncertain parameters which describe granular character of the data may
be introduced. There exist different models of the information granularity, like interval numbers,
fuzzy numbers, random variables or fuzzy random variables [3].

Laminates are composite materials made of many layers (plies). Reinforcement in form of fibers
is typically located unidirectionally in each ply, but can vary in different plies. Laminates are char-
acterized by their very high strength/weight ratio and possibility of obtaining required properties by
manipulating the constituent materials, fiber orientation in particular layers and layer thicknesses.

The aim of the work is to identify elastic constants in laminate structures. Laminate elements
are often produced individually or in short series, so the destructive identification methods are not
allowed. Due to the technological process of the laminates’ manufacturing, it is assumed that identi-
fied constants are non-deterministic. Three forms of the information granularity: interval numbers,
fuzzy numbers or random variables are taken into account.

To solve the identification task for laminates, a special strategy, called Two-Stage Granular
Strategy, is introduced. The strategy joins global and local optimization methods. Evolutionary
Algorithm in a granular version is used as a global optimization method. Gradient optimization
method supported by Artificial Neural Network is employed for local optimization. Special multi-
level Artificial Neural Network (ANN) is used to perform the local optimization by means of the
steepest descent method. Finite Element Method is used to solve the direct boundary-value problem
for laminate structures. Modal analysis data (eigenfrequencies and frequency response diagrams)
are collected as measurements necessary for identification procedure.
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2. FORMULATION OF THE PROBLEM

Laminate structures are usually treated as orthotropic thin plates with four independent elastic
constants: two Young’s module E1 and E2, one shear modulus G12 and one Poisson’s ratio ν12 [7].
The cost of the material increases if the improvement of material properties, such as strength or
stiffness, is looked for. One of the solutions of this problem are hybrid laminates, with particular plies
made of different materials. This attitude allows to find the balance between cost and the required
properties of the laminate. In the present paper, hybrid laminates have the form of interply hybrids
with internal plies made of cheaper/worse material and external plies, composed of the material
being more expensive but having better properties [1].

The aim of the work is to identify elastic constants in simple and hybrid laminates. The iden-
tification tasks belong to inverse problems, which are mathematically ill-posed. The identification
problem can be formulated as a minimization of the functional J(x):

min J(x) =

N
∑

i=1

[qi − q̂i]
2
, (1)

where: q̂i – the measured values of a state field; qi – the values of the same state fields calculated
from the numerical model.

A vector x describing identified parameters has one of the two forms [4]:

• for simple laminates:

x = {E1, E2, G12, ν12}, (2)

• for hybrid laminates:
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where ρ is the material density and superscripts denote the number of material in hybrid laminate.

The identification procedure is usually performed for the data obtained from the structure re-
sponse to the external excitation. In the present paper, the modal analysis data are used to collect
necessary measurement data using the minimal number of sensor points. The eigenvalue problem
for a laminate plate of length a in x direction, width b in y direction and thickness h in z direction,
can be presented as [2]:

ρhω2w = D11w,xxxx + 4D16w,xxxy + 2(D12 + 2D66)w,xxyy + 4D26w,xyyy +D22w,yyyy (4)

where ρ is the mass density, ω is the eigenvalue vector, w is the deflection in the z-direction, and
Dij is the bending stiffness.

To avoid the ambiguity in the identification results, one can use the frequency response data
in more complex problems. This attitude allows to collect many data with one (or a few) sensor
points. In the present paper the accelerations in one sensor point are measured [12]. The acceleration
measurements are especially convenient due to the small mass of the accelerometers in comparison
with the displacement sensors. It is also possible to obtain the velocity and displacement signals
by integration of the acceleration signal. The experimental data are simulated numerically in both
cases.

The identified material constants are assumed to be non-deterministic as a result of the manufac-
turing process. The uncertainties are introduced to reduce the divergence between actual structures
and their mathematical model.
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3. IDENTIFICATION STRATEGY

A Two-Stage Granular Strategy (TSGS) is used to identify laminates’ material parameters [6]. A
block diagram of the TSGS is presented in Fig. 1. It is assumed that identified parameters and
measurements are non-precise and can be described by different variants of information granularity:
interval numbers, fuzzy numbers or random variables. It is assumed in the stochastic case that the
random variables are independent and they have Gaussian probability density functions.

The first stage of the TSGS is performed by means of the Granular Evolutionary Algorithm
(GEA) to carry out the global optimization. In the GEA, the population of vectors x (individuals)
is processed until the termination condition is satisfied. The GEA works similarly to the classic
evolutionary algorithm [9], but special selection procedure, crossover and mutation operators are
introduced to deal with granular genes [11].

Fig. 1. Block diagram of the TSGS

Selection is based on the idea of tournament selection and allows comparison of two (or more)
granular individuals. Granular arithmetical crossover and granular Gaussian mutation operators
are introduced to create new individuals, being possible solutions of the identification problem. To
calculate the granular fitness function it is necessary to solve the direct boundary–value problem for
laminate structures. The Finite Element Method in granular form is used for calculation of direct
problem for laminates [8], [10].

Each individual is made up of genes representing identified laminates’ constants. Each gene x
j
i

of the individual xj consists of:

• for interval numbers: 2 values, representing edges of the interval:

x
j
i =

[

a(xji ), b(x
j
i )
]

; (5)

• for fuzzy numbers: 4 values, representing edges of lower (L) and upper (U) α–cuts of the trape-
zoidal fuzzy number:
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• for random variables: 2 values, representing mean value m and standard deviation σ of the
random variable:

x
j
i =

[

m(xji ), σ(x
j
i )
]

. (7)

Due to the way in which the evolutionary algorithm works, it is usually possible to find the
vicinity of the global optimum, though one may have problems with finding its precise value. To
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reduce this inconvenience, the TSGS switches to the local optimization stage after satisfying the
transition condition. In this stage a special multi-level Artificial Neural Network (ANN) is used to
perform the local optimization by means of the steepest descent method [5]. The back-propagation
neural network with the sigmoid transition functions is applied.

The number of ANN levels depends on the number of values in each gene from the previous
stage, e.g. 4 levels for fuzzy representation of genes. The number of inputs in each level is equal to
the number of identified constants. The fitness function values in the granular form (interval, fuzzy
or stochastic) are obtained as the output of ANN. As the fitness function is modelled closely to the
optimum by the parabolic function for each design variable, only one hidden layer is necessary for
the network. The number of neurons in the hidden layer depends on the degree of the difficulty of
the fitness function.

Fig. 2. Block diagram of the local identification stage

ANN is also employed for approximation of the fitness function sensitivity. The best individuals
from the first stage are used as the training vectors. After training of the multilevel ANN, the local
optimization process is performed. If the termination condition is not fulfilled, the considered point
is re-calculated using granular version of Finite Element Method and added to the training vector
set (Fig. 2). Otherwise, the considered point is treated as a result of the identification process.

4. NUMERICAL EXAMPLES

4.1. Identification of simple laminate

A rectangular simple laminate plate of dimensions presented in Fig. 3a is considered. The aim of
the identification is to find four elastic constants for the laminate plate.

Each ply has the same thickness hi = 0.002 m. The stacking sequence of the laminate is
(0/45/90/-45/0/90/0/90)s, where s denotes symmetry. To solve the direct problem the plate is
divided into 200 4-node plane finite elements. Each chromosome chj(x) of the population consists
of 4 genes xi, which have the form depending on the assumed granularity variant. The interval and
stochastic granularity cases are considered for simple laminates.
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Fig. 3. The laminate plate: a) location of excitation and sensor points; b) materials location in hybrid
laminate

In order to collect the measurements, the frequency response diagram is obtained in the interval
case. The plate is excited in one point by the the sinusoidal signal (Fig. 3a). The frequency of the
excitation varies from 100Hz to 2000Hz. 200 samples of the acceleration amplitudes at one sensor
point are measured. The first 10 eigenfrequencies ωi of the plate are the measurement data in
stochastic case. In this case, measurements were repeated 200 times to collect the necessary data.

The parameters of GEA are: the number of chromosomes nch = 100 (interval case) or nch = 200
(stochastic case), the number of generations ng = 100 (interval case) or ng = 400 (stochastic case),
the arithmetic crossover probability pac = 0.2, the Gaussian mutation probability pgm = 0.4. The
number of iterations in the second stage of TSGS is assumed to be 1000 in interval case or 1800 in
stochastic case. The variable ranges, actual values and identification results are collected in Tables 1
and 2 for interval and stochastic cases.

Table 1. Simple laminate identification results: interval numbers

Min Max Actual Stage 1 Stage 2

E1 [Pa] a 2.00E10 5.00E10 3.82E10 3.84E10 3.82E10

b 2.00E10 5.00E10 3.90E10 3.93E10 3.90E10

E2 [Pa] a 4.20E09 10.80E9 8.23E09 7.93E09 8.23E09

b 4.20E09 10.80E9 8.31E09 8.36E09 8.31E09

ν12 a 0.20 0.40 0.257 0.249 0.257

b 0.20 0.40 0.263 0.265 0.263

G12 [Pa] a 1.00E09 8.00E09 4.10E09 4.11E09 4.10E09

b 1.00E09 8.00E09 4.18E09 4.17E09 4.18E09

Table 2. Simple laminate identification results: random variables

Min Max Actual Stage 1 Stage 2

E1 [Pa] m 2.00E10 6.00E10 3.86E10 3.92E10 3.86E10

σ 0.00E9 0.30E9 0.12E9 0.11E9 0.12E9

E2 [Pa] m 4.00E9 9.00E9 8.28E9 8.14E9 8.28E9

σ 0.00E9 0.30E9 0.20E9 0.17E9 0.20E9

ν12 m 0.00 0.50 0.26 0.27 0.26

σ 0.00 0.10 0.02 0.04 0.02

G12 [Pa] m 2.00E9 6.00E9 4.14E9 4.07E9 4.14E9

σ 0.10E8 0.70E8 0.50E8 0.22E8 0.50E8
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4.2. Identification of hybrid laminate

A hybrid, symmetrical laminate plate of the same shape and dimensions like in a simple laminate
case is considered. The aim of the identification is to find four elastic constants and the density for
each of the two materials in the laminate.

Table 3. Hybrid laminate identification results: fuzzy numbers, material M1 (outer)

Min Max Actual Stage 1 Stage 2

E1 (Pa) aL 1.50E10 2.52E11 1.78E11 1.72E11 1.78E11

bL 1.50E10 2.52E11 1.84E11 1.83E11 1.84E11

aH 1.52E10 2.50E11 1.80E11 1.68E11 1.80E11

bH 1.52E10 2.50E11 1.82E11 1.85E11 1.82E11

E2 [Pa] aL 4.20E09 2.60E10 9.50E09 9.87E09 9.50E09

bL 4.20E09 2.60E10 1.11E10 1.04E10 1.11E10

aH 4.25E09 2.58E10 9.80E09 9.74E09 9.80E09

bH 4.25E09 2.58E10 1.08E10 9.86E09 1.08E10

ν12 aL 0.19 0.41 0.275 0.273 0.275

bL 0.19 0.41 0.285 0.284 0.285

aH 0.21 0.39 0.277 0.249 0.277

bH 0.21 0.39 0.283 0.281 0.283

G12 [Pa] aL 9.70E08 8.05E09 7.08E09 7.11E09 7.08E09

bL 9.70E08 8.05E09 7.20E09 7.33E09 7.20E09

aH 9.75E08 8.00E09 7.10E09 7.00E09 7.10E09

bH 9.75E08 8.00E09 7.18E09 7.43E09 7.18E09

ρ [kg/m3] aL 9.70E02 3.03E03 1.55E03 1.58E03 1.55E03

bL 9.70E02 3.03E03 1.70E03 1.62E03 1.70E03

aH 9.75E02 3.00E03 1.60E03 1.60E03 1.60E03

bH 9.75E02 3.00E03 1.65E03 1.69E03 1.65E03

Table 4. Hybrid laminate identification results: fuzzy numbers, material M2 (inner)

Min Max Actual Stage 1 Stage 2

E1 [Pa] aL 1.50E10 1.50E11 3.82E10 3.74E10 3.82E10

bL 1.50E10 1.50E11 3.90E10 4.12E10 3.90E10

aH 1.52E10 1.51E11 3.84E10 3.79E10 3.84E10

bH 1.52E10 1.51E11 3.88E10 3.92E10 3.88E10

E2 [Pa] aL 4.00E09 1.60E10 8.23E09 8.21E09 8.23E09

bL 4.00E09 1.60E10 8.31E09 8.22E09 8.31E09

aH 4.20E09 1.58E10 8.25E09 8.28E09 8.25E09

bH 4.20E09 1.58E10 8.29E09 8.23E09 8.29E09

ν12 aL 0.19 0.41 0.257 0.273 0.257

bL 0.19 0.41 0.263 0.278 0.263

aH 0.21 0.39 0.259 0.249 0.259

bH 0.21 0.39 0.261 0.272 0.261

G12 [Pa] aL 9.70E08 8.05E09 4.10E09 4.01E09 4.10E09

bL 9.70E08 8.05E09 4.18E09 4.54E09 4.18E09

aH 9.75E08 8.00E09 4.12E09 4.21E09 4.12E09

bH 9.75E08 8.00E09 4.16E09 4.35E09 4.16E09

ρ [kg/m3] aL 9.70E02 3.03E03 1.78E03 1.85E03 1.78E03

bL 9.70E02 3.03E03 1.83E03 1.89E03 1.83E03

aH 9.75E02 3.00E03 1.78E03 1.81E03 1.78E03

bH 9.75E02 3.00E03 1.83E03 1.84E03 1.83E03
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The stacking sequence of the laminate is: (0/15/-15/45/-45)s. The external and internal plies of
the laminate are made of materials M1 and M2, respectively (Fig. 3b). Each ply has the same thick-
ness hi = 0.002 m. The first 10 eigenfrequencies of the plate are considered as the measurements.
It is assumed that measurements are not precise and can be modeled by means of fuzzy numbers.
The plate is divided into 200 4-node plane finite elements to solve the direct problem.

Each chromosome consists of 10 genes representing identified constants. The parameters of GEA
are: the number of chromosomes nch = 200, the number of generations ng = 400, the arithmetic
crossover probability pac = 0.2, the Gaussian mutation probability pgm=0.4. The number of it-
erations in the second stage of TSGS is equal to 2500. The variable ranges, actual values and
identification results are collected in Tab. 3 for material M1 and in Tab. 4 for material M2.

5. FINAL CONCLUSIONS

The Two-Stage Granular Strategy applied for the identification of material constants in laminates
is presented. The strategy works with different models of information granularity. In the present
paper, interval numbers, fuzzy numbers and random variables are used, but it is also possible to
incorporate other granularity models, like approximate sets or fuzzy random variables.

The granular version of the evolutionary algorithm is used in the first stage to perform the global
optimization. Gradient-based optimization method supported by special multilevel artificial neural
network is employed in the second stage. The Finite Element Method in granular form is used to
solve the direct problems for laminates. The modal analysis techniques are employed to collect the
measurement data necessary for the identification.

A few numerical examples show the efficiency of such a hybrid method for identification of
simple and hybrid laminates. Application of the strategy is not limited to the presented problems
and authors hope that TSGS can be applied in various identification and optimization tasks with
non–precise parameters.
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