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In the paper, the identification problems connected with estimation of cast iron and mould thermophysical
parameters are discussed. The additional information necessary to solve the problem results from the
knowledge of cooling (heating) curves at the set of points from casting (mould) domain. The course
of cooling (heating) curves results from the temperature measurements done in the real conditions of
technological process, but at the present stage of research the numerical solution of direct problem plays the
role of measured temperatures. In this place the problem of optimal sensors position in a system casting-
mould appears. Both the choice of measuring points and also the solution of inverse problem, using the
gradient methods, require the application of sensitivity analysis methods. The theoretical considerations
are illustrated by the examples of computations. The numerical algorithms presented base on the finite
difference method (2D problems are considered).

Keywords: solidification process, numerical techniques, sensitivity analysis, inverse problems, identifica-
tion methods

1. INTRODUCTION

Numerical simulation of solidification process constitutes a very effective tool for optimal design
of casting production technology. Introducing to the computer program different variants of input
data concerning the details of casting-mould geometry, initial temperatures, properties of mould sub-
domain etc., one can determine the variant of technology assuring the good quality of final product.
The basis of numerical model construction results from the assumed mathematical description of
the thermal processes proceeding in the system considered [1–10].

The solidification model used in this paper belongs to the group of macro ones and it is created
by a system of partial differential equations (energy equations), supplemented by a set of boundary
and initial conditions resulting from the technology considered. The knowledge of mathematical
description of the process and the knowledge of parameters appearing in governing equation allows
to solve the so-called direct problem (using, as a rule, numerical methods). In the case when one
or higher number of parameters is unknown, then the inverse task should be formulated [11–19].
The additional information necessary to solve the problem results from the measured (or postu-
lated) courses of temperature at the points selected from the casting-mould domain. At the stage
of identification algorithm construction, the real measurements are replaced by a direct problem
solution (or this solution disturbed in a random way). In literature one can find different methods
of identification problem solutions [12, 13, 20–23]; here the gradient method basing on the least
squares criterion and sensitivity coefficients has been used [12, 16, 24–29]. In the simplest version
of computations only a single parameter has been identified, more complex tasks concern the si-
multaneous identification of the higher number of unknown parameters. At the stage of numerical
modelling, the finite difference method for non-linear parabolic equations has been applied [1].
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2. DIRECT PROBLEM

The energy equation describing the casting solidification is of the form [1, 2, 8]

x ∈ Ω : c(T )
∂T (x, t)

∂t
= ∇

(

λ(T )∇T (x, t)
)

+ L
∂fS(x, t)

∂t
, (1)

where Ω is a casting domain, c(T ) is a volumetric specific heat, λ(T ) is a thermal conductivity, L
is a volumetric latent heat, fS is a volumetric solid state fraction in the neighborhood of the point
considered, T , x = x1, x2, t denote the temperature, geometrical co-ordinates and time.

If one assumes the constant value of thermal conductivity λ of casting material, then Eq. (1) can
be expressed as follows

x ∈ Ω : c(T )
∂T (x, t)

∂t
= λ∇2T (x, t) + L

∂fS(x, t)

∂t
. (2)

In the case of typical macro models (e.g. the one domain approach [1, 10, 16], one assumes the
knowledge of temperature-dependent function fS(T ) in the mushy zone T ∈ [TS, TL] sub-domain
(TS and TL are the temperatures corresponding to the end and beginning of alloy solidification) and
then

∂fS(x, t)

∂t
=

dfS(T )

dT

∂T (x, t)

∂t
. (3)

So, Eq. (1) takes the form

x ∈ Ω : C(T )
∂T (x, t)

∂t
= ∇

(

λ(T )∇T (x, t)
)

, (4)

where

C(T ) = c(T )− L
dfS(T )

dT
(5)

is called a substitute thermal capacity [1, 9, 18].
It is self-evident that for molten metal and solidified part of casting fS = 0, fS = 1, respec-

tively and then dfS/dT = 0. Summing up, Eq. (8) describes the thermal processes in the entire,
conventionally homogeneous, casting domain. The substitute thermal capacity can be written in
the form

C(T ) =











cL, T > TL,

cP − LdfS(T )
dT

, TS < T ≤ TL,

cS, T ≤ TS,

(6)

where cL, cS, cP = 0.5(cL + cS) are the constant volumetric specific heats of molten metal, solid
state and mushy zone subdomain.

In a case of cast iron solidification, the following approximation of substitute thermal capacity
can be taken into account (Fig. 1) [30, 31, 32]

C(T ) =



















cL, T > TL,
cL+cS

2 + Qaus

TL−TE
, TE < T ≤ TL,

cL+cS
2 + Qeu

TE−TS
, TS < T ≤ TE,

cS, T ≤ TS,

, (7)

where TE is the temperature corresponding to the beginning of eutectic crystallization, Qaus, Qeu are
the latent heats connected with the austenite and eutectic phases evolution. The energy equation
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Fig. 1. Substitute thermal capacity of cast iron

concerning the casting domain is supplemented by the equation determining heat transfer processes
in a mould

x ∈ Ωm : cm
∂Tm(x, t)

∂t
= λm∇

2Tm(x, t) (8)

where cm is the mould volumetric specific heat, λm is the mould thermal conductivity (parameters
cm, λm are assumed to be constant).

In the case of typical sand moulds on the contact surface between casting and mould, the conti-
nuity condition in the form

x ∈ Γc :

{

−λn · ∇T (x, t) = −λmn · ∇Tm(x, t),

T (x, t) = Tm(x, t)
(9)

can be accepted. On the external surface of the system, the Robin condition

x ∈ Γ0 : −λmn · ∇Tm(x, t) = α (Tm(x, t)− Ta) (10)

is given (α is the heat transfer coefficient, Ta is the ambient temperature).

For time t = 0, the initial condition

t = 0 : T (x, 0) = T0(x), Tm(x, 0) = Tm0(x) (11)

is also known.

As an example of direct problem solution, the thermal processes proceeding in the system, the
casting-mould system shown in Fig. 2 is analyzed. To obtain the numerical solution basing on
FDM, the domain considered was covered by regular mesh created by 25×15 nodes with constant
step h = 0.002m (Fig. 3), time step: ∆t = 0.1 s (this value assures the stability of explicit differential
scheme).

The following input data have been taken into account [30, 31]: λ = 30W/(mK), λm =
1W/(mK), cL = 5.88MJ/(m3 K), cS = 5.4MJ/(m3 K), Qaus = 923MJ/m3, Qeu = 994MJ/m3,
cm = 1.75MJ/(m3 K), pouring temperature T0 = 1300 ◦C, liquidus temperature TL = 1250 ◦C,
border temperature TE = 1160 ◦C, solidus temperature TE = 1110 ◦C, initial mould temperature
Tm0 = 20 ◦C. In Figs. 4 and 5 the temperature distributions in casting and mould for times 90 and
180 s are presented.
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Fig. 3. Discretization

Fig. 4. Temperature distribution in casting subdomain
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Fig. 5. Temperature distribution in mould subdomain

3. SENSITIVITY ANALYSIS

Sensitivity of temperature field with respect to parameter pe is defined in the following way

Ze(x, t) = lim
∆pe→0

T (x, t, p1, . . . , pe +∆pe, . . . , pE)− T (x, t, p1, . . . , pe, . . . , pE)

∆pe
(12)

this means

Ze(x, t) =
∂T (x, t, p1, . . . , pe, . . . , pE)

∂pe
(13)

The parameters pe correspond to thermophysical properties of material (parametric sensitivity anal-
ysis), coefficients appearing in boundary conditions (e.g. heat transfer coefficient, ambient tempera-
ture), border and initial temperatures etc. The knowledge of sensitivity Ue distribution gives (among
others) the information concerning the changes of local and temporary temperature due to pertur-
bation of the parameter pe – it results from the Taylor formula

T (x, t, p1, . . . , pe +∆pe, . . . , pE) = T (x, t, p1, . . . , pe, . . . , pE) + Ze(x, t)∆pe. (14)

The simplest way of sensitivity models construction is the differentiation of governing equations
creating the mathematical model of the process, considered with respect to distinguished parameter
pe (the direct approach [20, 25–29]).

To simplify the mathematical formulas we assume that the thermal conductivity of casting
material is a constant value (cm and λm are also constant) and then the differentiation of governing
equations presented in the previous chapter with respect to pe gives the following formulas

x ∈ Ω : C(T )
∂Ze(x, t)

∂t
= λ∇2Ze(x, t) +

∂λ

∂pe
∇2T (x, t)−

∂C(T )

∂pe

∂T (x, t)

∂t
,

x ∈ Ωm : cm
∂Zm e(x, t)

∂t
= λm∇

2Zm e(x, t) +
∂λm

∂pe
∇2T (x, t)−

∂cm
∂pe

∂Tm(x, t)

∂t
,

x ∈ Γc :







−λn · ∇Ze(x, t) = −λmn · ∇Zm e(x, t) −
∂λm

∂pe
n · Tm e(x, t) +

∂λ

∂pe
n · ∇T (x, t),

Ze(x, t) = Zm e(x, t),

x ∈ Γ0 : −n · ∇Tm e(x, t)− λmn · ∇Zm e(x, t) = α

(

Zm e(x, t)−
∂Ta

∂pe

)

,

t = 0 : Ze(x, 0) = 0, Zm e(x, 0) = 0,

(15)
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where

Ze(x, t) =
∂T (x, t)

∂pe
, Zm e(x, t) =

∂Tm(x, t)

∂pe
. (16)

One can see that the sensitivity model and the basic one are very close (system of two parabolic
equations supplemented by the similar boundary and initial conditions). This fact is essential for
numerical modelling of both problems. The sensitivity problem and the basic one are coupled and
the solution concerning Ze requires the knowledge of temperature distribution T (x, t).

As an example, in Figs. 6 and 7 the distribution of sensitivity functions ∂T/∂λm and ∂T/∂cm
for the task discussed in the previous chapter are shown.

Fig. 6. Distribution of function ∂T/∂λm for times 30 and 90 s

Fig. 7. Distribution of function ∂T/∂cm for times 30 and 90 s

4. OPTIMAL SENSORS LOCATION

A fundamental problem connected with identification of the solidification parameters is the selection
of sensors locations. On the one hand, the limited number of measurement points in the domain
considered should be taken into account; on the other hand, the best estimators of solidification
parameters are expected. Usually, the location of sensors is determined by physical conditions and



Identification of solidification process parameters 65

by intuition. The other approach consists in application of the efficient numerical algorithms of
optimum experimental design. These algorithms usually base on the Fisher Information Matrix,
and A-optimality or D-optimality criterions [33–35] are generalized here to the unsteady problems.

The unknown parameters will be denoted by pe, e = 1, 2, . . . , E. For example, if the thermophysi-
cal parameters of mould should be identified, then p1 = λm corresponds to the thermal conductivity
of mould, p2 = cm corresponds to the mould volumetric specific heat and E = 2. If the aim of con-
siderations is connected with the estimation of substitute thermal capacity (cf. Eq. 7) then p1 = cL,
p2 = cS, p3 = Qeu, p4 = Qaus and E = 4.

The unknown parameters can be identified on the basis of temperature measurements at the
points xi, i = 1, 2, . . . ,M from casting and/or mould sub-domain:

T f
d i = Td(x

i, tf ), f = 1, 2, . . . , F, (17)

where tf = f∆t and ∆t is the time step.
As it was mentioned above, a fundamental problem is the selection of sensors location. The ad-

ditional problem is connected with determination of sufficient sensors number. It should be pointed
out that the number of sensors should be greater or equal to the number of identified parameters
(M ≥ E). Majority of the methods assuring the best location of sensors (thermocouples) bases on
the Fisher Information Matrix [33]. To construct this matrix in the case of unsteady heat transfer,
the following sensitivity coefficients should be determined:

Zf
i e =

∂T
(

xi, tf , p01, . . . , p
0
e, . . . , p

0
E

)

∂p0e
, e = 1, 2, . . . , E, (18)

where p0e are the a priori estimates of the parameters pe available, e.g. from the preliminary exper-
iments.

The following matrix is constructed:

Z =









Z1
i 1 Z1

i 2 . . . Z1
i E

Z2
i 1 Z2

i 2 . . . Z2
i E

. . . . . . . . . . . .

ZF
i 1 ZF

i 2 . . . ZF
iE









. (19)

It is easy to check that the product of transpose of a matrix Z
T
(

xi
)

and matrix Z
(

xi
)

equals

Z
T
(

xi
)

Z
(

xi
)

=























F
∑

f=1

(

Zf
i 1

)2 F
∑

f=1

Zf
i 1Z

f
i 2 . . .

F
∑

f=1

Zf
i 1Z

f
iE

F
∑

f=1

Zf
i 1Z

f
i 2

F
∑

f=1

(

Zf
i 2

)2
. . .

F
∑

f=1

Zf
i 2Z

f
iE

. . . . . . . . . . . .
F
∑

f=1

Zf
i 1Z

f
iE

F
∑

f=1

Zf
i 2Z

f
iE . . .

F
∑

f=1

(

Zf
iE

)2























. (20)

The Fisher Information Matrix is the following [33, 35]

F (w1, w2, . . . , wM ) =

M
∑

i=1

wiZ
T
(

xi
)

Z
(

xi
)

, (21)

where w1, w2, . . . , wM are the weights connected with the points xi; additionally 0 ≤ wi ≤ 1,
i = 1, 2, . . . ,M and

M
∑

i=1

wi = 1. (22)
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After the mathematical manipulations, the FIM takes a form

F (w1, . . . , wm) =























M
∑

i=1
wi

F
∑

f=1

(

Zf
i 1

)2 M
∑

i=1
wi

F
∑

f=1

Zf
i 1Z

f
i 2 . . .

M
∑

i=1
wi

F
∑

f=1

Zf
i 1Z

f
iE

M
∑

i=1
wi

F
∑

f=1

Zf
i 1Z

f
i 2

M
∑

i=1
wi

F
∑

f=1

(

Zf
i 2

)2
. . .

M
∑

i=1
wi

F
∑

f=1

Zf
i 2Z

f
iE

. . . . . . . . . . . .
M
∑

i=1
wi

F
∑

f=1

Zf
i 1Z

f
iE

M
∑

i=1
wi

F
∑

f=1

Zf
i 2Z

f
iE . . .

M
∑

i=1
wi

F
∑

f=1

(

Zf
iE

)2























. (23)

Different criteria of optimality can be taken into account [33]. One of them is the A-optimality
which is connected with minimization of the trace of information matrix (23). The other is the D-
optimality criterion depending on the maximization of the determinant of the information matrix
(23).

Using A-optimality criterion, the following problem should be solved

S(w1, w2, . . . , wM ) = trF−1(w1, w2, . . . , wM )→ min,

0 ≤ wi ≤ 1, i = 1, 2, . . . ,M,

M
∑

i=1

wi = 1.

(24)

If the D-optimality criterion is applied, then the problem has the form

S(w1, w2, . . . , wM ) = detF(w1, w2, . . . , wM )→ max,

0 ≤ wi ≤ 1, i = 1, 2, . . . ,M,

M
∑

i=1

wi = 1.

(25)

So, if we consider a set of points X = {x1, x2, . . . , xM} at which measurements may be taken, the
practical design problem consists in selecting of the corresponding weights w1, w2, . . . , wM which
define the best experimental conditions.

In the paper, a simpler algorithm (from the numerical point of view) is proposed [36, 37]. Let
X denote the set of possible sensors locations X = {x1, x2, . . . , xM} and let N be the number of
sensors. For each point xi, i = 1, 2, . . . ,M the sensitivity coefficients (18) are calculated [38].

As previously, for the point considered xi the matrix Z
(

xi
)

is constructed (cf. Eq. 19).

If {xi 1, xi 2, . . . , xi N} denotes the optional subset of set X then the number of possibilities is
equal to CM

N (number of combinations without repetitions). For every combination the following
matrix is defined

Z
(

xi 1, xi 2, . . . , xi N
)

=





Z
(

xi 1
)

Z
(

xi 2
)

Z
(

xi N
)



 . (26)

In the case considered, the Fisher Information Matrix has the form

F
(

xi 1, xi 2, . . . , xi N
)

= Z
T
(

xi 1, xi 2, . . . , xi N
)

Z
(

xi 1, xi 2, . . . , xi N
)

. (27)

D-optimality criterion used in the design of sensors location is the following

detF
(

xi 1
∗

, xi 2
∗

, . . . , xi N
∗

)

= max
(xi 1,xi 2,...,xiN )

detF
(

xi 1, xi 2, . . . , xi N
)

. (28)
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The points xi 1
∗

, xi 2
∗

, . . . , xi N
∗

correspond to the best positions of N sensors.
The algorithm is simple but time-consuming, because a considerable number of sensitivity prob-

lems must be solved.
The first example concerns the optimal position of two sensors used for estimation of mould

thermophysical parameters. The geometry of heterogeneous system casting-mould is shown in Fig. 2,
the possible sensors location correspond to the nodes resulting from domain discretization (Fig. 3),
but only the points from mould subdomain have been taken into account. Both the basic problem and
the sensitivity task have been solved using the explicit scheme of FDM. A priori estimates of mould
thermophysical parameters cm, λm correspond to the values c0m = 1MJ/(m3K), λ0

m = 0.5W/(mK).
The obtained optimal positions of the sensors are marked by A and B in Fig. 8.

The second example concerns the optimal position of three sensors used for simultaneous es-
timation of casting parameters, in particular Qaus and Qeu (cf. Eq. 7). The geometry of system
casting-mould is the same as previously, the possible sensors locations correspond to the FDM
nodes and entire domain has been taken into account. Apriori estimates of casting thermophysi-
cal parameters Qaus, Qeu correspond to the values Qaus = 0 and Qeu = 0. The obtained optimal
positions of the sensors are marked by C, D and E in Fig. 8.

Fig. 8. Optimal sensors position

5. INVERSE PROBLEM

To solve the inverse problem the additional information concerning the course of process analyzed

is necessary. So, let us assume that the values T f
d i at the set of points xi for times tf are known (cf.

Eq. (17)).
Now, the least squares criterion is applied [11–13]

S =
1

MF

M
∑

i=1

F
∑

j=1

(

T f
i − T f

d i

)2
, (29)

where T f
d i and T f

i = T
(

xi, tf
)

are the measured and estimated temperatures, respectively. The
estimated temperatures are obtained from the solution of direct problem (cf. Section 2) by using
the current available estimates for the unknown parameters.

In the case of typical gradient method application [12, 17, 24] the criterion (13) is differentiated
with respect to the unknown parameters pe, e = 1, 2, . . . , E, and next the necessary condition of
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optimum is used

∂S

∂pe
=

2

MF

M
∑

i=1

F
∑

j=1

(

T f
i − T f

d i

)(

Zf
i e

)k

= 0, (30)

where

(

Zf
i e

)k

=
∂T f

i

∂pe

∣

∣

∣

∣

∣

pe=pke

(31)

are the sensitivity coefficients, k is the number of iteration, p0e are the arbitrarily assumed values of
pe, while pke for k > 0 result from the previous iteration.

Function T f
i is expanded into a Taylor series about known values of pkl ; this means

T f
i =

(

T f
i

)k

+

E
∑

l=1

(

Zf
i l

)k

∆pkl , (32)

where

∆pkl = pk+1
l − pkl . (33)

Putting (32) into (30) one obtains (e = 1, 2, . . . , E)

M
∑

i=1

F
∑

f=1

E
∑

l=1

(

Zf
i l

)k (

Zf
i e

)k

∆pkl =

M
∑

i=1

F
∑

f=1

(

T f
d i −

(

T f
i

)k
)

(

Zf
i e

)k

. (34)

This system of equations allows to find the values of ∆pke and next, on the basis of formula

pk+1
e = pke +∆pke , (35)

the values of pk+1
e for e = 1, 2, . . . , E. The iteration process is stopped when the assumed number

of iterations K is achieved.
In Fig. 10 the cooling curves at the control points 1, 2, 3 from casting subdomain (cf. Fig. 9) are

shown, while Fig. 11 illustrates the heating curves at the points 4, 5, 6 from the mould subdomain.
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Using cooling (heating) curves presented above, the different inverse problems have been solved
[39]. The first solutions have been connected with the identification of a single parameter, among
others the estimation of thermal conductivity of mould or thermal conductivity of cast iron. For
the assumed initial values λ0

m, λ0 the iteration process was always convergent and the exact results
have been obtained after 5, 6 iterations [39].

The simultaneous identification of two parameters (cast iron and mould thermal conductivities)
has been also done. The testing computations showed that for initial values λ0 ∈ [5, 45], λ0

m ∈
[0.6, 1.9] when the all cooling (heating) curves from Figs. 10 and 11 have been taken into account,
the iteration process proved to be convergent and the real values of estimated parameters have been
obtained after 8–10 iterations [39].

Another example of inverse problem solution was associated with the simultaneous identification
of the latent heats Qaus, Qeu connected with the austenite and eutectic phases evolution (cf. Eq. (7)).
In this case the initial values constituting a start point for the iteration process have been assumed as
Q0

aus = 0, Q0
eu = 0. Figure 12 presents the inverse problem solution obtained using the cooling curves

at the points 1, 2, 3 (Figs. 9 and 10), while Fig.13 presents the solution using the cooling curves at
the optimal points C, D, E (Fig. 8). Comparison of these results confirms that the optimal sensors
location assures better estimation of unknown parameters. The iteration process is convergent and
the number of iterations is not high.
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The next inverse problem has been connected with the simultaneous identification of mould
parameters. This means the thermal conductivity λm and the volumetric specific heat cm.

This problem has been solved using optimal sensors location (points A and B in Fig. 8) under
the assumption that λ0

m = 0.5W/(mK) and c0m = 1MJ/(m3K). The results of identification are
presented in Fig. 14. It is seen that the iteration process is convergent and the number of iterations
is very small.

It is possible to identify simultaneously a greater number of parameters [31, 39]. As an example,
the estimation of three parameters concerning subdomain casting is presented. On the basis of
cooling curves shown in Fig. 10, the simultaneous identification of latent heats Qaus, Qeu and
thermal conductivity λ have been done – Fig. 15. In this case the number of iterations is greater
and the oscillations appear in the obtained solution, but the final results of identification are still
correct.
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Fig. 15. Identification of Qaus, Qeu, λ

6. FINAL REMARKS

In the paper the new possibilities of numerical methods application in the thermal theory of foundry
processes are presented. The most valuable results concern the problems of optimum sensors loca-
tion. Transient and strongly nonlinear task is considered and it constitutes the essential generaliza-
tion of the algorithms discussed in literature. The simultaneous identification of greater number of
thermophysical parameters (both casting and mould are taken into account) was not, up to now,
realized. It turned out that this type of inverse problems can be also effectively solved.

In this paper the input data used for the parameters estimation result from the numerical solution
of direct problem. The next investigations should concern the application of real input data resulting
from the measurements done in the industrial conditions [40].
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