
Computer Assisted Methods in Engineering and Science
31(1): 81–111, 2024, doi: 10.24423/cames.2024.1372

Optimizing Branching Strategies
in Mono- and Multi-Repository Environments:
A Comprehensive Analysis

Ulvi SHAKIKHANLI∗ , Vilmos BILICKI

Doctoral School of Computer Science, Faculty of Science and Informatics, University
of Szeged, H-6720, Szeged, Hungary; e-mail: bilickiv@inf.u-szeged.hu
∗Corresponding Author e-mail: ulvi@inf.u-szeged.hu

There have been several studies on mono- and multi-repository structures and branching
strategies. However, most of those studies focused on the basics of repository structures
and used a small number of project samples. This paper uses data from more than 50 000
repositories collected from GitHub. The results indicate that: 1) mono-repository projects
generally involve smaller teams, with the majority being handled by one or two develop-
ers, 2) multi-repository projects often require larger teams, typically consisting of three
or more developers, 3) mono-repository projects are favored for shorter durations, with
over half of the projects completed within six months, 4) multi-repository projects, on
the other hand, have higher usage percentages in longer development periods, suggest-
ing their suitability for more time-consuming endeavors. Examining branching strategies
reveals that: 1) the trunk-based approach is commonly used in both mono- and multi-
repository projects, 2) GitHub Flow has much wider usage in multi-repository projects
rather than mono-repository.

These findings offer valuable insights for developers and project managers in selecting
the appropriate repository structure and branching strategy based on project require-
ments. Understanding team dynamics, project complexity, and desired development peri-
ods aids in optimizing collaboration and achieving successful outcomes.

Keywords: mono-repository structure, multi-repository structure, branching strategy,
Git Flow, GitHub Flow, trunk-based.

Copyright © 2024 The Author(s).
Published by IPPT PAN. This work is licensed under the Creative Commons Attribution License
CC BY 4.0 (https://creativecommons.org/licenses/by/4.0/).

1. Introduction

The development process of projects has been a subject of discussion for
decades. There are several important aspects of it with the repository structure
being the most important one. We could not find any definition for “repository
structure”, but it can be broadly understood as a layout of different components
within a project (for example: front-end and back-end repositories). In light of

https://orcid.org/0000-0002-6947-3119
https://orcid.org/0000-0002-7793-2661

82 U. Shakikhanli, V. Bilicki

this definition and usage experience, there are two main repository structures:
mono- and multi-repository structures. Each structure possesses unique char-
acteristics, advantages, and disadvantages. This paper is going to analyze such
structures by discussing a usage of a unique database with more than 50 000
projects. The results presented in this paper provide an understanding of how
repository structures can impact team size and which development stacks are
used more commonly by each of these two structures.

Ever since modern software development practices became more popular, sev-
eral challenges in need of solving have emerged. Among them are collaborations
between large development teams and simultaneous task execution without any
conflicts in the main source code. This became more problematic since the ad-
vent of distributed version control (DVS) systems widely used among developers
and different companies. To solve it, DVC systems improved a solution called
branching [1]. The adoption of branches helped teams to divide their development
processes into stages, and combining or merging them only when specific tasks
were completed. In this way, the development process becomes more flexible, and
this method gained significant popularity in agile development systems. Almost
all modern DVCs support the usage of branching. With the rising popularity
of using branching, a new term has emerged: branching strategy. A branching
strategy is a strategy used by developer teams to handle their various branches
and their respective purposes. Overall, the use of branches can have different
purposes, focusing on implementing new features, fixing bugs, preparing release
version, and more. While there are several branching strategies, only three of
them are widely used in Git [2] and this paper specifically concentrates on them.

In this paper, we aim to provide answers to several questions based on real-
world data. The insights derived from these answers can assist software develop-
ers in project planning and choosing a suitable repository structure and branch-
ing strategy based on team size, preferred programming language and planned
development period.

RQ 1. What is the relationship between team size and repository
structure?

To the best of our knowledge, there is no detailed investigation on this topic.
In this paper, we obtain some insights from the analysis of our database, revealing
interesting results that can be crucial for team managers and lead developers
during the planning stage of software development. Since there is no similar
research in this field, these results become even more important.

RQ 2. What is the connection between development period and repos-
itory structure?

While the development period is often researched together with software de-
velopment productivity [3] or agility and quality of the development process [4],

Optimizing branching strategies in mono- and multi-repository. . . 83

this paper introduces a totally novel approach and analyzes development pace
from the perspective of repository structure. This adds an additional aspect to
take in account during the software development planning process and helps in
choosing the right repository structure.

RQ 3. Which branching strategy is preferred according to the reposi-
tory structure?

As it will be discussed in the next section, branching strategies are commonly
researched as features of version control systems (VCSs). Yet, there is a lack of
academic research on branching strategies and their impact on software develop-
ment. This paper provides a clear understanding of their usage rate over the years
and popularity according to the repository structure by analyzing over 50 000
repositories from various projects. It is one of the main steps in understanding
branching strategies and their real significance in software development.

RQ 4. Which branching strategy is preferred according to team size,
programming language and development period?

This question intends to address other impacts of branching strategy on soft-
ware development, such as team size and development period. Since it is highly
important to choose the right branching strategy at the beginning of the de-
velopment process, the answer to this question can a valuable guide during the
decision-making process.

2. Related work

Unfortunately, we did not find any academic papers on the mono- and multi-
repository structures. Thus, we will use the multivocal literature review (MLR) [5].
A mono-repository structure is a method of organizing source code where engi-
neers have widespread access to the code, use a shared set of tools, and depend
on a single set of common dependencies. This arrangement allows for standard-
ization and easy access by employing a single, shared repository that contains
the source code for all projects within an organization [6]. On the contrary, the
multi-repository approach is quite different. Here, the project is stored in dif-
ferent repositories. This division can be determined by the development policy
of the company or developer group, but according to common experience, the
project is mostly divided into two main repositories: front-end and back-end
repositories. Obviously, there can be several other types of repositories such as
documentation repository, data repository, library/module repository and so on.
The portion of a web application that users directly interact when using their
web browser is called the front end. Its main tasks include presenting the user
interface, handling user input, and communicating with the back end of the ap-
plication. Conversely, a back-end repository is a type of code repository that

84 U. Shakikhanli, V. Bilicki

holds the codebase and data for the back end of a web application. The back
end, which operates on a server, is responsible for managing and storing data,
as well as executing logic and business processes.

Each of these structure types has its own advantages and disadvantages.
The paper [7] compares both repository structures from different aspects such
as visibility, security and functionality, showing the behavior of each structure
through academic results. As shown in that paper, there are several trade-offs
in choosing the repository structure and sometimes even large companies can
change their policy and repository structure for their project back and forth [8].
The famous company Uber is a perfect example of this [9].

In addition to the repository structure, another important aspect of soft-
ware development is VCS. This concept was introduced in 1972. Since then,
there have been several papers written on this topic. Some, such as [10–12],
discuss basic concepts such as what VCSs are and in which cases we can use
them. Mainly, there are two types of VCSs: centralized (CVCSs) and distributed
(DVCSs) VCSs. CVCSs being a much earlier approach, were extensively studied
in papers such as [13–15]. Primarily, CVCSs exhibit centralization since they
possess a singular, authoritative source repository. Every developer operates in
relation to this repository by obtaining a checkout, which essentially captures
a specific point-in-time snapshot from the repository [16]. These systems operate
by storing all project files and versions on a central computer or server. Users can
access specific files or entire repositories for their work. Upon completion, users
must “push” their changes along with a commit message. Once these changes
are pushed, other users need to “update” their files to reflect the new version of
the repository. It is important to note that CVCSs only store the most recent
version of a project, requiring other users to stay informed about source code
changes. During the development phase, users can use branches to implement
new features or functionalities. Although branches may occasionally encounter
issues, they will not disrupt the overall project workflow. After thorough test-
ing and implementation, branches can be merged into the source code. Further
details about branches will be discussed later.

CVCSs have two main disadvantages, namely, single-point risk and low speed.
As mentioned earlier, CVCS contains only one central server for storing reposito-
ries. If it goes down, the whole project becomes inaccessible, halting the develop-
ment process. In addition, using one server creates another problem during the
development phase. Users must communicate with the central server for each
command (create a branch, push, merge, and so on), and this creates a vast
traffic overload for the server, and often induces a slow response from the server.

DVCSs do not require a central server. They have the advantage of storing
the entire repository on each user’s local computer. This characteristic makes
them particularly well-suited for large projects involving numerous independent

Optimizing branching strategies in mono- and multi-repository. . . 85

developers [17]. DVCS also offers faster performance compared to CVCS, as most
commands are executed locally without the need for a network connection. Many
of the terminologies used in CVCS are also applicable to DVCS. However, one
potential drawback of DVCS is higher memory consumption since it stores the
entire project locally. To mitigate this, DVCS employs compression techniques
to reduce the repository size. Despite this concern, the DVCS approach is faster,
more flexible, and reliable. If one repository becomes inaccessible, another user
can quickly upload their own version. Due to these advantages, DVCS has gained
significant popularity in the development industry. Well-known platforms such
as GitHub and Mercury provide extensive DVCS services.

Starting from 2010, there have been several papers published addressing
branching strategies. Papers, such as [1, 18, 19], mostly analyze branching as an
advantage of DVCSs, explaining only some characteristics and how they work.
The paper [20] can be considered as one of the most successful research projects,
highlighting the usage of branches and the connection between different project
parameters and branching strategy. However, researchers did not present a spe-
cific branching strategy or how to define it. In [20], the authors used nearly 3000
repositories, but only 200 of their branches were analyzed. Obviously, such a lim-
ited sample size cannot give any objective results, as it is a significantly small
subset for drawing conclusions.

Another research paper, published in 2014, focuses on the role of branching
strategies in developer team collaboration during the development process [21].
The paper presents interview results and gives information on how a branching
strategy can affect the development process and how it is seen from the de-
veloper’s perspective. Unfortunately, the authors do not focus on some specific
branching strategies, and all of their findings are mainly focused on the idea of
branching strategy without a comparison of different branching strategies.

As evident from the mentioned research, in most cases, researchers did not
analyze specific branching strategies and their impact on the development pro-
cess. Instead, they only explained it as one of the side factors in the develop-
ment process. However, research presented below shows that choosing the correct
branching strategy can be as important as selecting the right repository struc-
ture.

3. Branching strategies

The paper [22] provides a brief overview of branching strategies and their
purposes, while this paper aims to explain these strategies in a more detailed way.

Git Flow – this strategy can be considered as one of the most complex branch-
ing strategies. It contains the master, develop and various feature and hotfix
branches. The master branch is a branch where the main source code of a project

86 U. Shakikhanli, V. Bilicki

is stored and, in most cases, all branches eventually have to be merged into it.
According to some regulations in Git, in recent years, the name “master” has
started to be replaced with “main” in most GitHub repositories [23]. The de-
velop branch, also known as release, is where developers prepare for the release
of new production. Feature branches are created from master branch and mainly
focus on implementing new features to the project and their testing phase. It is
important to mention that there can be also additional branches for different
purposes, such as bug fixing and adding documentation. For clarity, all of them
will be grouped under feature branches in this paper. Given its diverse range of
branch types, Git Flow is a complex branching strategy preferred typically by
large and professional developer teams. Its biggest advantage is that it enables
several developers to work in parallel while protecting the production source
code. While the abundance of branches can be problematic, effective manage-
ment can help each developer focus on her/his tasks, reducing conflicts during
the merge process. On the other hand, this complex structure can cause problems
during testing and other phases of development if it is not properly managed by
team leaders or senior developers.

GitHub Flow – it can be considered as a simpler and less sophisticated version
of Git Flow. This branching strategy does not have any release or development
branches and consists solely of the master branch and different feature branches.
This approach is quite popular among most developer teams and according to
the collected database it has been used in 60% of mono-repository projects. This
strategy is mostly used for quick and short development phases and gives clear
control over the development process.

Trunk-based – it is the simplest branching strategy and is used by a large por-
tion of developers on GitHub. In this strategy, there is only one master branch,
and it is always ready for deployment. All development is conducted on this
main branch and developers do not need to create additional branches for fea-
ture adding or bug fixing. The biggest advantage of this strategy is its simplicity.
This is why it is greatly preferred by small developer teams or amateur develop-
ers. On the other hand, it also can cause problems since there is limited room
for error or mistakes, and the source code must always be ready for deployment.

4. Motivation

The efficient management of source code repositories is a crucial aspect of
software development projects. With the increasing popularity of both mono- and
multi-repository structures, understanding the impact of branching strategies
and their optimization becomes paramount. The motivation behind this paper
stems from the need to explore the real-world data obtained from a vast array of
projects, encompassing over 50 000 repositories across different types of projects.

Optimizing branching strategies in mono- and multi-repository. . . 87

By examining this extensive dataset, the paper aims to reveal valuable insights
into team size variations, branching strategy preferences, and other pertinent
factors that can significantly impact the development process. The primary goal
of this paper is to conduct a comprehensive analysis of branching strategies in
both mono- and multi-repository environments. By leveraging the large-scale
dataset derived from real-world projects, the study aims to achieve the following
objectives:

• Understand team size differences: Analyze the relationship between team
size and the choice of repository structure (mono or multi). Investigate
whether team size influences the preference for a specific branching strat-
egy. Identify any notable patterns or trends related to team size and
branching strategy.

• Evaluate branching strategy preferences: Examine the distribution of
branching strategies (such as trunk-based, Git Flow, GitHub Flow, etc.)
across different types of projects, within both mono- and multi-repository
setups. Identify the most adopted strategies and uncover any variations or
preferences specific to project types.

• Optimize branching strategies: Based on the insights gained from the ana-
lysis, propose recommendations and best practices for optimizing branch-
ing strategies in both mono- and multi-repository environments. Highlight
the benefits, drawbacks, and considerations associated with different strate-
gies, considering their impact on team collaboration, feature delivery, and
bug-fixing efficiency.

• Provide practical insights: Offer practical insights and actionable recom-
mendations for software development teams and organizations regarding
the selection and implementation of branching strategies in their respec-
tive repository setups. Discuss the potential benefits of aligning branching
strategies with project characteristics, team dynamics, and development
goals.

By achieving these goals, the paper aims to contribute to the existing body of
knowledge on optimizing branching strategies in software development, providing
evidence-based insights that can aid practitioners and organizations in making
informed decisions about their repository structures and branching approaches.

5. Methodology

5.1. Database

As it has been mentioned earlier, there are nearly 50 000 repositories in our
database including 8479 multi-repository and 33 594 mono-repository projects.

88 U. Shakikhanli, V. Bilicki

Since each multi-repository project contains two repositories: one front-end and
one back-end, the whole database consists of 50 552 repositories. Each project in
the database is stored in JSON format for better processing and organizing.

Fig. 1. Example of JSON for mono-repository project.

As illustrated in Fig. 1, each JSON file stores both basic parameters and
features and also activities. GitHub API is used for collecting all of this data.
The first seven fields and the following five fields contain basic information about
the project, such as its name, name of the GitHub user, id of the repository which
is assigned by GitHub itself, URL of repository, description, creation and last
update dates, most used language in project, count of watchers, size in Kbs, star
and fork counts. All of this data can be obtained in JSON format from API
requests using the URL shown below:

https://api.github.com/repos/{user name}/{repository name}.

The contributors section contains a list of all developers working on a project
and the number of commits they have contributed to the project. This informa-

Optimizing branching strategies in mono- and multi-repository. . . 89

tion helps in the easy identification of main developers within the team. In order
to get the list of all contributors we have to send another request to the GitHub
API. An example of URL for this request is as follows:

https://api.github.com/repos/{user name}/{repository name}/contributors.

The branches section contains a list of branches together with the list of
commits for each branch. This allows to observe the life cycle of each branch and
conduct an in-depth analysis. There is also a special URL type in the GitHub
API for obtaining the list of branches, but unfortunately, the result does not
contain a list of commits for each branch. Therefore, additional requests have to
be sent for each branch. Examples of the URL are as follows:

• Branches: https://api.github.com/repos/{user name}/{repository name}/bran
ches.

• Commit list for a certain branch: https://api.github.com/repos/{user name}/
{repository name}/commits?sha={branch name}.

There are also six more sections that represent different types of activity
parameters of the project. Each of these sections is created by specific URL
requests (see Appendix).

Most of these fields are similar to the ones in response from the GitHub
API. Fields such as watcher_count, start_count and fork_count are added in
order to rate the popularity of the given repository. Also, there are additional
fields such as fano_factor, activity and activity_bursts, which are related to the
productivity and activity of the given repository. Since they are the topic of
future research, it is sufficient for now to say that these three field represents
the amount of work done during a given time period on this repository. As men-
tioned above, the other six activity parameters: pull_requests, issues, commits,
events, pull_comments, and issues_comments are all related to the activity of
the repository development process. All of these six fields contain a list of dic-
tionaries about the given activity.

The structure of the multi-repository project is almost the same. The only
difference lies in two different sections at the top: front repository and back repos-
itory, each containing the respective type of repository. So, all of these mentioned
fields are collected separately for both parts of multi-repository projects.

5.2. Database creation

This process has already been described in [5], but here we will talk about
it again for clarification. Overall, the whole process of database creation can be
divided into two major parts: collecting mono-repository projects and collecting
multi-repository projects.

90 U. Shakikhanli, V. Bilicki

5.2.1. Collecting mono-repository projects. There are over 372 million repos-
itories on GitHub, so identifying those that can be added to our database can
be a considerable challenge. That is why we added additional parameters to the
URL in order to narrow down our search pool and obtain results much faster.
An example of such a request URL is as follows:
https://api.github.com/search/repositories?q=fullstack+language:javascript

+created:2022-01-01..2022-01-15.
This URL provides a list of all repositories containing the term “fullstack” in

their name or description, written in JavaScript and created between January 1
and 15, 2022. This way we can find potential mono-repository projects. Different
keywords and varied time ranges can be used in order to increase the effectiveness
of the search process. In most of the cases, this is dependent on the researchers’
objectives. For example, in the case of this research, it was more important to
find projects with a structure similar to the “fullstack” technology.

Identification of mono-repository projects is conducted according to their file
structure. Since this type of project combines all essential parts under one folder,
it is sufficient to search for some key folder names in the file structure. These
key folder names include: Frontend, Backend, UI, API, Client, Server, UI, Front
and Back. The collection of file structure for mono-repository projects follows
the algorithm given in [24]. To elaborate briefly, the GitHub API, unfortunately,
does not provide a direct approach to collect the file structure of a repository. By
file structure we simply mean the names of all folders and files in the repository.
However, these names must be constructed in the same way as in repository
itself. For example, if there is a “logo.png” file inside a folder named “images”
and that folder is situated inside a folder named “assets”, then file structure of
this piece will be as follows:

“Assests / Images / logo.png”.
This way it is possible to obtain the names of all folders and files in a repos-

itory. But, for the identification of mono-repository projects, there is no need
to go too deep until individual file names are obtained. In this approach, the
focus is on obtaining the names of the main folders and comparing those names
with the ones mentioned before. Overall, the process for the identification and
collection of mono-repository projects can be explained with the following steps:
Step 1. Collect a list of possible mono-repository projects and the users to which

they belong.
Step 2. Analyze all repositories of the identified GitHub user.
Step 3. If the analyzed projects are valid, add their names to a temporary

database.
Step 4. Retrieve all necessary data for the project in JSON and save it into the

database.

https://api.github.com/search/repositories?q$=$fullstack$+$language:javascript$+$created:2022-01-01..2022-01-15
https://api.github.com/search/repositories?q$=$fullstack$+$language:javascript$+$created:2022-01-01..2022-01-15

Optimizing branching strategies in mono- and multi-repository. . . 91

5.2.2. Collecting multi-repository projects. The process of identifying and
collecting multi-repository projects shares some similar steps with mono-reposi-
tory ones. The first step – collecting a potential list of multi-repository projects,
is the same as it was in the mono-repository case. However, the identification of
multi-repository projects is different. Firstly, all repositories of users are sepa-
rated into three groups: front-end, back-end and others. This grouping of repos-
itories into main groups is achieved through a machine learning (ML) method
described in [24]. Simply, the ML model is trained based on the file structures of
front-end and back-end repositories. After the identification of these two reposi-
tory groups, if there is at least one repository in each group, we start the matching
process.

To investigate the impact of different feature combinations on matching suc-
cess rates, the K-nearest neighbor (KNN) algorithm was employed. KNN is
a supervised learning method widely used for classification tasks. The algorithm
assigns a class label to a query instance by considering its nearest neighbors in
the feature space. The experiments were conducted using various feature combi-
nations, and the success rates of repository matching were recorded. The success
rate represents the proportion of correctly matched repositories out of the total
number of instances. The following feature combinations were evaluated:

• All parameters: repository name, programming language, framework, data-
base type, list of developers, file structure, and readme file (36% success
rate).

• All parameters except readme file: repository name, programming lan-
guage, framework, database type, list of developers, and file structure (32%
success rate).

• All parameters except file structure: repository name, programming lan-
guage, framework, database type, list of developers, and readme file (48%
success rate).

• Repository name and readme file: repository name and readme file only
(89% success rate).

The experimental results reveal that the choice of feature combination signif-
icantly impacts the success rate of front-end and back-end repository matching.
The combination of “repository name” and “readme file” achieved the highest
success rate of 89%, indicating their strong discriminative power in determin-
ing repository matches. This finding suggests that textual information, such as
project names and accompanying readme files, plays a crucial role in identifying
related repositories within a project.

After completing this matching process, the last two steps are nearly identical
to the previous mono-repository case. So, the overall steps for collecting multi-
repository projects are as follows:

92 U. Shakikhanli, V. Bilicki

Step 1. Collect a list of possible multi-repository projects and the users to which
they belong.

Step 2. Group the repositories of the identified GitHub user into three groups.
Step 3. Match repositories in the front-end and back-end groups and thus iden-

tify multi-repository projects.
Step 4. If the identified projects are valid, add their name to a temporary

database.
Step 5. Retrieve all needed data of the project in JSON and save it into the

database.

5.3. Branching strategy identification

In the preceding chapters, we have presented three main branching strategies.
Each branching strategy is distinguished by the list of branches it includes. In this
case, it is sufficient to check the name and count of branches in the project and
this way we can identify its branching strategy. As shown in Fig. 1, the database
contains a list of all branches and only checking their names is sufficient for
identification. Here is an algorithmic step for this:

• Input: Set of branches in the project,
• Output: Branching strategy of the project,
• identifyBranchingStrategy : Set of branches → Branching strategy,
• identifyBranchingStrategy(branches):

Filter out branches created by bots, resulting in a set of non-bot branches.
If the number of non-bot branches is 1:

a. Check if the branch is a master branch by examining its name.
b. If the branch name is “master” or “main”, return “trunk-based” as the

branching strategy.
c. Otherwise, return “unknown” as the branching strategy since it does not

match any known strategies.
If the number of non-bot branches is greater than 1:

a. Check if there is a master branch by examining its name.
b. If there is no master branch, return “unknown” as the branching strategy.
c. Check if there is a development branch by examining its name.
d. If the development branch name is “dev” or “development”, return “Git

Flow” as the branching strategy.
e. Otherwise, check if there are feature or bug fix branches by examining their

names.
f. If any of the branch names contain “feature”, “bug fix”, “bug”, or “hotfix”,

return “GitHub Flow” as the branching strategy.

Optimizing branching strategies in mono- and multi-repository. . . 93

g. Otherwise, return “unknown” as the branching strategy since it does not
match any known strategies.

If the given branching strategy is identified as unknown it will be saved in
an additional database for further inspection. This is a useful approach because,
sometimes, algorithm can make some mistakes, most often caused by human
factor. In some cases, developers just name branches by either using a very
specific approach or in a completely wrong way. That is why it is important to
save all the projects with the “unknown” branching strategy. This way we are
able not only to prevent the loss of important piece of data, but also get more
experience about the naming and other practices of developers from different
backgrounds.

6. Formal specifications

To give a clear understanding about the used terms it is beneficial to present
them in a mathematical way. While definitions of mono- and multi-repository
structures have been given in previous chapters, mathematical formulation for
these terms were not provided. Starting with the versioning system, those defi-
nitions can be given as follows.

6.1. Mono-repository

As it was mentioned earlier, a mono-repository structure is a software devel-
opment approach that involves storing all of a project’s source codes in a single
repository. To formally specify a mono-repository structure, we can use set the-
ory and formal logic. Let R be the mono-repository, and let S be the set of all
source files in the repository. We can define R as a collection of subdirectories,
each of which contains a subset of S. Formally, we can represent R as follows:

R = {D1, D2, ..., Dn},

where each Di is a subdirectory of R and is defined as:

Di = {fi|fi ∈ S ∧ fi is in the directory Di}.

This notation states that each Di is a subset of S, containing only the files
that are located within that subdirectory. We can use set operations to specify
relationships between directories, such as union (∪) and intersection (∩). For ex-
ample, we can specify that a subdirectory Dk is a subset of another subdirectory
Dj by stating:

Dk ⊆ Dj .

94 U. Shakikhanli, V. Bilicki

We can also define relationships between the files within the repository using
logical operators. For instance, we can specify that a file fj is dependent on
another file fi by stating:

Fj depends on fi.

This notation indicates that the code in file fj relies on the code in file
fi to function properly. Overall, the formal specification of a mono-repository
structure involves defining the repository as a collection of subdirectories and
specifying relationships between directories and files using set theory and logical
operators.

6.2. Multi-repository

To formally specify a multi-repository structure, we can use set theory and
formal logic. Let R1, R2, ..., Rn be the individual repositories that make up the
multi-repository structure, and let S be the set of all source files across all repos-
itories. We can define each repository Ri as a collection of source files:

Ri = {fi|fi ∈ S ∧ fi is in the repository Ri}.

This notation states that each repository Ri is a subset of S, containing only
the files that are located within that repository. We can use set operations to
specify relationships between repositories, such as union (∪) and intersection
(∩). For example, we can specify that a repository Rk is a subset of another
repository Rj by stating:

Rk ⊆ Rj .

We can also define relationships between the files within the repositories using
logical operators. For instance, we can specify that a file fj in repository Rj is
dependent on a file fi in repository Ri by stating:

fj depends on fi.

This notation indicates that the code in file fj relies on the code in file
fi to function properly. Overall, the formal specification of a multi-repository
structure involves defining each repository as a collection of source files and
specifying relationships between repositories and files using set theory and logical
operators.

6.3. Mono-repository identification

Input:
• A set P of possible mono-repository projects, where each project p ∈ P is

associated with a user.

Optimizing branching strategies in mono- and multi-repository. . . 95

Output:
• A database D containing the identified mono-repository projects and their

associated data.
Let U be the set of GitHub users:

identifyMonoRepositories: P × U → P ′

collectMonoRepositories: P∗ → D
identifyMonoRepositories(P, u) = {p′ ∈ P |analyseRepositories(u)}
collectMonoRepositories(P) = {(p, jsonData(p))|p ∈ P}
where:

• analyseRepositories(u) is a function that analyses the repositories of user u
and returns true if they meet the criteria for a mono-repository, and false
otherwise,

• jsonData(p) is a function that retrieves the needed data of project p in
JSON format.

Note: The functions analyseRepositories(u) and jsonData(p) are implementation-
specific and can vary based on the criteria and data you require for identifying
and collecting mono-repository projects.

The algorithm can be summarized as follows:
1. Iterate through each project p ∈ P and its associated user u.
2. Use the identifyMonoRepositories function to check if the repositories of

user u meet the criteria for a mono-repository.
3. Collect the identified projects in the set P ′.
4. Use the collectMonoRepositories function to retrieve the needed data for

each identified project p′ ∈ P ′ and store it in the database D.
The resulting database D will contain the identified mono-repository projects
and their associated data.

6.4. Multi-repository identification

Input:
• A set P of possible multi-repository projects, where each project p ∈ P is

associated with a user.
Output:
• A database D containing the identified multi-repository projects and their

associated data.
Let U be the set of GitHub users:

identifyMultiRepositories: P × U → P ′

collectMultiRepositories: P∗ → D
identifyMultiRepositories(P, u) = {p′ ∈ P |groupRepositories(u)}
collectMultiRepositories(P) = {(p, jsonData(p))|p ∈ P}

96 U. Shakikhanli, V. Bilicki

where:
1. groupRepositories(u) is a function that groups the repositories of user u

into three groups: front-end, back-end, and others.
2. jsonData(p) is a function that retrieves the needed data of project p in

JSON format.
Note: The functions groupRepositories(u) and jsonData(p) are implementation-
specific and can vary based on the criteria and data you require for identifying
and collecting multi-repository projects.

The algorithm can be summarized as follows:
1. Iterate through each project p ∈ P and its associated user u.
2. Use the identifyMultiRepositories function to group the repositories of user
u into three groups: front-end, back-end, and others.

3. Match repositories in the front-end and back-end groups to identify multi-
repository projects.

4. Collect the identified projects in the set P ′.
5. Use the collectMultiRepositories function to retrieve the needed data for

each identified project p′ ∈ P ′ and store it in the database D.
The resulting database D will contain the identified multi-repository projects
and their associated data.

7. Measurements

In this chapter, we present the results of a study that analyzed different
statistics related to mono-/multi-repository structures, branching strategies, and
other related topics. The data used in this analyses were collected by the algo-
rithm mentioned in the previous chapter. We analyzed the data using various
statistical techniques, and we present our findings in this chapter. This study
sheds light on different aspects of repository and branching strategies. Our goal
is to provide developers with a comprehensive overview of the current state of
practice in this area and to help them make informed decisions about their own
development processes.

7.1. Team size in mono-/multi-repository projects

In mono-repository projects (Fig. 2), most projects (86%) are developed by
a single developer. This indicates that many software development projects are
undertaken by individuals working alone, potentially in smaller organizations or
as solo projects. Only 9% of projects involve two developers, which may suggest
that pair programming or code reviews are less common in mono-repository
projects. Between 3 and 10 developers are involved in 5% of mono-repository

Optimizing branching strategies in mono- and multi-repository. . . 97

Fig. 2. Team size percentage in mono- and multi-repository projects.

projects, indicating that larger teams are less common. Lastly, only 1% of mono-
repository projects have more than 10 developers, indicating that these projects
are relatively rare. In contrast, multi-repository projects have a more evenly
distributed team size. While 62% of projects have a single developer, which is still
the majority, the proportion of projects with multiple developers is higher than
in mono-repository projects. Specifically, 17% of projects have two developers,
indicating that pairing or code review may be more common in multi-repository
projects. Between 3 and 10 developers are involved in 19% of multi-repository
projects, indicating that larger teams are more common in these projects. Lastly,
only 2% of multi-repository projects have more than 10 developers, which is
a slightly higher proportion than in mono-repository projects.

7.2. Programming language in mono-/multi-repository structures

Figure 3 shows that JavaScript is by far the most popular language in mono-
repository projects, with 48.9% of projects using it. This is unsurprising given
the widespread popularity of JavaScript as a language for web development.
TypeScript is the second most popular language in mono-repository projects,
with 13.6% of projects using it. This reflects a growing trend towards the use
of TypeScript, which is a superset of JavaScript that adds type annotations
and other features. HTML-CSS is the third most popular language in mono-
repository projects, with 19.1% of projects using it. This reflects the importance
of HTML and CSS in web development, as these languages are used to create

98 U. Shakikhanli, V. Bilicki

Fig. 3. Usage percentages of languages in mono- and multi-repository projects.

the structure and styling of web pages. Java is the fourth most popular language
in mono-repository projects, with 6.9% of projects using it. This is likely due
to the widespread use of Java in enterprise applications and other large-scale
systems. Python is the fifth most popular language in mono-repository projects,
with 5.2% of projects using it. This reflects the growing popularity of Python as
a general-purpose programming language, as well as its widespread use in data
science and machine learning. PHP is the sixth most popular language in mono-
repository projects, with 2.8% of projects using it. This reflects the continued use
of PHP in web development, particularly in the creation of server-side scripts and
content management systems. Vue-Ruby is the seventh most popular language in
mono-repository projects, with 3.3% of projects using it. This is likely due to the
use of the Vue.js JavaScript framework and the Ruby programming language in
web development projects. Finally, C languages are the least popular languages
in mono-repository projects, with only 0.1% of projects using them. This may
reflect the fact that C is a low-level language that is typically used for systems
programming rather than web development.

In the front-end part of multi-repository projects, the chart shows that Java-
Script is still the most popular language, with 47.35% of projects using it. This is
followed by TypeScript, which is used in almost 30% of projects. This is not sur-
prising as TypeScript is a strongly typed superset of JavaScript and has become
increasingly popular in recent years, particularly in front-end development. Vue-
Ruby is the third most popular language in the front-end part of multi-repository
projects, with 8.39% of projects using it. This is likely due to the use of the Vue.js
JavaScript framework and the Ruby programming language in web development
projects. HTML-CSS is the third most popular language in the front-end part

Optimizing branching strategies in mono- and multi-repository. . . 99

of multi-repository projects, with 11.12% of projects using it. This reflects the
importance of these languages in front-end web development.

Turning to the back-end part of multi-repository projects, the chart shows
that JavaScript is still the most popular language, but its usage is lower com-
pared to the front-end part, with 38.91% of projects using it. This is followed
by TypeScript with over 19% and Java with over 17% of projects. This is not
surprising given the widespread use of Java in enterprise applications and other
large-scale systems. Python is the third most popular language in the back-end
part of multi-repository projects, with 10.50% of projects using it. This reflects
the growing popularity of Python as a general-purpose programming language,
as well as its widespread use in data science and machine learning. TypeScript
is the second most popular language in the back-end part of multi-repository
projects, with 19.52% of projects using it. This suggests that TypeScript is also
gaining traction in back-end development.

7.3. Development period in mono-/multi-repository structures

Figure 4 shows that the majority of both mono- and multi-repository projects
have a development period of less than a month, with 46% of mono-repository
projects and 40% of multi-repository projects falling into this category. In the
next category, projects with a development period between 1 and 3 months,
there is a similar distribution between mono- and multi-repository projects,
with 19% and 16%, respectively. This suggests that for slightly larger projects,
there is little difference in development period between the two repository struc-
tures. For longer development periods, there are slightly more multi-repository

Fig. 4. Percentage share of projects in both structures according to their development period.

100 U. Shakikhanli, V. Bilicki

projects with a development period between 12 and 24 months (12% vs. 7%
for mono-repository projects), suggesting that larger-scale projects may be more
commonly organized as multi-repository projects. However, for projects with de-
velopment periods of more than 24 months, there is not a significant difference
between the two repository structures.

7.4. Popularity of branching strategies over the years

The popularity of branching strategies in software development has evolved
over the years. Analyzing the percentage trends from 2016 to 2022, it is evi-
dent that trunk-based, Git Flow, and GitHub Flow have undergone shifts in
popularity. In 2016, GitHub Flow was the preferred choice, capturing 58% of
the popularity, followed by trunk-based at 32% and Git Flow at 10%. However,
by 2017, trunk-based experienced a significant increase, rising to 52.5%, while
GitHub Flow dropped to 39.5% and Git Flow remained at 8%. In subsequent
years, trunk-based and GitHub Flow maintained their prominence, with minor
fluctuations. Between 2018 and 2021, trunk-based ranged from 40% to 49%,
while GitHub Flow hovered between 47% and 58%. Git Flow saw a decline,
reaching a low of 1% by 2022. These trends indicate a preference for more flex-
ible and streamlined branching strategies. Trunk-based, known for continuous
integration, and GitHub Flow, emphasizing lightweight workflows, have gained
popularity over the years. Meanwhile, the structured approach of Git Flow has
witnessed a decline in usage.

Fig. 5. Popularity of three major branching strategies over the years.

Understanding the evolving popularity of branching strategies is essential for
developers, enabling them to align their practices with industry trends and make

Optimizing branching strategies in mono- and multi-repository. . . 101

informed decisions. It highlights the industry’s pursuit of efficient and collabo-
rative development workflows.

7.5. Branching strategies in mono-/multi-repository projects

Based on Fig. 6, it seems that most mono-repository projects use the trunk-
based branching strategy (76.3%). This strategy involves all developers commit-
ting their changes directly to the main trunk or branch of the codebase. This
approach is often used for smaller projects with a small number of developers,
as it allows for rapid iteration and faster feedback loops. The next most popular
branching strategy in mono-repositories is GitHub Flow (19%). This strategy in-
volves creating a new branch for each feature or bug fix and merging it back into
the main branch once it is completed and tested. This approach allows for better
collaboration among teams and provides a clearer history of changes made to the
codebase. Finally, Git Flow branching strategy is used in a minority of mono-
repository projects (4.7%). This strategy involves creating a structured branch-
ing model with a main branch, develop branch, and feature branches for each
new development task. This approach provides a more organized and controlled
development process, but it can be more complicated and time-consuming.

Fig. 6. Usage percentage of three major branching strategies in mono-repository projects.

According to Fig. 7 it appears that in the front-end part of multi-repository
projects, most projects use trunk-based branching strategy (57.6%). This is fol-
lowed by GitHub Flow (27.5%) and Git Flow (14.9%). Similarly, in the back-end
part of multi-repository projects, most projects also use trunk-based branching
strategy (60.7%). The usage percentages of GitHub Flow and Git Flow in the
back-end part are like those in the front-end part, with GitHub Flow being
the second most popular strategy (24.2%) and Git Flow being the least popu-
lar (15.0%). It is interesting to note that the usage percentages of trunk-based
branching strategy are higher in the back-end part of multi-repository projects
compared to the front-end part. This could be because back-end development

102 U. Shakikhanli, V. Bilicki

Fig. 7. Usage percentages of three major branching strategies in both parts of multi-repository
projects.

often involves more complex code and requires a more structured development
process. Overall, the usage percentages of the three branching strategies in multi-
repository projects suggest that these projects tend to be larger and more com-
plex than mono-repository projects, with multiple teams working on different
parts of the project.

8. Discussion

8.1. RQ 1. What is the connection between team size and repository
structure?

Figure 2 showed that mono-repository structure is mostly preferred by a small
group of developers. More than 90% of the mono-repository projects are de-
veloped by developer teams smaller than 5. It is worth noting that there is
a significant number of freelancer or nonprofessional projects in our database;
nevertheless, 90% is still a substantial number. To gain a better understanding
about this relationship, we also conduct some measurements on the remaining
10% of the projects and calculate the correlation between team size and other
parameters of projects.

Again, we must mention that the projects shown in Fig. 8 are the 10% parts of
mono-repository projects with a team size of more than 5. According to our calcu-
lations, there is a 0.48 correlation between team size and project size in this case.
In most cases, this is called a “medium correlation”, suggesting a medium chance
for mono-repository structure projects to have bigger team size with the increase
in project size. On the other hand, a different perspective can be observed in
the team size share of multi-repository projects in Fig. 2. It is obvious that
larger teams prefer to work with multi-repository projects. Approximately 20%
of multi-repository projects have developers with team sizes exceeding 5. The
correlation result for project size and team size in these projects shows that

Optimizing branching strategies in mono- and multi-repository. . . 103

Fig. 8. Relationship between team size and project size in mono- and multi-repository projects.

there is weak correlation of 0.22. This proves that the count of team members
has very little relationship with the project size.

8.2. RQ 2. What is the connection between development period
and repository structure?

Figure 9 illustrates the relationship between team size and development pe-
riod in mono-repository structure projects. As depicted, there is no strong corre-
lation between these two parameters with a correlation value is 0.15, indicating
a weak correlation. Figure 4 shows that almost 65% of the projects have been
developed in under 3 months and only 24% of the projects have a lifespan of
more than a year.

Fig. 9. Relation between development period and team size in mono-repository projects.

104 U. Shakikhanli, V. Bilicki

In the multi-repository case, the scenario differs. Almost 34% of the projects
have a development period exceeding a year and this indicates that the multi-
repository approach is mostly preferred in projects designed for longer develop-
ment period. Furthermore, there is very weak correlation between team size and
the development period in this approach, as it was in mono-repository one. So
overall, one can clearly say that team size has a very weak connection with the
development period.

8.3. RQ 3. Which branching strategy is preferred according
to the repository structure?

The trunk-based approach is highly favored in mono-repository projects, with
a significant usage percentage of 76.3%, while Git Flow is the least popular
option at only 4.7%. Interestingly, in both the front-end and back-end sections of
multi-repository projects, the trunk-based approach remains the most prevalent,
although its usage percentage is lower compared to mono-repository projects. In
multi-repository front-end projects, GitHub Flow emerges as the second most
popular choice with a usage percentage of 27.5%, while Git Flow is the least
favored at 14.9%. In multi-repository back-end projects, Git Flow and GitHub
Flow have similar usage percentages at 15.0% and 24.2%, respectively.

These statistics highlight a strong inclination of developers towards the trunk-
based approach in mono-repository projects. This approach is known for its sim-
plicity and straightforwardness, enabling faster delivery of new features and bug
fixes. It is worth noting that Git Flow, typically associated with more complex
projects, is less commonly used in both mono-repository and multi-repository
setups. This could be attributed to its steep learning curve, discouraging some
developers from adopting it. On the other hand, GitHub Flow finds greater pref-
erence in multi-repository structures compared to mono-repository setups.

8.4. RQ 4. Which branching strategy is preferred according to the
team size, programming language and development period?

Figure 3 shows the usage percentage of different programming languages in
mono-repository projects. However, here we will talk about how these language
preferences are distributed among different team sizes. Four major programming
languages have been taken and their usage statistics are shown in Table 1.
Single developer projects:

• JavaScript: The majority of projects (13 504) are led by a single developer,
indicating a strong preference for JavaScript in solo development scenarios.
This suggests that JavaScript is widely adopted by individual developers
who work on smaller projects.

Optimizing branching strategies in mono- and multi-repository. . . 105

Table 1. Statistics of team sizes in four major programming languages in mono-repository
structure projects.

Programming
languages

Single developer Two developers Between 3–10
developers

More than 10
developers

JavaScript 13 504 1125 576 98
Python 3762 349 148 21

TypeScript 1444 96 73 29
Ruby 387 49 42 37

• TypeScript, Python, and Ruby: While TypeScript, Python, and Ruby also
have projects led by a single developer, their counts are comparatively
lower. This could indicate that these languages are somewhat less com-
monly used for solo development or that they are preferred for larger
projects that require multiple developers.

Two developer projects:
• JavaScript: With 1125 projects, JavaScript also demonstrates popular-

ity in collaborative efforts involving two developers. This suggests that
JavaScript is frequently chosen for small team collaborations.

• TypeScript and Python: TypeScript and Python have a smaller number
of projects with two developers (96 and 349, respectively). However, these
counts still indicate a preference for these languages in team settings, albeit
to a lesser extent compared to JavaScript.

• Ruby: Ruby’s count of 49 projects with two developers suggests a relatively
lower preference for this language in team collaborations of this size.

Between 3 and 10 developer projects:
• JavaScript: With 576 projects falling within this team size range, JavaScript

shows a moderate preference for larger team collaborations. This implies
that JavaScript is widely used in both small and medium-sized develop-
ment teams.

• TypeScript, Python, and Ruby: TypeScript (73 projects) and Python (148
projects) also demonstrate a preference for team collaborations within this
size range. While Ruby has a lower count of 42 projects, it still suggests
some usage in medium-sized teams.

More than 10 developer projects:
• JavaScript: Despite its popularity in smaller team sizes, JavaScript’s count

of 98 projects with more than 10 developers indicates that it is also used
in larger-scale development efforts.

• TypeScript and Python: TypeScript (29 projects) and Python (21 projects)
show a relatively lower preference for projects with more than 10 devel-

106 U. Shakikhanli, V. Bilicki

opers. This could indicate that these languages are used less frequently
in larger team settings or that they are more commonly associated with
smaller to medium-sized projects.

• Ruby: Ruby’s count of 37 projects with more than 10 developers suggests
a higher preference for large-scale collaborations within the Ruby commu-
nity.

Finally, we also can demonstrate the usage of different branching strategies
by different developer teams.

Table 2. Statistics of team sizes in three major branching strategies in mono-repository
structure projects.

Branching strategy Single developer Two developers Between 3–10
developers

More than 10
developers

Trunk-based 16 113 1308 464 86
GitHub Flow 2622 508 492 99
Git Flow 581 144 144 10

Trunk-based:
• Single developer: With 16 113 projects, the trunk-based branching strat-

egy is highly preferred by individual developers. This suggests that solo
developers often adopt a simpler approach with fewer branches, favoring
the trunk-based strategy.

• Two developers: Trunk-based branching is also popular among teams of
two developers, with 1308 projects. This indicates that small teams prefer
a streamlined development process without complex branching structures.

• Between 3 and 10 developers: Although the count decreases to 464 projects,
the preference for trunk-based branching remains notable among medium-
sized teams. This indicates a continued preference for a simplified devel-
opment workflow without extensive branching.

• More than 10 developers: Even with larger teams, trunk-based branching
is still utilized in 86 projects. This suggests that some organizations or
projects with significant team sizes prefer a streamlined and less complex
branching approach.

GitHub Flow:
• Single developer: GitHub Flow is adopted in 2622 projects by individual

developers. This suggests a notable preference for this branching strategy
among solo developers, potentially due to its simplicity and ease.

• Two developers: With 508 projects, GitHub Flow is also favored by small
teams. This indicates that small collaborative efforts appreciate the sim-
plicity and efficiency provided by GitHub Flow.

Optimizing branching strategies in mono- and multi-repository. . . 107

• Between 3 and 10 developers: GitHub Flow remains a preferred branching
strategy among medium-sized teams, with 492 projects. This suggests that
teams of this size find value in the straightforward and flexible workflow
provided by GitHub Flow.

• More than 10 developers: GitHub Flow is adopted in 99 projects with more
than 10 developers, indicating that some larger teams also appreciate the
streamlined approach offered by this branching strategy.

Git Flow:
• Single developer: Git Flow is used in 581 projects by individual developers.

Although the count is lower compared to trunk-based and GitHub Flow,
it still indicates a preference for a more structured and feature-oriented
branching strategy even in solo development scenarios.

• Two developers: With 144 projects, Git Flow is favored by small teams.
This suggests that some small teams find value in the feature branching
and release management aspects provided by Git Flow.

• Between 3 and 10 developers: Git Flow is also preferred by medium-sized
teams, with 144 projects. This indicates that teams of this size appreciate
the clear separation of features and releases provided by Git Flow.

• More than 10 developers: Git Flow is employed in 10 projects with more
than 10 developers. This suggests that some larger teams still find value
in the more structured and formalized branching approach of Git Flow.

Overall, the analysis highlights the following preferences for branching strategies
by different team sizes:

• Trunk-based: Preferred by solo developers and teams of all sizes, indicating
a preference for a simpler development workflow.

• GitHub Flow: Preferred across all team sizes, showcasing its flexibility and
ease of use for both small and large teams.

• Git Flow: Exhibits a preference among developers working individually or
in small to medium-sized teams, emphasizing the value placed on feature
branching and release management.

9. Conclusion

The analysis reveals several noteworthy points differentiating mono-repository
and multi-repository projects. The first point of interest is the team size distribu-
tion between both projects. It is clear from the statistics that mono-repository
projects typically require fewer developers than multi-repository projects. In
fact, over 85% of mono-repository projects have only one developer, compared
to 62% in multi-repository projects. This suggests that mono-repository projects

108 U. Shakikhanli, V. Bilicki

are more likely to be undertaken by individual developers or small teams, whereas
multi-repository projects are more often the result of collaboration among larger
teams.

Furthermore, when considering projects with more than three developers,
the difference between the two types of repositories becomes even more appar-
ent. Only 5% of mono-repository projects have 3–10 developers, while 19.5% of
multi-repository projects have such a team size. Additionally, projects with over
10 developers constitute 0.9% in mono-repository and 1.6% in multi-repository
projects. This indicates that multi-repository projects are more likely to be un-
dertaken by larger teams, perhaps due to the increased complexity and scope of
such projects.

The second point to consider is the difference in development period between
the two types of repositories. The statistics suggest that mono-repository projects
are more frequently used in shorter duration projects, with more than half of the
projects falling into the less than six-month duration category. In contrast, multi-
repository projects exhibit a higher usage percentage in longer-term projects,
with 12% of such projects lasting between 12 and 24 months, and 8% lasting
more than 24 months. This suggests that mono-repository projects are typically
preferred for smaller-scale or simpler projects, while multi-repository projects
are more suitable for larger and more complex projects that require more time
to complete.

Finally, the statistics on branching strategies reveal some interesting insights
into the preferences of developers when it comes to managing code changes. In
mono-repository projects, the trunk-based approach is by far the most common,
with a usage percentage of 76.3%, while the Git Flow approach is used the
least at 4.7%. On the other hand, in both the front-end and back-end parts of
multi-repository projects, trunk-based remains the most used approach, but its
usage percentage is lower than that in mono-repository projects. In the front-end
part of multi-repository projects, GitHub Flow emerges as the second most used
approach at 27.5%, while Git Flow is the least used at 14.9%. In the back-end
part of multi-repository projects, Git Flow and GitHub Flow have similar usage
percentages, with 15.0% and 24.2%, respectively.

Overall, these statistics suggest that developers prefer the trunk-based ap-
proach in mono-repository projects. This approach is typically simpler and more
straightforward than other branching strategies, and it enables faster delivery of
new features and bug fixes. It is also worth noting that the Git Flow approach,
which is often associated with more complex projects, is less commonly used in
both mono-repository and multi-repository projects. This could be due to its
relatively steep learning curve, which may deter some developers from using it.
On the other hand, GitHub Flow is preferred more in multi-repository structures
rather than in mono-repository ones.

Optimizing branching strategies in mono- and multi-repository. . . 109

In conclusion, the provided statistics reveal some interesting differences be-
tween mono-repository and multi-repository projects, particularly in terms of
team size and development duration. While mono-repository projects are typ-
ically smaller in scale and require fewer developers, multi-repository projects
are more complex and often involve larger teams. The trunk-based branching
strategy is the most used approach in both types of repositories, likely due to
its simplicity and speed. However, the notable usage of GitHub Flow in both
the front-end and back-end part of the multi-repository project suggests this
branching strategy’s suitability for this type of repository structure projects.

Based on the findings and insights gained from this study on branching strate-
gies and the comparison between mono- and multi-repository structures, future
research should focus on investigating the impact of different branching strate-
gies on the productivity of software development teams. This future work will
involve conducting empirical studies and collecting quantitative and qualitative
data to assess the effectiveness of various branching strategies in terms of en-
hancing productivity, reducing conflicts, improving collaboration, and enabling
efficient release management. Furthermore, exploring the interaction between
branching strategies and other factors such as team size, project complexity,
and development methodologies will provide a comprehensive understanding of
how these strategies influence productivity in different contexts. The outcomes
of this research will contribute to the body of knowledge in software engineer-
ing and provide valuable insights for practitioners in selecting the most suitable
branching strategy to optimize their development processes.

10. Threats to validity

The present study acknowledges several potential threats to the validity of
the findings. First, the reliability of the collected data from GitHub reposito-
ries could be of concern. While efforts were made to select repositories with
a good reputation and active development communities, it is possible that some
projects may contain inaccuracies or inconsistencies in their documentation or
issue tracking. To mitigate this threat, multiple measures were taken, including
the double-checking of repositories, conducting thorough data cleansing and val-
idation processes. However, it is important to note that some degree of error or
misinterpretation may still exist.

Despite these potential threats to validity, our study provides valuable in-
sights into optimizing branching strategies in mono and multi-repository envi-
ronments. By acknowledging and addressing these threats, we strive to enhance
the reliability and applicability of our findings, ultimately contributing to the
body of knowledge in software engineering and aiding practitioners in making
well-informed decisions regarding branching strategies.

110 U. Shakikhanli, V. Bilicki

Appendix

Pull requests:
https://api.github.com/repos/{user name}/{repository name}/pulls?state=all
Issues:
https://api.github.com/repos/{user name}/{repository name}/issues?state=all
Commits:
https://api.github.com/repos/{user name}/{repository name}/commits
Events:
https://api.github.com/repos/{user name}/{repository name}/events
Pull comments:
https://api.github.com/repos/{user name}/{repository name}/pulls/comments
Issue comments:
https://api.github.com/repos/{user name}/{repository name}/issues/comments

References

1. D. Arve, Branching strategies with distributed version control in agile projects, pp. 1–12,
2010, https://fileadmin.cs.lth.se/cs/Personal/Lars_Bendix/Teaching/Lund/Coaching-co
urse/2015-16/Reports/2010/Arve.pdf.

2. GitKraken, What is the best Git branch strategy?, 2023, https://www.gitkraken.com/
learn/git/best-practices/git-branch-strategy.

3. J.D. Blackburn, G.D. Scudder, L.N. Van Wassenhove, Improving speed and productivity
of software development: a global survey of software developers, IEEE Transactions on
Software Engineering, 22(12): 875–885, 1996, doi: 10.1109/32.553636.

4. R. Baskerville et al., Balancing quality and agility in Internet speed software develop-
ment, [in:] Proceedings of the International Conference on Information Systems, ICIS
2002, Barcelona, Spain, December 15–18, 2002, https://aisel.aisnet.org/icis2002/89.

5. R.T. Ogawa, B. Malen, Towards rigor in reviews of multivocal literatures: Applying the
exploratory case study method, Review of Educational Research, 61(3): 265–286, 1991,
doi: 10.3102/00346543061003265.

6. C. Jaspan et al., Advantages and disadvantages of a monolithic repository: A case study
at Google, [in:] ICSE-SEIP ’18: Proceedings of the 40th International Conference on Soft-
ware Engineering: Software Engineering in Practice, pp. 225–234, 2018, doi: 10.1145/
3183519.3183550.

7. U. Shakikhanli, V. Bilicki, Comparison between mono and multi repository structures,
Pollack Periodica, 17(3): 7–12, 2022, doi: 10.1556/606.2022.00526.

8. A. Lucido, Mono-repo to multi-repo and back again, 2017, retrieved Jan 25, 2019 from
https://www.youtube.com/watch?v=lV8-1S28ycM.

9. G. Korlam, One for all, all for one – The journey to Android monorepo at Uber, 2017,
retrieved Jan 25, 2019 from https://speakerdeck.com/kageiit/one-for-all-all-for-onethe-
journey-to-android-monorepo-at-uber.

10. D. Spinellis, Version control systems, IEEE Software, 22(5): 108–109, 2005, doi: 10.1109/
MS.2005.140.

https://fileadmin.cs.lth.se/cs/Personal/Lars_ Bendix/Teaching/Lund/Coaching-course/2015-16/Reports/2010/Arve.pdf
https://fileadmin.cs.lth.se/cs/Personal/Lars_ Bendix/Teaching/Lund/Coaching-course/2015-16/Reports/2010/Arve.pdf
https://www.gitkraken.com/learn/git/best-practices/git-branch-strategy
https://www.gitkraken.com/learn/git/best-practices/git-branch-strategy
https://doi.org/10.1109/32.553636
https://aisel.aisnet.org/icis2002/89
https://doi.org/10.3102/00346543061003265
https://doi.org/10.1145/3183519.3183550
https://doi.org/10.1145/3183519.3183550
https://doi.org/10.1556/606.2022.00526
https://www.youtube.com/watch?v$=$lV8-1S28ycM
https://speakerdeck.com/kageiit/one-for-all-all-for-onethe-journey-to-android-monorepo-at-uber
https://speakerdeck.com/kageiit/one-for-all-all-for-onethe-journey-to-android-monorepo-at-uber
https://doi.org/10.1109/MS.2005.140
https://doi.org/10.1109/MS.2005.140

Optimizing branching strategies in mono- and multi-repository. . . 111

11. N.N. Zolkifli, A. Ngah, A. Deraman, Version control system: A review, Procedia Computer
Science, 135: 408–415, 2018, doi: 10.1016/j.procs.2018.08.191.

12. S. Otte, Version control systems, 12 pages, 2009, https://www.mi.fu-berlin.de/inf/
groups/ag-tech/teaching/2008-09_WS/S_19565_Proseminar_Technische_Informatik/
otte09version.pdf.

13. B. Berliner, CVS II: Parallelizing software development, [in:] Proceedings of the USENIX
Winter 1990 Technical Conference, Berkeley, USA, USENIX Association, pp. 341–352,
1990.

14. B. Cannon, B. Warsaw, S.J. Turnbull, A. Vassalotti, Migrating from Subversion to a dis-
tributed VCS, PEP 0374, Python Foundation, 1990, draft retrieved from http://www.pyt
hon.org/dev/peps/pep-0374/.

15. I.C. Clatworthy, Distributed version control: Why and how, [in:] Proceedings of Open
Source Development Conference (OSDC), 7 pages, 2007.

16. B. De Alwis, J. Sillito, Why are software projects moving from centralized to decen-
tralized version control systems?, [in:] 2009 ICSE Workshop on Cooperative and Hu-
man Aspects on Software Engineering, Vancouver, BC, Canada, pp. 36–39, 2009, doi:
10.1109/CHASE.2009.5071408.

17. A. Koc, A.U. Tansel, A survey of version control systems, ICEME 2011, 6 pages, 2011.

18. V. Kovalenko, F. Palomba, A. Bacchelli, Mining file histories: Should we consider
branches?, [in:] ASE ’18: Proceedings of the 33rd ACM/IEEE International Conference
on Automated Software Engineering, September 3–7, Montpellier, France, pp. 202–213,
2018, doi: 10.1145/3238147.3238169.

19. E.T. Barr, C. Bird, P.C. Rigby, A. Hindle, D.M. German, P. Devanbu, Cohesive and
isolated development with branches, [in:] FASE’12: Proceedings of the 15th International
Conference on Fundamental Approaches to Software Engineering, pp. 316–331, 2012, doi:
10.1007/978-3-642-28872-2_22.

20. W. Zou, W. Zhang, X. Xia, R. Holmes, Z. Chen, Branch use in practice: A large-scale
empirical study of 2,923 projects on GitHub, [in:] Proceedings of the 19th IEEE Interna-
tional Conference on Software Quality, Reliability and Security (QRS), Sofia, Bulgaria,
pp. 306–317, 2019, doi: 10.1109/QRS.2019.00047.

21. E. Kalliamvakou, D. Damian, L. Singer, D.M. German, The code-centric collaboration
perspective: Evidence from GitHub, Technical Report DCS-352-IR, University of Victoria,
February 2014.

22. U. Shakikhanli, V. Bilicki, Multi repository management tools, The Journal of CIEES,
2(2): 13–18, 2022, doi: 10.48149/jciees.2022.2.2.2.

23. GitHub, github/renaming: Guidance for changing the default branch name for GitHub
repositories, https://github.com/github/renaming.

24. U. Shakikhanli, V. Bilicki, Machine learning model for identification of frontend and back-
end repositories in Github, Multidisciplinary Science Journal, 5: e2023ss0106, 2023, doi:
10.31893/multiscience.2023ss0106.

Received June 6, 2023; revised version December 7, 2023;
accepted December 7, 2023; published online February 1, 2024.

https://doi.org/10.1016/j.procs.2018.08.191
https://www.mi.fu-berlin.de/inf/groups/ag-tech/teaching/2008-09_WS/S_19565_Proseminar_ Technische_Informatik/otte09version.pdf
https://www.mi.fu-berlin.de/inf/groups/ag-tech/teaching/2008-09_WS/S_19565_Proseminar_ Technische_Informatik/otte09version.pdf
https://www.mi.fu-berlin.de/inf/groups/ag-tech/teaching/2008-09_WS/S_19565_Proseminar_ Technische_Informatik/otte09version.pdf
http://www.python.org/dev/peps/pep-0374/
http://www.python.org/dev/peps/pep-0374/
https://doi.org/10.1109/CHASE.2009.5071408
https://doi.org/10.1145/3238147.3238169
https://doi.org/10.1007/978-3-642-28872-2_22
https://doi.org/10.1109/QRS.2019.00047
https://doi.org/10.48149/jciees.2022.2.2.2
https://github.com/github/renaming
https://doi.org/0.31893/multiscience.2023ss0106

