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This paper presents a method for a quick evaluation of stresses and displacements for elastostatic problems.
A set of polynomial Trefftz functions and a variational formulation are introduced for solving elastostatic
problems for simple star-shaped domains. It is shown, through examples, that this approximation allows
the computation of the interior large wavelength effects. By a procedure for coupling separate domains,
this method is extended to more complex structures, which is a natural extension of the above variational
formulation. A discretization of the structure into large substructures, an easy to use and quick computa-
tion of the interior solution justify that this method can be termed “simplified”. Comparisons with other
similar methods are also shown.

1. INTRODUCTION

Up until now, structural analysis has used the Finite Element Method (FEM) [18], or the Boundary
Element Method (BEM) [2]. These approaches can solve most problems, but they can be time
consuming in analyzing very complex structures. There are many situations, such as optimization
processes of machine pieces, where a less precise but faster analysis is sufficient. Between FEM and
elementary analytical techniques, such as Strength of Materials, methods exist, which can be termed
“simplified” in that they make it possible for stresses and displacements to be evaluated quickly
and accurately. These methods, less precise than FEM or BEM, make use of some knowledge of
the exact solution to the problem.

As one of these methods, the simplified approach presented herein is a Trefftz method that allows
the computation of large wavelength effects: in elastostatic problems, stresses vary only slightly
inside a massive body. The short wavelength effects, which appear only around the edges, can
be calculated in a subsequent step. However, very often in the preliminary planning of engineering
works, the computation of edge effects is either not necessary (optimization of the structure stiffness,
for example) or not possible (the geometry of the structure is not precisely defined)

The class of Trefftz methods is based on the existence of complete systems of non-singular
displacement solutions which fulfill a priori the governing differential equation of the problem [5-7].
There are several alternative variational formulations of a given problem [10,11].

In our approach, the approximation is built from the mathematical structure of the solutions.
This approximation, using Trefftz functions, is representative of the interior effect. A variational
formulation for a simple domain, which is consistent with this approximation and differs from the
classical ones used in Trefftz methods [16,17], is then introduced. It should be noted that this
formulation can be used for ill posed problems, where prescribed displacements and forces are
given on the same boundary. The extension to more complex structures is possible by using a
direct coupling substructuring technique.
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2. TREFFTZ APPROXIMATION

The objective herein is the construction of a set of interpolation functions representative of the
interior effect. The following results are obtained from the study of the mathematical structure of
the solutions for star-shaped domains.

The elasticity problem, where body forces are equal to zero, is written as follows:

To find u displacement field, such that:

dive(u) =0 in Q,

u=uy on 09, 0
o(u)n =f, on 0942,
o(u) = Ke(u),

where displacements uy and forces f; are prescribed on 9, and 9,2, respectively. K and €(u) are
the elastic tensor and the strain tensor. This problem has a unique solution when u, and f; satisfy
the classical regularity conditions [4]. By using suitable coordinates and variables, the elasticity
problem for a star-shaped domain is replaced by a fictitious straight semi-infinite elastic beam
problem [9,12], to which results deduced from Saint-Venant’s principle are applied [13,14]. For star-
shaped domains, the study of the mathematical structure of the solution favors a representation of
the solution using polynomials with respect to the z, y and z coordinates and fulfilling the internal
equilibrium equations.

We note: U, = {u finite energy displacements, divKe(u) = 0}.

It can be shown that, for inner points of the domain, a good approximation of the displacement
solution u is obtained with polynomials belonging to the following finite-dimensioned subspace:

UP = {u polynomial of degree < p |z, divKe(u) = 0}. (2)

These Trefftz functions are representative of the interior effect. Similar results have been obtained
for plates in the framework of the Kirchhoff-Love theory [8].

3. VARIATIONAL FORMULATION FOR A SIMPLE DOMAIN
3.1. Problem formulation

A variational formulation is introduced, which is consistent with the above approximation. This
formulation will take the boundary conditions into account. The problem (1) is replaced by an
equivalent formulation [12] which can be written as:

To find u belonging to U, such that:

VYu* € U, o(u)n-(u—uy)dl' + u* - (on—f£;)dI' =0, (3)
81Q 62Q
where n is the outward unit vector normal to 992, o(u) = Ke(u).

Let u, be the solution to (1), €, = e(u,), o, = Ke(u,). It is clear that u, is a solution to (3).
Thus, to demonstrate the equivalence with (1), it suffices to show the uniqueness of the solution.
To this end, two solutions u; and us are considered. The difference u = u; — uy belongs to U, and
solves the following problem deduced from (3), with ug = 0 and f; = 0:

Yu* € U, o(u)n-udl + u* - o(undl'=0. (4)
EXy) 8,9
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For u* = u and by using Stokes’ formula, (4) gives:
/ Trle(wKe(w)] d2 =0 & e(u)=0.
Q

If €(u) is zero, u is a rigid body displacement u = u(o) + w A OM. Relation (4) is then written as
follows:

Vu* € Ug, u(o)- / o(u )ndl +w- OM A o(u*)ndl’ = 0.
0N 1

If the area of 0,1 is different from zero or different from the area of 92, this relation gives u(o) = 0
and w = 0, thus the solution is unique. In finite dimension, the approximation consists of replacing
U. by the subset UP. As with problem (3), the uniqueness of stresses is obtained. In order to
demonstrate the uniqueness of displacements, it is necessary that the above relation (with U?)
yield u(o) = 0 and w = 0. This is the case if the number of equations is sufficient. This step
influences the choice of UP and depends on the type of structures being studied.

Remarks:

e This formulation is not derived from a minimisation or saddle-point problem because it is not
symmetric: when Stokes’ formula is used, problem (3), with U?, can be written as:

To find u belonging to U? such that: Vu* € U?,

/Tr u)Ke(u")] dQ—I—/ )n-u—u*-o(u)n) dI'

= fg-urdl' + ug-o(u*)ndl'.
6QQ 619

e The strain energy can be written in the following simple form (with u* = %u):

l/ Tr [e(uy)Ke(u,)] dQ = L o(uy)n-ugdll + l/ u, - fydI". (6)
2 Ja 2 Jan 2 Jo,n

e It is possible to extend the formulation in (3) to other linear boundary conditions. For example,
mixed-boundary conditions on 9Q = 9;QUd,QUS can be considered: prescribed displacement
on 0,5, prescribed load on 3,9 and bilateral contact without friction on 03€2. The boundary
conditions on 032 are:

u-n=yvy

Ilo(u) -n=T,; where II is the projection’s operator on the tangent plane to J32.

The extension of (3) for these boundary conditions is:

To find u belonging to U, such that Yu* € U,,

/alna'(u*) ‘n-(u—uy) dl’ +/ u* - (o(u*)n—fy) dl (7)

2 Q2

+/ [o(u)n: (-0 —ug) + u* - (Ho(u)n — Ty)] dT = 0.
030

As with problem (3), equivalence with the reference problem has been obtained.
This formulation can be used for ill posed problems, where prescribed displacements and forces
are given on the same boundary. Let displacement u and force o(u)n both be prescribed on the
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some boundary 03(2 : u = V; and o(u)n = T/,. For these boundary conditions, the problem can
be written as:

To find u belonging to U, such that Yu* € U,
/ o(u)n- (u—uy) dI' + u* - (o(u*)n—fy) dl
N 9202

1 (8)

+ [c(u*)n-(u—-Vy) +u*- (o(u)n—T,)] d' = 0.

2 930

Problem (8) has, at most, one solution provided one exists for adequate boundary conditions.

3.2. Numerical implementation

For plane stress, we use the polynomial function with sets of degree lower than or equal to 3 which
fulfill the governing differential equations (v denotes Poisson’s ratio):

14
u= z:aiuz , a; €R
=1

with u* € U3 = {u polynomial of degree < 3, divKe (u) =0}, dimU3 = 14.
The set of vectors of degree n’, n>1, representing the equilibrium equations is of dimension 4.
The set of polynomial functions is:

U3 0 1 Y Y & 0 z? —y?
e " 1 ) 0 b —1 7 T ) O ) y ) _2xy 7
—vz? 2zy —2zy z3 — 3zy? (9)
2zy |’ —vy?—-2% ('] v?2—-22 ('] ¥ -32% [’
y® — 322y vz3 + 3zy? B+v)y3 -3(1-v)z%y
—z3 4+ 3zy? ('] - =322y [’ (3+v)z® —3(1 —v)xy? )

The variational formulation (5) leads to a system of algebraic equations for the unknown coef-
ficients a;:

Ka=s

where

Kk — /E'I‘r [E (uk) Ke (ul)] dQ + A (O'(uk)n cul —uf. a-(ul)n) dar, "
10
s = £y u dI‘+/ ug - o(u)ndr.
025 0T

The symbolic mathematical software Macsyma [15] has been used to derive the expressions of
the various matrices associated with the polynomial interpolation functions and with the variational
formulation. For example:

ocu)n-u!' —u. g@u)n=(r-1) (nyy4 — dngzy® + Snyat — dngady + 6nya:2y2)
and integrals of the polynomials y*, zy3, ... over the boundary ,Q = [A, B] are written in terms
of (A, B) coordinates.
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4. STUDY OF THE SOLUTIONS FOR A SIMPLE DOMAIN
4.1. Comparison with a finite element result

A square plate is chosen as numerical example. The boundary is clamped at y = 0, and the
displacement u - z on I' is prescribed (Fig. 1), u-y = 0 on I'. The reference solution is obtained
from a finite element analysis, and von Mises’s equivalent stresses ¢* are plotted:

. 1/2
o= (a?m + azy — OgzOyy + 3agy) ;

Let o}, be the finite element solution (4-node quadrilateral elements, 1600 elements, Fig. 2) and
0%, be the equivalent stress obtained from our simplified method (Fig. 3). A comparison between
these results is given (Fig. 4) by plotting 67, with 6 = |04, — 0f| /oave Where o3}, corresponds to
the average value of the finite element equivalent stress. For this example, o5, = 1000 Mpa. The

lightest zone corresponds to an error of less than 20 per cent; a high level of agreement is obtained
inside the plate, but the stress concentrations along the outer edge have been underestimated.
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Fig. 1. Plate with prescribed displacements Fig. 2. Equivalent stress obtained from FEM: o,
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Fig. 3. Equivalent stress obtained from our Fig. 4. Comparison between FEM and the
simplified method: o5y, simplified method: &1
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As a second example, the square plate is clamped at y = 0 and uniformly loaded along I' by
a shear stress (Fig. 5). In order to simplify the presentation, only the difference 57 between finite
element and our simplified method solution is plotted (Fig. 6). The results are correct inside the
structure (the lightest zone corresponds to an error of less than 10 per cent). These two examples
show that our method yielded an accurate computation of the interior effect.
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Fig. 5. Square with shear stress

o

4.2. Comparison with other formulations using Trefftz functions

In our approach, the approximation using Trefftz functions is representative of the interior effect.
A variational formulation for a simple domain, which is consistent with this approximation and
differs from the classical ones used in Trefftz methods [16,17], has been introduced.

There are several alternative variational formulations of the elastostatic problem used in Trefftz
methods. Among these are two formulations used for one-domain structures, without substructuring
or finite element discretization. These other standard symmetric formulations are compared with
our formulation (3), by using the same set of Trefftz functions (9).

The first corresponds to a least-square fit and can be written as:

To find u belonging to U, such that Yu* € U, :
52/ u - (u—uy) dI‘+/ o(u*)n - (o(u)n — £3) dT = 0, (11)
n N 9202

where 3 is an arbitrary coefficient. For this symmetric formulation, a mechanical interpretation
does not exist.
A more physically reasonable formulation, deduced from the potential energy, can be used:

To find u belonging to U, such that Yu* € U :

/ o(u)n: (u—uy) dl' — u* - (o(un—1fy) dI' =0. (12)
"N 920

This bilinear form, although symmetric, is not definite positive, and this leads in practice to nu-
merical difficulties.

Let the square plate with prescribed displacement be u -z on I' (Fig. 1). To compare our
formulation with the two standard symmetric forms (11) and (12), the equivalent stresses obtained
are plotted: o7, solution of formulation (11) (Fig. 7), and o}, solution (12) (Fig. 8). The comparison
with the finite element solution is performed by plotting 5 (Fig. 9) and &3 (Fig. 10), where:
gy = ’a{s — a;e‘ [Oves and 63 = la;e — a}el /ok,e- In formulation (11), B is equal to the Young’s
Modulus squared divided by the length of I'. In this example, we can see that the solution obtained
from the formulation corresponding to a least-square fit (11) is correct (Figs. 7 and 9), but this is
not the case when using the formulation deduced from the potential energy (12) (Figs. 8 and 10).
For the second example, where the square plate is clamped at y = 0 and uniformly loaded along I"
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by a shear stress (Fig. 5), we plot only &3 in order to simplify the presentation. As opposed to the
first example, the result 64 obtained from the least-square fit is not correct (Fig. 11), while result

a3 obtained from the potential energy is correct.
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More generally, for all tested simple examples, our simplified method gives a correct result &7 of
less than or equal to 20 per cent inside the structure; this is not always the case for the two classical
forms, (11) and (12). Our approximation enables a more accurate computation of the interior long
wavelength effects.

5. EXTENSION TO MULTI-DOMAIN FORMULATIONS

To extend this method to more complex structures, the whole domain is subdivided into subdo-
mains. In this section, a direct coupling of subdomains is used. It is a natural extension of the above
single-structure variational formulation (Section 3). An alternative to this method is described in
[9]. The domain € is subdivided into N substructures £;; let Q; be a substructure which has a
common interface ¥;; with ;. The elasticity problem can be written as:

To find u such that, with u; its restriction in $;:

i) divKe(u;) =0 in-§k,
ii) u; = Ug; on 819,‘, g (ui) n; = fi on 829,‘, (13)
lll) u; = uy on Eij .

iv) o(w)n;+o(uj)n;=0 on %;;.

Relations iii) and iv) are the continuity conditions along X;; (the normals n; and n; are opposite).
In order to take the boundary conditions ii) and the continuity conditions iii) and iv) along X;;
into account at the same time, a generalised version of the one-domain formulation can be written
as:

To find u, with u; € U, its restriction in §;, such that Yu* € U,,

/ o(u*)n: (u;—ug) dI' + u* - (o(uj)n;,—fg) dT'
010

= (14)
# / uj)n; + a(u;‘-)nj) + o(u])n; - (ui—uj)} ds =0.
] i

With this choice, it is clear that the solution to problem (13) is also a solution to (14). Then,
to demonstrate the equivalence between (14) and (3), showing the uniqueness of the solution is
sufficient. Let two solutions be u’ and u”, with u} and u] their restrictions in §; , the difference
u; = u} —u} belongs to U, and solves problem (14) with ug; = 0, fz; = 0. For u* = u; and by using
Stokes’ formula, (14) gives:

/Q,» Tr[ (uz)K o(u;) ] Z / (u; - 1).J n;+u;-o o(u;)n;) dS. (15)

By summing (15) over all the substructures €;, all the right-hand terms cancel and the following
result is obtained:

Z/ o(w)K ' o(u)] d2 =0 (16)

which implies: o(u;) = 0 in §2; Vi, and the problem (14) (with ug; = 0, £y = 0) can be written as:
in ;,u; € S (rigid body displacement space) and Yu* € U,:

/alQ ou* nuzdl‘+2/ (i — u;)dS = 0. (17)
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The solution to (17) is:

u; = 0 in Q;, if the area of 0,12 is different from zero,

u; = uy, if the area of 9, is equal to zero.

As with the single-structure formulation, the equilibrium strain energy can be written in the
simple form (6), and this variational formulation leads to a non-symmetric linear system. This latter

point is not a drawback herein, because the structure has been subdivided into a small number of
substructures.

6. STUDY OF THE SOLUTION FOR COMPLEX STRUCTURES
6.1. Finite dimension study

The approximation consists of replacing, in (14), U, by the subset UP. As with the above problem,
we obtain uniqueness of stresses. To demonstrate the uniqueness of displacement from (17), a
sufficient number of basic functions is required. In the two-dimensional case, it has been shown (8]
that subset U? is sufficient.

Let the polynomial expansion of the displacement u; in each ; be:

14
k.. k
u; = Z a; U(Z) ’
k=1

where uﬁ.) are the basic functions in €; which belong to U3 and a¥ are the unknown coefficients.
For each §2;, problem (14) takes the following form:

Kiyai + ) Kjaj =sa), (18)
J#i
where a; = (a!,a?,...,a!)" and:

K(kili) g /alni U(uﬁ))ni ‘ uéi) ke /azm ufi) ' "(“l(i))ni dr

1
t2, 2 /z {u?") ' ”(“l(i))ni + U(ufz'))ni . ul(i)} ds,
(i5)
kl k ! " .

3@.) = / O'(uf:i))ni ~ug dl + / ll?i) £y dl.
019 029

For the whole structure, the linear system (18) leads to:
Ka=s.

From matrix K;; and K(;), the assembling process gives the band matrix K, a is the set of

i)y
unknown vectors (aj,ap,...,ay)T for N substructures and s = (s@)>S(2)»- - - ,S(N))T. As regards
numerical implementation, the symbolic mathematics software Macsyma was used to derive the
expressions of the various matrices associated with the polynomial trial functions and with the
variational formulations. The integrals of the polynomials over a boundary are explicit. Therefore,
there are few constraints on the shapes of the single domains (polygonal in shape) and on the

boundary conditions (several types of conditions on different parts of the boundary of a domain).
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6.2. Comparison with a finite element result

As an example, the structure shown in Fig. 12 is clamped on y = 0, and the displacement wu,
(along y) on I' is prescribed. The equivalent stress o, obtained is compared with a finite element
analysis of,, and given in Fig. 13. In order to show the efficiency of the substructuring method,
the structure is first a single element (without substructuring techniques). The obtained result
07 = |04 — 0t/ Onve 18 given in Fig. 14. It is clear that the difference between our solution and the
finite element solution can be large inside the structure (6] greater than 25 per cent). To improve
the solution, the same structure is divided into three substructures (dotted lines in Fig. 12); the
resulting equivalent stress is given in Fig. 15 and &7 in Fig. 16. A very good agreement is obtained
inside the structure, but there are discontinuities through the interfaces between elements. The
displacement and stress continuity conditions have not a priori been fulfilled at the interfaces, and
discontinuities of solutions appear along the interfaces.

u v le2
YAA PPN

? y
° 77}////////////

Fig. 12. Example using the substructuring method

6.3. Comparison with an exact solution

To study the behaviour of the simplified method, comparison with an exact solution is important.
Let a given displacement vector u be defined on the structure §2. @ belongs to the finite dimension
space UN. Let iy on 09 and f; on 0,9 be the boundary conditions associated with the exact
solution .

Our problem then is:

To find u, with w; € U? its restriction in ;, such that, Yu* € U?,
e €

: / o (i) d ¢ / (o (ui)mi—£45) dT "
+) 3 / {u* (o(u; n,+0'(uj)n])+0'( n; - (u; —uy)} dS =0.
J#i

The solution will be sought within the finite dimension space U?. If p > N, then U? includes
the solution; it is the unique solution to problem (19). For p < N, @ cannot be the solution; in this
case, the solution uge to (19) is compared to the exact solution .

Let us consider a square plate. For plane stresses, we use the polynomial function with sets of
degree lower than or equal to 3 which fulfill the governing differential equations U? (defined by (9)).
Define a displacement solution @ belonging to UZ:

1 (1-v%)(z* — 3z°y?)
TR { 4(1 = v)zyd + (2(1 + v)? — 8)z3y } ' @0
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Fig. 13. Equivalent stress obtained from FEM: o, Fig. 14. Comparison to the simplified method,
without substructuring: &7
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Fig. 15. Equivalent stress obtained from the Fig. 16. Comparison to the simplified method,
substructuring method: o5y, with substructuring: 71

Obtained stresses are:

— E (2 +v)z® — 3zy? —3(2 +v)z?y + 33 (1)
1+v) | —32+v)a2y+y® —(3+2v)z +3(2+v)zy’ {

From @ and o (1), boundary conditions are defined as:
on the side OA (z =0,0<y<1):03=0
E -32+v)r?+1

on the side AB (0 <z <1,y =1):fa = 7 ~(3+2v)2® +3(2+ )z

| - E (2+V)_3y2
onthe51deBC(x=1,0§y51):fdz—(1+V) 32+ v)y + 93 ,
= v)yr+y

. 0
onthesideCO(Oﬁmsl’yzo):f‘w:(lfv) (3 + 2v)a?
—(3+2v)x
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Fig. 17. Boundary conditions for exact solution

From these boundary conditions, the approached solution us, belonging to U3 is calculated
by using the variational formulation (3), without substructuring. To compare the exact solution
o = o(ua) given by (21) with the approached solution, the following error measure is used:

o—0 1o—-6
2o Illo-0) K™ (o a>]%/ﬂ’1‘r[(a+&)K”1(a+&)]dQ. (22)

Results are given in (18). A very high level of agreement is obtained inside the plate, but the
stress concentration along the outer edge has been underestimated. The numerical value of the

global error measure, defined by e? = % / e2dQ, is e = 0.064.
Q

Fig. 18. Error measure, for a simple structure, between approached and exact solutions
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To study the multi-domain approach, the structure is divided into 4 and 16 substructures;
formulation (19) is used. The error between the exact and the approached solutions, obtained with
4 substructures, is given in Fig. 19. It is clear that the solution computed with this partition is more
accurate than the previous one; the error level has been divided by 10. For this substructuring,
the global error measure gives e = 0.0081. We note that the solution is more accurate inside
each substructure than along boundaries or interfaces between elements. The computation of the
approached solution, by using 16 substructures, gives a global error e = 0.00097. These results show
the convergence of the approached solution on the exact solution; the error is divided by 8 at each
subdivision.

Fig. 19. Error measure, with 4 substructures, between approached and exact solutions

CONCLUSIONS

The simplified method presented herein allows a quick and correct approximation of the long wave-
length effects in structures. It combines a Trefftz approximation with an original non-symmetric
formulation. Comparison with other formulations proves the efficiency of the proposed approach.
This study has been extended to plate structures for the computation of tools for sheet metal form-
ing used in automotive industries. To determine small wavelength effects, which appear around the
edges, another study [3] has been conducted through a post-processing approach using a technique
initiated in [1].
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