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The author’s algebraic theory of boundary value problems has permitted systematizing Trefftz method
and expanding its scope. The concept of TH-completeness has played a key role for such developments.
This paper is devoted to revise the present state of these matters. Starting from the basic concepts of the
algebraic theory, Green-Herrera formulas are presented and Localized Adjoint Method (LAM) derived.
Then the classical Trefftz method is shown to be a particular case of LAM. This leads to a natural
generalization of Trefftz method and a special class of domain decomposition methods: Trefftz—Herrera
domain decomposition.

1. INTRODUCTION

By a boundary method, it is usually understood a procedure for solving partial differential equa-
tions and/or systems of such equations, in which a subregion or the entire region, is left out of
the numerical treatment, by use of available analytical solutions (or, more generally, previously
computed solutions). Boundary methods reduce the dimensions involved in the problems, leading
to considerable economy of work and constitute a very convenient manner for treating adequately
unbounded regions. Generally, the dimensionality of the problem is reduced by one, but even when
part of the region is treated by finite elements, the size of the discretized domain is reduced [1,2].

There are two main approaches to formulating boundary methods; one is based on boundary
integral equations and the other one, on the use of complete systems of solutions. The author has
studied extensively a version of the method based on the use of complete systems of solutions,
known as Trefftz method [3-6]. Although Trefftz’s original formulation was linked to a variational
principle, this is not required. What is peculiar of Trefftz method, is that solutions of the homoge-
nous differential equation — more generally, adjoint differential equation — are used as weighting
functions. ’

The method has been used in many fields. For example, applications to Laplace’s equation are
given by Mikhlin [7], to the biharmonic equation by Rektorys [8] and to elasticity by Kupradze [9].
Also, many scattered contributions to the method can be found in the literature. Special mention is
made here of work by Amerio, Fichera, Kupradze, Picone and Vekua [10-14]. Colton has constructed
families of solutions which are complete for parabolic equations [15].

Some years ago, the author started a systematic research of Trefftz method oriented to: clarify
the theoretical foundations required for using complete systems of solutions in a reliable manner,
and expand the versatility of the method, making it applicable to any problem which is governed
by partial differential equations and/or systems of such equations which are linear.

For symmetric systems, the results obtained were presented in several reports (5, 6,16-24] and
later integrated in book form [4]. They include: a) a criterium of completeness (introduced in [16]
and called Trefftz—Herrera, or TH-completeness); b) approximating procedures and conditions for
their convergence [5,6,18]; c) formulation of variational principles [19,20,24]; and d) development
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of complete systems of solutions [16,21-23]. In addition, the algebraic frame-work in which the
theory has been constructed (the Algebraic Theory of Boundary Value Problems), has been used
for developing biorthogonal systems of solutions [24]. Free-boundary problems, which are nonlinear
even when the governing differential equations are linear, were also treated using Trefftz method [25].
Numerical procedures for fitting the boundary conditions were also discussed [26].

Function theoretic methods supply general results for developing analitically complete systems
of solutions [27]. The work by Vekua in 1948 [14], by Bergman in 1961 [28] and by Gilbert in
1969 [27], and 1974 [29], on this subject was followed by many others (see, for example [30-33]). The
author's algebraic theory of boundary problems permitted applying the results of function theoretic
methods to specific problems; in particular the concept of TH-completeness has been quite relevant.
According to Begehr and Gilbert, in their recent survey of function theoretic methods ( [34], p. 115):

The function theoretic approach which was pioneered by Bergman [28] and Vekua [14] and
then further developed by Colton [30-32], Gilbert [27,29], Kracht-Kreyszig [33], Lanckau [35]
and others, may now be effectively applied because of results of the formulation by Herrera [5]
as an effective means to solving boundary value problems.

In addition, they present many applications of the TH-completeness concept.

Many engineering applications have been made (see, for example [36-39]). A method specifically
designed to deal with elastic diffraction problems was presented in [17] and later applied to answer
questions of seismic engineering and seismology [40-44].

Work done after the results for symmetric operators appeared, permitted extending the algebraic
theory to non-symmetric operators, leading to a generalized version of Trefftz method (Trefftz—
Herrera Method [45-48]). This has been the basis of Localized Adjoint Method: LAM [49], which
has been successively applied to ordinary differential equations, for which highly accurate algorithms
were developed [47,50], multidimensional steady—state problems [51], and optimal spatial methods
for advection diffusion equations [52, 53].

A very successful application of LAM, to problems of transport was presented in a couple of
papers [54, 55]. The resulting methodology is known as Eulerian-Lagrangian Localized Adjoint
Method (ELLAM) and was developed by the ELLAM group (M.A. Celia, R.E. Ewing, T.F. Russel
and the author), which was formed for this purpose. Many applications of ELLAM have been made
(see, for example, [56-62], and a recent account of the subject was presented in [63].

In Herrera’s generalized version of Trefftz method, the region is decomposed into many sub-
regions, and trial and test functions which may be fully discontinuous at the internal boundaries
separating such subregions, are admitted. The framework for systematic analysis supplied by the
author’s theory is quite useful to elucidate many questions about the performance of weighting
and base functions. Indeed, since the base functions can be appropiately thought as interpolators
(or extrapolators) of the actual information contained in approximate solutions, and this latter
information is determined by the weighting functions that are applied, such analysis is required for
choosing effective combinations of trial and test functions [64].

On the other hand, in recent years domain decomposition methods have received much atten-
tion, as a tool for solving partial differential equations. This is mainly due to the development
of parallel machines, since such methods are efficient for parallelizing the numerical treatment of
partial differential equations. In addition, they can be used to design adaptive algorithms which
capture steep fronts that appear in many problems, such as modeling of transport. Domain decom-
position methods are also used to simplify problems with complicated geometries or match regions
with different physical parameters or different types of differential equations. A wealth of literature
on the subjected has appeared in recent years (see for example [65-73]). Trefftz-Herrera Method
in which discontinuous trial and test functions are admitted, leads in a direct manner to domain
decomposition procedures. For example, the procedure presented in [51] is essentially a domain
decomposition method. However, it was only recently that research on Trefftz—Herrera Method as
a route to domain decomposition procedures, was initiated [74].
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Here, an overview of Trefftz—Herrera Method is presented. Sections 2 and 3, are devoted to the
abstract formulation of domain decomposition, which supplies the framework for this very general
version of TH-Method, applicable to any linear partial differential equation, or system of such
equations — see [54].

In Sections 4 to 7, applications to general differential equations of second order and elliptic type,
are developed in greater detail. For the symmetric and positive definite case, the matrices of the
resulting domain decomposition algorithms are also symmetric and positive definite. This property
allows a direct application of efficient iterations schemes, such as the conjugate gradient method.
Also, an alternative formulation of collocation procedures, “TH-collocation”, which enjoys more
relaxed continuity conditions than “standard collocation [75].

2. ABSTRACT FORMULATION OF DOMAIN DECOMPOSITION

In this section some of the most basic concepts and results of the author’s algebraic theory of
boundary value problems, are presented. Generally, proofs are not included. Some of these con-
cepts and results were introduced in [45-48]. They also imply a kind of operator extensions whose
connection with the theory of distributions was discussed in [76].

The discussions refer to linear operators of the type P : Dy — D3, whose domain is a the
linear space D;, and whose values are linear functionals on D (i.e.; elements of D3: the algebraic
dual of the linear space D;), as well as to operators whose domain is Dy and with values in Dj. In
particular, the transpose of P : D; — D3 is P* : Dy — Dyf.

The notation < Pu,v > is used to denote the value of the functional Pu at v € D,. Clearly,
< Pu,v > is bilinear and this defines a one-to-one correspondence between operators P : D; — D3
and bilinear forms < Pu,v > on D & Ds.

Definition 1 Boundary Operators.
B is a boundary operator for P, iff

< Pu,v>=0, Yv€&€ Npg-=Pu=0. (1)
Definition 2 Formal Adjoints.

Two operators P : Dy — D3 and @ : Dy — Dj are formal adjoints when S = P — Q* is a
boundary operator for P, while S* = P* — @ is a bounadry operator for Q).

Definition 3 The subspaces Ip and Ig.

Let P : Dy — D3 and Q : Do — D7 be formal adjoints, then the subspace Ip C D; is defined
by

Ip=Np+ Ns : (2a)
and the subspace Ig C D by

Ig = Ng + Ng- (2b)
Here, as before, S = P — Q*.
Definition 4 TH-completeness.
A subset W C Ig C Dy, is said to be TH-complete when for any V' € D; one has

<SV,w>=0, YweW=Velp. (3a)
Similarly, a subset W C Ip C Dy, is said to be TH-complete when for any W € D5 one has

<SWou>=0, WweW=Welj. (3b)
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Definition 5 Disjoint Operators.

A pair of operators { R;, Ry} of the same kind is said to be disjoint when R, is a boundary operator
for Ry, while Ry is a boundary operator for R;.

A system of operators {R;, Ry,...,R,} of the same kind is said to be disjoint when each pair
{Ri, R;}, with i # j, is disjoint.

Definition 6 Completely disjoint.

A pair of operators { Ry, Rz} of the same kind are said to be completely (or fully) disjoint when,
in addition to being disjoint, the pair { R}, R5} is also disjoint.

A system of operators {R;, Ry, ..., R,} of the same kind is said to be fully disjoint when each
pair {R;, R;}, with ¢ # 7, is fully disjoint.

Definition 7 Decomposition {R1, R2} of R.

A pair of operators {R1, Ry} is said to be a decomposition of R, when they are completely disjoint
and

R=R,+R,. (4)

A system of operators {R;, Rg, ..., Ry} is said to be a decomposition of R, when they are fully
disjoint and

R=R;+...+Ry. (5)
Proposition 1 Assume the pair {R1, Ra} decomposes R, then

Ng = Npg, N Ng, . (6)
Remark 1 If {Ry, Ry} decomposes R, then {R}, R3} decomposes R*.
Definition 8 Green—Herrera formula.

The equation
P-B=Q*-C* (7)

is said to be a Green-Herrera formula for the pair {P,Q}, when P and @ are formal adjoints and
the pair {B, —C*} decomposes S = P — Q*, while { B*, —~C} decomposes S* = P* — Q.

Theorem 1 Assume Eq. 5 is satisfied and it is a Green-Herrera formula for the pair {P,Q}. Let
{B1, B2} and {C1,C>}, be decompositions of B and C, respectively. Then, the equation

(P—B1)—Ba=(Q-C1)" - C3 (8)
is a Green-Herrera formula for the pair {(P — B;),(Q — C1)}.

Definition 9 The (abstract) boundary value problems.

Let B be a boundary operator for P. Given U € D; and V € Dy, the abstract boundary problem
consists in finding u € D; such that

Pu=f and Bu=gy, (9a)

where f = PU € Dj and g = BV € Dj.
Similarly, given W € Dy and Y € D,, the adjoint boundary value problem consists in finding
w € Dy, such

Qw=QW and Cw=CY. (9b)
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Theorem 2 Variational formulation in terms of the data.

u € Dy, is solution of the boundary problem, iff
(P-Blu=f-g. (10)

Theorem 3 Variational formulation in terms of the sought information.

When P — B = Q* — C* is a Green’s formula, u € Dy, is solution of the boundary problem, iff
Q@ -Cu=f-g. (11)
Definition 10 The kernel of the B.V.P., and uniqueness.
The set N C D, defined by
N =NpNNp (12)
is the kernel of the B.V.P. When N = {0}, the B.V.P. is said to satisfy uniqueness.

Definition 11

Given C : Dy — D} and a set W C Ds, the set CW C Dj is said to span the range of C, when
for any v € Dy, one has

<C*v,w>=0, YweW=C*'v=0. (13)

Theorem 4 Let P — B = Q* — C* be a Green’s formula and W C Ng C D2 be a set spanning
C. Assume a solution u € Dy of the b.v.p. exists, and let & € D, be any element of D1. Then, the
following assertions are equivalent:

i. <Cw>S=-<f-gw>, YweW, (14)
i. <C*u,w>=<C*'u,w>, YweW, (15)
iii. C*u=C*u, (16)

iv. IfU € D, satifies PU = f, then
<C*uw>=<(C*U-BU+g),w>, YweW. (17)

Remark 2 In particular, when C*U = 0, then Eq. (16) becomes
<C*iw>=-<BU-g),w>, YweW. (18)
Proof: Observe that when w € W C Ng, one has
- <CUhw>=<f-gw>=< (P-Bu,w>=<(Q* - Cu,w>=—- < C'u,w> . (19)

Hence (14) implies (15), which in turn implies (16), by virtue of Definition 11. From Eq. (19), it
follows that when PU = f and Eq. (16) holds, one has

—<CUw>=<PU-guw>=<(Q*—C*+B)U,w>—-<g,w>
=< (-C*+B)U,w>-<g,w> (20)
and Eq. (17) is clear. Using Eq. (20), one can derive (14) from (18).
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3. INITIAL-BOUNDARY VALUE PROBLEMS WITH PRESCRIBED JUMPS

Consider a region € and a partition {Qy,...,Qx} of Q into subregions Qy,...,Qy. The linear
spaces D1 and D of trial and test functions respectively, defined in §2, whose elements may have
jump discontinuities across some internal boundaries whose union will be denoted by ¥ (Fig. 1).
For example, in applications of the theory to finite element methods, the set ¥ could be the union
of all the interelement boundaries.

an
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N
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Fig. 1 The region (2, its boundary 92 and internal boundaries £

In this setting the general boundary value problem to be considered is one with prescribed
jumps, across Y. The differential equation is

Lu=fq inQ, (21)

where {2 may be a purely spatial region or, more generally, a space-time region. Certain bound-
ary and jump conditions are specified on the boundary 992 and on the internal boundaries ¥,
respectively. When €2 is a space-time region, such conditions generally include initial conditions.
In the literature on mathematical modeling of macroscopic physical systems, there is a large class
of problems that can be formulated as initial-boundary value problems with prescribed jumps or
boundary value problems, when steady states are considered. For example, problems of elastic wave
diffraction can be formulated as such, [17]. The jump conditions to be satisfied across ¥ by the
sought solution, depend on the specific application and on the differential operator considered. For
elliptic problems of second order, the jump of the function and its normal derivative are usually
prescribed. Frequently, continuity of the sought solution and its normal derivative, is required —
this corresponds to prescribing zero jumps for the solution and its first derivatives. When the partial
differential equations mimic continuous systems, the jump conditions can be derived systematically,
from the balance equations of continuum mechanics [77].

The definition of formal adjoint requires that a differential operator £ and its formal adjoint £*,
satisfy the condition that wlu — uL*w be a divergence; i.e.:

wly —ul*w =V - {D (u,w)} ' (22)

for a suitable vector-valued bilinear function D (u,w), and a general Green-Herrera formula is

/Qwﬁudx—/OQB(u,w) da:—/zj(u,w) dz

=/Qu£*wdx—/6QC(w,u) dw—/EIC(w,u) dz . (23)

Here, integrals over the region (2, are understood as sums of integrals over the individual regions
;. Thus, by definition:

N
/leluda: e Z/ wludz (24)
AL
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and such integrals are well defined in spite of the fact that the differential operator is not defined
on ¥. In addition,

J (u,w) = -D([u],w) - n, (25a)
K* (u,w) = K (w,u) = D (%, [w]) - n, (25b)
where

[u] =uy —u_, uy +u_) /2 (26)

= (
and B (u,w) and C (w,u) = C* (u,w) are two bilinear functions with the property that
D (u,w) -n = B(u,w) - C* (u,w) , (27)

the definition of B (u,w) depend on the type of boundary and initial conditions to be prescribed.
A basic property required of B (u,w) is that for any u that satisfies the prescribed boundary and
initial conditions, B (u,w) is a well defined linear function of w, independent of the particular choice
of u.

In order to relate these developments to the general framework of Section 2, define

< Pu,w >=/w£udx— B (u,w) dz; <Bu,w>=/ J (u,w) dz, (28)
Q N b)Y

<Qw,u>=/ ulLrwdzr — | C(w,u) dz; <Cw,u>=/ K (w,u) dz (29)
Q a0 3]

and the linear functionals f, ge D3 by means of:

<f,w>=/wfgdm—/ B (v, w) dz; Vw € Dy, (30a)

Q [o19]

<g,w>=/ J (u"w) dz; w € Dy, (30Db)
3

where «/,u" € Dy, are two auxiliary functions used to prescribe the boundary and jump condi-
tions, respectively. Then, a formulation suitable for initial-boundary value problems with prescribed
jumps, is given by Definition 9; i.e.:

Pe=3fs 7 Bu='g. (31)

4. ELLIPTIC EQUATIONS

The developments thus far presented, are applicable not only to differential equations, but also
to systems of such equations [54]. However, in what follows attention will be restricted to the
differential equation associated with the most general elliptic operator of second order which will
be written as:

[,uE—-V-(g-Vu)+V-(hu)+cu=fQ, (32a)
for which

Lw=-V-(a-Vw)-b- Vw+cw (32b)
and

D (u,w) =a- (uVw — wVu) + buw. (33)
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To be specific, only Dirichlet type boundary conditions will be considered, and then one can
define:

B.(u;w) = (ﬂ.g-Vw+bnw)u and C*(u,w) =w(n-g.Vu) ; (34)

where b, = b - n. In some applications, the complementary boundary values n - a - Vu, can be
interpreted as diffussive flux, but other interpretations are feasible. In previous articles, fully dis-
continuous trial and test functions have been considered, but for simplicity, here only continuous
trial and test functions — with possibly discontinuous first derivatives — will be treated. Then:

J(u,w)=w[ﬁ~g-Vu] and K*(u,w)z[n-g-Vw]u. (35)
When L is the elliptic operator of Egs. (30), and the boundary and jump conditions are
u = ug, on 0§2; [g-Vu]~n=j on X, (36)

where uy and j are prescribed functions defined on 92 and on ¥, respectively. As mentioned
previously, a physical interpretation of j is the jump of diffusive flux.

The boundary value problem with prescribed jumps can be formulated variationally, point-wise
on 0N and on ¥, by

B(u,w) = B(ug,w) and J(u,w)=J (j,w); VYw€ Dy, (37)
respectively; or, more explicitly:
(@~g-Vw)u:(Q-g-Vw)ua and w[@-g-Vu]zwj. (38)

The variational formulations of previous sections can be applied to this problem, introducing
the linear functionals f and geD3, defined by means of:

<f,w>:/wfgd:v—/ ua(ﬂ-g-Vw) dz; <j,w>:/jwdx. (39)
Q a0 = 5

However, to simplify the presentation, in what follows j = 0 will be assumed; i.e., for the sought
solution, the diffusive flux will be required to be continuous across .

5. VARIATIONAL FORMULATION FOR ELLIPTIC EQUATIONS

The approach to domain decomposition methods based on the use of specialized weighting functions
which concentrate the information, contained in approximate solutions, on the internal boundaries
of the subdomains in which the original domain has been decomposed — functions possessing this
property are those belonging to the set Ng, considered in Section 2 — can be formulated applying
the variational principles of Theorem 4 (Section 2). In this section, TH-Domain Decomposition
Methods for the elliptic differential equation of Section 4, are discussed.

When Q : Dy — D3, is defined by Eq. (29), while £* and C are those of Section 4 — Egs. (32b)
and (34), respectively — functions w € N, are characterized by:

L’*wE—V-(g-Vw)—h-Vw+cw:0 in (40)
together with
w=0 on Q. (41)

When use is made of Eqs. (34) and (35), the variational Eq. (14) of Section 2, can be written as:

—/E[n_-g-Vw]udac:/nwfgdx—/anua(n-g-Vw) dz, Vw € Ng. (42)
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Introducing the notation a, = n-a-n and Jw /On for the normal derivative, this equation reduces to:
—/ a, [Ow/on|udr = / wfodz — / upa,0w/Ondz, Yw € Ng (43)
b2 Q a0

when Eq. (41) and the continuity of test functions are taken into account.

The bilinear functional of the left-hand side in Eq. (43), has special properties when the differ-
ential operator £ of Eq. (32a) is symmetric (i.e.,£ = £*) and positive definite. This corresponds to
taking D; = Dy = D, a positive definite, b= 0, ¢ > 0. In this case, given any two functions uy
and w € Ng = Np (i.e., which satisfy Egs. (40) and (41)), we have

_ /Z a, [0w/0n) iy do = /Q {(2-Vw) - Vag + cwiig} dz (44)

which exhibits the bilinear functional of the left-hand side in Eq. (43), as symmetric and positive
definite when restricted to functions belonging to Ng = Np. Eq. (44), supplies two expressions for
this functional and its quadratic form.

Since the quadratic form is positive definite, it is possible to associate a minimum principle for
the boundary solutions of the problem we have been considering. Because of the 1dent1ty (44), i
has two alternative formulations; the corresponding functionals are

% (@) = - / Gian [fig /0] nde
>3

~2{ [ @nfade~ [ ua(anditn/on) dz (45)
and

% (@g) = /Q{Vﬂy-g-VﬂH—i—cﬁ%{}dg

—2{/00,},]09 dg—/aQua.(anaﬁH/an) -ﬂdg} . (45b)

Under the assumption that:

Given any element U € D, there is an element uy € Ng = Np, such that

dg=u onJX. (46)
The minimum principle states that:

Let u € D, be the solution of the boundary value problem. Then either one of these func-
tionals attains its minimum on Ny, if and only if, Uy = u on X.

Proof: 1t follows from the fact that

%1 (@y) = — /E Brras, (65 /6n] - nde 4 2 /Z uan [08 /6] - ndx
by virtue of the variational equation (43). Take uy € Ng such that ug = u on X. Then

31 (@) = — /2 i — sV AR = i)/ Onl mdz— /E ugan [Fun/on] ndz. (47)
Clearly

1 () 2> —/EuHan [Oup /On] -ndz >0

and the equality sign holds, if and only if 4y = ug, on 2.
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6. THE TEST AND TRIAL FUNCTIONS

For simplicity, consider a rectangular region decomposed into rectangles (Fig. 2a). With each node
(ziyy;) —1=0,1,...,E;, and j = 0,1,..., E, — a subregion (£;;) is associated. When the node
is internal, this is the union of the four rectangles that surround the node. When the node lies
on the boundary 052, it is the union of those rectangles inside the region, only. Observe that the
total number of subregions is E = (E; 4+ 1) x (Ey, + 1) and that the system of subregions {£;;} is
overlapping.

The boundary of ;; is 9€2;;, and that part of ¥ laying in the interior of ;; will be denoted by X;;
(Fig. 2b). In the case of interior nodes, £;; is constituted by four segments and it is cross—shaped.
Those four segments will be numbered as indicated in Fig. 2b.

(leYl)

a) b)

Fig. 2. a) Rectangular domain decomposition of §2; b) Numbering of internal boundaries

Given any subregion 2;;, consider functions w € Ng whose support is contained in the closure
of ©;;. Such functions satisfy L*w = 0, locally and vanish on 0Q;; — hence, on 9. It will be
assumed, further, that any function fulfilling these conditions is determined by its trace on ¥;;.
With each subregion §2;;, a system of weighting functions {'wf‘j; a =1,...}, belonging to Ng, and
satisfying the above properties, will be associated. It will be assumed that the restrictions to X, of
the functions wy;, span L?(Z),whena=1,...,i=0,1,...,E;,and j =0,...,E,. A convenient
way of constructing a system with this property is explained next.

Using the numbering of internal boundaries of Fig. 2b, associated with each node (z;,y;) five

groups of weighting functions will be constructed:

Group 0 — This group is made of only one function, which is linear in each one of the four interior
boundaries between the squares of Fig. 1b, and such that w;; (z;,y;) = 1.

Group 1 — The restricion to interval “1”, of Fig. 1b, is a polynomial in z, which vanishes at the
end points of interval “1”. There is one such polynomial for each degree.

Group 2 — The restricion to interval “2”, of Fig. 1b, is a polynomial in y, which vanishes at the
end points of interval “2”. There is one such polynomial for each degree.

Group 3 — The restricion to interval “3”, of Fig. 1b, is a polynomial in z, which vanishes at the
end points of interval “3”. There is one such polynomial for each degree.

Group 4 — The restricion to interval “4”, of Fig. 1b, is a polynomial in y, which vanishes at the
end points of interval “4”. There is one such polynomial for each degree.
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The support of the function of Group “0”, is the whole square, while those associated with
Groups “l1 to “4”, have as support rectangles which can be obtained from each other by rotation,
as shown in Fig. 3.

Group 0 Group 1 Group 2

\ 7 7
§ _ 322

%
Z D%

Group 3 Group 4

N\

N\

Q
TN

\

Fig. 3. The five groups of weighting functions, according to their supports

It must be observed that the above construction does not lead directly to a system of linearly
independent functions. This is due to the fact that each couple of neighboring nodes, such as those
limiting interval “1”, share the polynomials defined on interval joining them. Thus, for example,
what is what interval “1” for the node on the left, is interval “3”, for the node on the right, and the
corresponding polynomials are counted twice. Such repetition can be avoided if only polynomials of
even degree are incorporated and, for each degree, the one associated with the left-node is linearly
independent of that associated with the right-node. Even more, these two polynomials must be
selected so that some linear combinations of them yield polynomials one degree lower.

Optimal trial functions ¢ € D;, must satisfy the equation L¢$ = 0, and in actual implementations
this is approximately fulfilled only, in most cases. Their construction is quite similar to that of the
test functions. Actually, when the differential operator is symmetric, £ = L£*, and trial and test
functions can be chosen to be the same, at least for the Dirichlet boundary conditions here discussed.

7. DISCRETIZATION

In actual applications the equations must be discretized. To achieve this it is necessary to restrict
the degree of the polynomials, above, to be less or equal than certain number “G”. When this is
done, and the variational principle of Eq. (43) is applied, a system of equations is obtained. For 2-D
problems, the structure of the matrix is block nine-diagonal, the blocks being (2G — 1) x (2G — 1).

In general, the test functions at each subregion are not known and must be constructed. A
simple and convenient numerical procedure is by collocation. When this is applied, this leads to
collocation method which is not standard. Numerical procedures based on the formulation here
presented, require evaluation on the function only and the derivatives of the sought solution need
not be evaluated. This is an advantage of TH-Collocation over “standard collocation” [75], for
which it is necessary to solve for both, the function and its derivatives.

In the case when the differential operator is symmetric and positive definite, the matrix of the
resulting system of equations, also enjoys this property, and direct application of conjugate gradient
method is feasible.

The representation of the approximate solution is:
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ﬂ(m,y) = 'ZZP (CE,y) + ZZ Z Ui(}¢io; (-’E,y) )
i g @

where up (z,y) satisfies, in an approximate manner, the inhomogeneous equation Lup = fq. If
up is chosen fulfilling up = 0, on X, then the system of equations obtained when the variational
equation (43), is applied, does not involve i p; i.e., the construction of Zp is not required to derive the
system of equations of the domain decomposion procedure. This fact, is useful in some aplications.
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