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The numerical solution of Helmholtz’ equation at large wavenumber is very expensive if attempted by
»traditional” discretisation methods (FDM, standard Galerkin FEM). For reliable results, the mesh has
to be very fine. The bad performance of the traditional FEM for Helmholtz problems can be related to the
deterioration of stability of the Helmholtz differential operator at high wavenumber. As an alternative,
several non-standard FEM have been proposed in the literature. In these methods, stabilisation is either
attempted directly by modification of the differential operator or indirectly, via improvement of approx-
imability by the incorporation of particular solutions into the trial space of the FEM. It can be shown
that the increase in approximability can make up for the stability loss, thus improving significantly the
convergence behavior of the knowledge based FEM compared to the standard approach. In our paper, we
refer recent results on stability and convergence of h- and h-p-Galerkin (“standard”) FEM for Helmholtz
problems. We then review, under the label of “knowledge-based” FEM, several approaches of stabilised
FEM as well as high-approximation methods like the Partition of Unity and the Trefftz method. The
performance of the methods is compared on a two-dimensional model problem.

1. INTRODUCTION

Due to the oscillatory character of the propagating solutions, reliable numerical methods for
Helmholtz’ equation

Au+Kku=0

become prohibitively expensive as wavenumber k grows. It is known from computational practice
8,9, 15, 12] that the mesh has to be very fine for convergence of standard piecewise linear Galerkin
FEM or FDM. In view of this, various methods have been designed that incorporate specific infor-
mation about the differential operator or the exact solution (“knowledge”) into the approximate
solution. In this paper, we consider several of these methods on the background of the h- and
h-p-FEM for Helmholtz problems.

Our analysis in [15, 17, 18] has shown that the poor performance of standard FEM at large
wavenumber can be quantified by the pollution effect in the finite element error. The pollution term
is related to the deterioration of stability of the Helmholtz variational form at large wavenumber.

It is well known that both stability and approximability are necessary conditions for convergence
of any numerical method for PDE. Generally speaking, we approximate the solution u € V of

YoeV: B(u,v) = F(v) (1)
by restricting the problem (1) to a subspace V;, C V. Here, h is a parameter that is inversely
proportional to the dimension of V. We measure approzimability of the method in terms of the

minimal error with which the solution u (if it were known) can be approximated by functions
X € V3, defining

ete 0L llu = xlI- (2)
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This error is related only to the spaces V and V}; it does not depend on the particular problem to
solve, i.e., on the variational form B. If the infimum in (2) is reached on a unique function x* € V},
then this function is called the best approzimation of u in V},.

On the other hand, the approximate solution of (1) is the function up, € V}, for which B(up,v;) =
F(vp) holds for all v, € V},. We say that the numerical method is optimal if up, = x*. Generally,
this is not the case. The relation

lu — unllv
Jé‘vf,, lu — xllv

depends, in general, on the variational form B, on the norm of V, the choice of the subspace and

also on the exact solution u. If there exists a maximal w.r. to u constant Cy = sup C then we have
ueVv

lu —upllv < Cs inf |lu—x|lv. _ (3)
XEVh

If, in addition, one can show that the stability constant C; that does not depend on h then approz-
imability inf |ju — x|| — 0 as h — 0 guarantees convergence ||u — uy|| — 0.

Note that the stability constant C; always depends on the variational form. If, for some particular
variational form, constant C; is very large, then convergence in practice (i.e., for finite h) will be
slow despite approximability. This is exactly the case for Helmholtz’ equation where C ~ k. From
(3) we see that one has two options to improve convergence. Firstly, modification of the variational
form with the goal to reduce the size of the stability constant or, secondly, the choice of the subspace
Vi such that the error of approximation is small enough to equilibrate the adverse effect of poor
stability (large Cs).

Methods of both kind have been proposed for the numerical solution of Helmholtz’ equation.
We treat these methods that employ specific information on the Helmholtz operator in the solution
process under the common notion of “knowledge-based” FEM.

In the stabilized FEM, one modifies the variational form (and, accordingly, the right hand side)
in such a way that the new variational form is coercive. The stabilized solution then satisfies (3)
with a constant C not growing with wavenumber k. The delicate point is to choose the stabilisation
term in such a way that it does not adversely influence the consistency of the method. We consider
here the Galerkin-Least Squares FEM [13] and the stabilized FEM introduced in (7, 2].

Alternatively, methods have been designed that incorporate analytical information on exact
solutions of Helmholtz’ equation to enhance approximability of the discrete subspace.

We show that the stabilized FEM of Babuska and Sauter can be interpreted as a Galerkin
FEM with analytical shape functions. However, this approach is confined to rectilinear meshes. An
efficient way to use the analytical solutions in the Galerkin FEM on general mesh has recently been
designed in the form of the Partition of unity method (PUM) [21]. Here, one uses standard piecewise
linear shape functions for geometric approximation on irregular mesh. The patch-functions form a
partition of unity that is overlayed with local approximating sets of particular solutions. Thus the
approximation properties of the FEM are significantly enhanced, retaining at the same time the
flexibility in shape approximation. Analytical solutions of the differential equation are traditionally
used in the Trefftz-method, where the unknown coefficients are resolved on the boundary of the
domain only (or, in addition, on the boundaries between superelements in the TFEM).

In this paper, we review the methods and compare their performance in numerical computations
for a 2D on a model problem. We choose the problem of [2] where we analyzed numerically the
various stabilized methods. The same problem was subsequently used in [22] to evaluate the PUM.

The paper is organized as follows. In Section 2, we use a simple one-dimensional model problem to
expose the specifics of approximability, stability and convergence of FEM for Helmholtz problems.
In Section 3, we elaborate on the application of the various methods in two dimensions. In Section 4,
we compare the numerical performance of the methods on a two-dimensional model problem. The
conclusions of the investigation are listed in Section 5.



Solution of Helmholtz problems by knowledge-based FEM 399

2. STANDARD AND KNOWLEDGE-BASED FEM ON A ONE-DIMENSIONAL EXAMPLE

We consider the following model problem:

2
)~ Kul@) = f@),  zeQ=(01) (4)

with boundary conditions

u(0) =0, 3—2(1) & z'k.u(l) =0.

This model problem has the essential properties (dependency on the physical parameter k and
radiation damping from the Sommerfeld-type condition at z = 1) of the higher-dimensional case.
We will thus be able to show some of the general numerical effects of the various FEM on the
most simple case. However, the model is very special for the knowledge-based approaches since the
fundamental system in 1D consists of only two linearly independent homogeneous solutions whereas
this system is infinite-dimensional in the general case. Still, the problem is well-suited to explain
the principal ideas on a simple example.

In discrete methods for Helmholtz’ equation, resolution of a wave by the mesh is a critical issue.
Consider a stationary sinusoidal wave u(z) of wavelength A = 27 /k, then the number

"Th

is called the resolution of the wave u(z) by a mesh of stepsize h. In the context of finite difference
or piecewise linear finite element methods, it is customary to call n = 2 the minimal resolution of
the wave. The value n = 10 [13], sometimes also n = 6 [9] is recommended as a “rule of thumb” in
computational practice. These recommendations are obvious for piecewise linear approximation. It
is, however, expected that the mesh-size could be increased for higher-order approximation, be it
by h-p-Galerkin or other methods. This increase of mesh-size and thus reduction in DOF should
also “make up” for the increased costs of development, computational implementation or evaluation
that come, in general, with the higher-order methods — see [17] for an analysis of computational
cost in h-p FEM.

2.1. Error estimates for h-p-FEM solutions to Helmholtz problems

To solve the model problem by a Galerkin FEM we start from the weak formulation

BG(ua U) == FG(U) ) (5)
where the sesquilinear form Bg is given by
B (u,v) = (u',v') = k*(u,v) — ik(u,0) (6)

and the right-hand side is
Fg(v) = (f,v). (7)
We use the notation of the L? inner product
1
(u, v) == / uddz
0
and

(u,v) = u(1)v(1).
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We define in the usual way the Sobolev spaces H*(f2), 2 := (0, 1) with the norms || - ||s. Specifically,
lullo = (u,u)/? is the L2norm and (u/,u)/? is the H'-seminorm which is norm on the subspace
V = {u € H(Q)|u(0) = 0} ¢ HY(Q). For f € L?*(Q), there exists a unique solution u of the
variational problem: Find u € V such that Bg(u,v) = Fg(v) for all v € V. This solution u lies in
the space H%(Q2) and solves the boundary value problem (4).

For the numerical solution, we introduce a FE-partition {A;}} of the interval Q into N subinter-
vals (elements) and define the mesh-size h = max; |A;|. The FE-solution is sought as a continuous
function uj that on each element can be written as a polynomial of order p and satisfies the essential
boundary condition at z = 0. These functions form a subspace V;, C V and the FE-solution is then
found from the variational problem: Find up € V} s.t. Bg(up,vy) = Fg(vy) for all v, € V.

We showed in [15] that, for the standard Galerkin FEM with piecewise linear approximation
(p=1),

(1h) the quasioptimal estimate

lu —up|1 < Cxiél‘I;h lu — xl1, (8)

where C' does not depend on k, h, holds only under the assumption that k%h < 1;

(2h) in general, i.e., with the ‘rule of thumb’ kh = const., the error bounds in H'-norm or L2-norm,
respectively, are

|lu — upl1
|uly

[l — un|
[l

< Cikh + Cyk®h?, (9)

IA

C3k*h%(1 + k). (10)

On the other hand, Eq. (8) yields for the relative error

B Rl o
|y

The comparison with Eq. (10) leads to the notion of numerical pollution introduced in [7]. The
second term of estimate (10) is called the pollution term of the FE-error for Helmholtz’ equation.
It has been shown in numerical experiments by several authors [8, 9, 15, 2, 12] that pollution
significantly increases the error of the finite element solution computed by the rule of thumb if
the wavenumber grows. Physically, this effect can be related to the phase lag of the FE-solution
(15, 18].

For piecewise polynomial approximation, it is shown in [17] that

(1p) the quasioptimal estimate (8) holds if k2h/p is small;
(2p) If hk < 7 and the solution u is sufficiently smooth then the relative error in H'-norm satisfies
—~ kh\P kh\ %
v = unply C (—) + Cok (—) . (11)
|ulx p p

Remark 1: From the well-known theory of h-p approximability, the error of best approximation
of any function u € H**'(Q) in the h-p subspaces is given by

. h\?
inf [ju— xJh < C (}—,) lll o1

for s < p. Taking the special case s = p and assuming that ||u||s+1/|lull1 ~ &° we see that the first
term on the rhs of (11) measures approximability. Approximability is thus improved by increasing
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p for fixed kh. The second term of the right hand side can be read as wavenumber times (error of
approximation) squared. Hence, in improving approximability by increasing p we decrease at the
same time the pollution term, i.e., correct the adverse effect of poor stability.

Remark 2: In the special case of the one-dimensional model problem, the analytical solutions
are {sinkz, cos kz}. This local basis can be considered as the limiting case p — oo of p-elements.
Looking under this aspect at estimate (11) we see that pollution becomes negligible for large p.
Indeed, k?h/p — 0 for any fixed h, k as p — oo. Hence we expect that, by using analytical solutions
as trial functions, the pollution effect is eliminated.

2.2. Stabilized FEM for Helmholtz’ equation

The pollution effect in the standard Galerkin FEM is related to the degrading stability of the
Helmholtz differential operator with growing k. The Babuska-Brezzi (BB-) constant of the varia-
tional form

B
v = inf sup 1B(u,v)| (u, v)|
ueV yev |u|1|v|1

is of order k=! — cf. [15, 11]. A standard corollary [1] then yields
luly < CE|Ifll-1,

where || - || -1 is the norm of the dual space. In particular, the FE-error solves the residual equation
and we have |e|; < Ck||r||-1, where 7 is the residual error, characterizing the quality of approxima-
tion. The estimate shows that the FE-error can be large for large k even if the optimal approximation
error is small. This observation has given rise to the idea of stabilization for Helmholtz problems.
We treat these ideas on the example of the Galerkin-Least Squares (12) method — see, e.g., [13].
In this method, we solve instead of the variational problem (5) the modified problem: Find u;, € V),
such that

Vop € Vi Bers(un,vn) = Fers(va) (12)
with

Bers(up,vp) = Ba(un,v) + 7 (Lup, Lop)g (13)
and the right-hand side is

Fgrs(v) = Fg(v) + 7 (f, Lvn)g (14)

where £ is the Helmholtz differential operator, 7 is a parameter yet to be determined and (+y+)q is the
reduced L? inner product where integration is carried out only on the element interiors. We remark
that the singularities in Luy, Lvp, at interelement boundaries are suppressed in the reduced inner
product. The goal is to make, by appropriate choice of parameter 7, the form Bgrs unconditionally
stable and thus to “circumvent the BB-condition”, i.e., to avoid the stability problems of the form
Bg as quantified by the BB-condition.

For a one-dimensional model problem similar to (4) it is shown in [13] that the choice

1 — coskh
(kh)? — 6—2
P 2 + coskh : (15)
k4 h2
leads to nodally exact solutions (using piecewise linear ansatz-functions for test and trial) for the
homogeneous difference equations obtained from (12) if f = 0. More precisely, it is shown that the
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solution of Eq. (12) coincides in the nodal points of a uniform infinite mesh (i.e., disregarding the
boundary conditions an 0 and 1) with an exact solution of Helmholtz equation (4). Consequently,
the stabilized FEM is not polluted in this case since the GLS-solution has no phase lag — [2]. The
error then satisfies the optimal estimate (8) for all k, h such that the mesh is at least minimally
resolving the exact wave.

Remark 3: It is essential that 7 is not selected too large. For instance, one could select 7 in such
a way that the stabilization term in all elements annihilates the mass matrix. While this would
certainly render a stable sesquilinear form the solution of the problem would converge to a solution
of the Poisson equation instead of Helmholtz’ equation.

Remark 4: The following simple argument shows where the condition on k?h is “hidden” in the ‘
GLS-FEM. Expanding the cosines in (15) into Taylor series we see that

h2 214
T=E+O(kh)

Since the Helmholtz operator £ is of order k2, the stabilizing term 7(Luy, Lup)g in (13) is of order
(k%h)?. Consequently, if k2h is small the form (12) can be considered identical to (5).

The parameter 7 in (15) is found from discrete Fourier analysis of the Helmholtz stiffness matrix.
A typical stencil of this matrix is

(2ag + 1uj—1 + 2(4ag — 1y + (2a¢ + 1)ujp (16)

with ag = (kh)?/12. It can be shown (see, e.g., [15]) that this stencil produces a FE-solution with
discrete wavenumber £ satisfying

1—4aG

kh = .
. 1+ 2aq

Hence replacing ag in (16) by a parameter agx such that

1—4aEX

kh =
coS T4 s

leads to a nodally exact discrete solution. On the other hand, the Galerkin-FEM discretisation of
stabilized Eq. (12) also yields stencils (16) only that ag is replaced by agrs := ag (1 — 7k?). Thus
we find the optimal 7 by putting agrs = agx.

A new stabilized method that leads to nodally exact solutions also on nonuniform mesh has
been proposed in [7]. In this generalized FEM, the nodal values of the approximate solution u, are
computed from the algebraic system

Gstabuh o3 Qstab(f) : (17)

where uy, is the vector of nodal values of the function uj on the (possibly non-uniform) mesh X,
the FE-stiffness matrix G2 is the triangular matrix defined by

( . sin k($i+1. - .’131'_1) if § 7,
sin(zj+1 — ;) sink(z; — z;-1)
k%h
Gis = —x | e it i=j, &
2tan > sin k|z; — x|
L 0 else
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and the mapping Q%2 is defined by

. k(Zm = Tm-1) [ f(z)dz
5 i+1 tapn —— S
P> e - (19)

2tan — m=i ITm — Tm-1 ITm — Tm—1
2

(Qstabf) i —

In [7], it is proven that the solution u; obtained from (17) is nodally exact for piecewise constant
data and that it is pollution-free for any data f € H'(2). We will show below that this stabilized
solution is equivalently obtained from a Galerkin FEM with analytical shape functions. This estab-
lishes an interesting connection between stabilization and improved approximation, both leading
to better (in this 1D case: optimal) convergence properties.

Consider the nodal functions ®; of the form

tgl) on Ai y
®; = tgi_l) on A1, (20)
0 else,

where the functions t1, 5 are shape functions satisfying the local BVP

" +k%=0 on A, (21)
with inhomogeneous local Dirichlet data

ti(zj—1) =1, ti(z;) =0 (22)
or

ta(zj-1) =0, ta(z;) =1, (23)

respectively. In Fig. 1, we show the function ®;. For comparison, we also show the H L_approximation
in the usual hierarchic Lengendre-based polynomial spaces. We choose a “superelement” of size
h = 5X\/m and illustrate the approximation for p = 2, p = 3, resp.

The trial functions for the Galerkin FEM are written in the standard way as a linear combination
of nodal functions

N
un(z) = Y ui®i(z), (24)
i=1

where u; are the unknown nodal values of the function uy. The connection between stabilisation
and higher approximating FEM is given in

Proposition 1 Let X} be a finite element mesh on Q = (0,1) and let up(z) be given by Eq. (24).
Then, for the interior mesh-points, the matrix for determination of the nodal values {u;} of up(x)
is identical with the matrix Ggtap defined in (18). For piecewise constant data f € L%(f), the
analytical shape functions yield the image (Q2° f);.

Proof: The proof is obtained by simple computation. Let ¢, t5 be the solutions of (21) with boundary
conditions (22) and (23), respectively. Then the matrix coefficient G;;—1 is

2 » T — Tj— £
Gii1 = ——/ A e ey /1t1t2

Ty —iLidid =l 2
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a) Patch-function from exact solution

b) Shape-functions: exact vs. p = 2 (dashed) c) Shape-functions: exact vs. p = 3 (dashed)
Fig. 1. Exact patch-function and exact shape-function compared to p-approximations

Similarly, we get

1 5 E s 1
Gi= —— [ @ -EEER [
-

Ti — Ti-1 J-1 2
2 . Tit] — Ti !
+ / #§)? e k? / £ )>
gy _1( 1) 5 ~1( 1)
k sink(zit+1 — zi-1)
sink(z; — z;—1) sink(z;41 — z;)

For the right hand side, we integrate

2 1 2 . 2 (tank(z; — xi—1) f;;_, f tan k(41 — ;) f::“ f
—=— [ = [ = + .
Ti—Ti-1 J Tiy1 —T; J_q k

Ti — Ti-1 T — Ti—-1 Ti+1 — T4 Tit1 — X

Equations (18, 19) are then obtained if we multiply by a scaling factor. <
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Remark 5: The matrix Ggiap can also be regarded as the limiting case p — oo of the condensed
h-p-matrix for Helmholtz’ equation. Indeed the h-p-shape functions are the Galerkin solutions of
BVP (21;22) or (21;23), resp. — see also [17], proof of Theorem 3.2.

For higher-dimensional problems, stabilization is a more complicated issue — we will return to
the topic in the next section.

2.3. Incorporation of particular solutions: Trefftz method

The idea of the Trefftz method [10, 26] is to find the weak solution of a boundary value problem in
a class of functions that satisfy the differential equation but do not, in general, satisfy the boundary
conditions of a boundary value problem (BVP). Those are included into the weak form as Lagrange
multipliers. The approximate solution of the BVP is thus found from boundary integral equations,
resulting from variation of the weighted residuals on the boundary of the domain. In the Trefftz
FEM, this idea is extended to a partition of the solution domain into finite elements. Again the
“shape-functions” satisfy the differential equation on each element; the boundary conditions and
the interelement continuity are then enforced in the weak form, yielding the set of determining
equations for the unknown coefficients in the trial functions.

Let us illustrate the idea on the one-dimensional model problem. As already observed, the
application is somewhat trivial since the differential equation in this case has only two linearly
independent particular solutions. Consider the problem

—u' —Ku=f
with inhomogeneous Dirichlet and radiation boundary conditions
u(0) =1, u'(1) — iku(l) = 0.

The Dirichlet condition is included in the variational form by Lagrange multiplier, yielding
B%mM:A%wﬁ—Hw)M+MM®—®+MMUMU=AVMM.

Integrating by parts, we obtain
/01 (—" - KPu— £) s + Au(0) — @) + x8(0) + (u'(1) — iku(1)) (1) =0,

where we replaced x = 4/(0). Suppose we use the trial function

M
u=uH+up=Zai‘I>i+u,,,

=1

where ®; are homogeneous solutions of Helmholtz’ equation and w,, is a known particular solution of
the inhomogeneous equation. Then the “domain” integral vanishes identically and the variational
problem is stated as: Find (ug, x) € V1 such that

Br(um, x,v,A) = Mug (0) + x9(0) + (up(1) — ikum (1)) 9(1) = F(v, A)
with
F(v,2) = A(@ — up(0)) — (up(1) — ikup(1)) 5(1)

for all (v,\) € Vo where Vi, V; are appropriate function spaces. These spaces are chosen on the
basis of “T-complete” systems, i.e., sets of functions that are dense in the trial space. In the 1D

equation, T-complete systems are for example {sin kz, cos kz} or {eik"”, e‘ik“}. If f =0 then, with



406 F. Ihlenburg and I. Babuska

the ansatz u = Ae'*® we achieve that both the domain integral and the boundary term at z = 1
vanish identically. The solution is thus u = Ge??.
In the TFEM, we consider a FE-partition Q = {A; };Vz , and the weighted residual equation

N
2y /A (—uj = K2u; — £3) 5 dz + Ao(u(0) — 2) + (& (1) — iku(1)) 3(1)
J=1"%9

N-1
+ 3 (Nl —uh) + v (@)™ = @)*1)) =0.

J=1

Here, subscript j denotes restriction to element A; and superscripts +, — denote the left-hand and
right-hand limits at nodal points j. The interelement boundaries are just points. Again the domain
integrals in the first sum vanish if the ansatz is chosen on each element as the sum of a homogeneous
and a particular solution of Helmholtz’ equation.

2.4. Incorporation of analytical information in a piecewise Galerkin approach: Parti-
tion of Unity Method

We refer here only the most simple version of the method where the partition of unity is given by
the standard nodal shape functions of the FEM. The idea is to enrich these local ansatz spaces
on a patch by functions that contain analytical information from the differential operator. In the
1D-case, these are the homogeneous solutions of the Helmholtz equation plus polynomial degrees of
freedom that approzimate the inhomogeneity of the right hand side. For instance, if the right-hand
side is constant or piecewise constant, the ansatz on patch j could be {1,sin k(z —z;), cos k(z — z;)}
— see Fig. 2. Thus assembly and geometrical approximation of the domain by elements is done in

y 1
Local
/\/ coskx)  Approximation
/\/ st SPACe
D
4 : % PU by Patch functions
£

Fig. 2. Patch-function, analytical functions and polynomial ansatz for the model problem

the standard FE manner whereas improved approximability is ensured by the “knowledge-based”
enrichment of the local patch-spaces. Being based on the Galerkin variational form, the method
“inherits” the well-established stability and convergence theory of the finite element method. The
approximability for Laplace and Helmholtz problems has been investigated in [22]. The condition
that the patch-functions form a partition of unity

N
Z q)]((lt) =1 ,
g4=1

where the sum is taken over all patches, is crucial for the proof of approximability — see [23].
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For further details, we refer to the paper by Melenk and Babuska in these proceedings. In this
simple one-dimensional case, the PUM will always reproduce the exact solution if this solution is
in the local subspace of approximation. In this respect, PUM and TFEM are alike. In the TFEM
it is essential that a particular solution is known analytically for the given data. In the PUM, the
data is approximated and analytical information is only used from the homogeneous differential
operator.

3. STABILIZATION AND KNOWLEDGE-BASED APPROXIMATION IN 2D

The main difference between the 1D model case and the higher dimensional application is that
the number of linearly independent particular solutions of Helmholtz equation is now infinite. For
instance, all plane waves u(z,y) = exp(ik - x) with |k| = k are solutions of Au + k*u = 0 in 2D.
This has the following implications:

Stabilization: The problem is how to choose the parameter 7. The two-dimensional dispersion rela-
tion is obtained by substituting a plane-wave solution exp(i(k" - x)) into the difference equations of
the discretized finite element model — see [25]. The discrete wave-vector is k" = |k"|{cos 6,,sin6,}
where 6, is some a priori chosen direction of the plane wave. The subsequent outline of the deter-
mining equation for 7 is similar to the 1D-case, yielding

S(kh, 6,)

2 — — ———
& =1 oMkn, 0,)

where S, M are rational functions of k,6, and the mesh-parameters Az, hy. Thompson and Pinsky
[25] choose for their numerical tests 6, = 7/8. If the exact solution is a plane wave going in that
very direction, the corresponding piecewise linear FE-solution has no pollution. However, a signal
is generally decomposed in plane waves going in an infinite number of directions. Even if there are
directionally prevalent components in this decomposition they are not necessarily known a priori.

Babugka and Sauter show in [7] that pollution cannot be generally annihilated in the higher-
dimensional case. More specifically, considering the GLS-approach as a particular case of generalized
FEM (GFEM) they show that for any GFEM there exist a family of domains {2, and right-hand
sides ,, such that the error of the GFE-solution compared to the exact solution can be estimated
in a L?-norm as

lug? — ufe)| > Ck*°R° (25)
whereas the minimal error of approximation is estimated in the same norm as
lug? — ugP|| < C(kh)®

(C denotes generic constants not depending on k, h). Essentially one can say that if a generalized
FEM is designed such that it will be very accurate in some wave direction it will still not be
accurate in some other direction. Thus, in contrast to the one-dimensional case, the stabilization
procedure proposed in [25] does not reduce the size of the pollution term in the error — see [2].
However, it is possible to construct a stabilized matrix such that the maximal (w.r. to the direction
of all plane waves) pollution term is minimal, i.e. is of the order given by (25). Such a matrix
is constructed and tested on a 2D model problem in [2] — see also Section 4 of this paper. In
the 1D case we have seen that the stabilized FD-matrix on non-uniform mesh can be equivalently
obtained from a FEM with analytical shape functions (“h-co-FEM”). In the 2D-case, analytical
shape functions can be constructed on rectilinear mesh (see Fig. 3) as tensor-products of the 1D-
functions, #;(k;7)t;(kyy),4,j = 1,2. Directional enrichment of the h-co-FEM can be achieved by
superposing several products with k2 + k; = k2. While these shape functions will not, in general,
lead to the optimally stabilized difference matrix, one expects a signiﬁéant gain in approximability.
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Fig. 3. Rectilinear mesh with exact shape-functions

Approzimability: In 1D, any solution of the homogeneous Helmholtz equation can be written as a
linear combination of functions exp(ikxz), exp(—ikz). In 2D, the question is if there exists a set of
particular solutions such that any solution of Helmholtz’ equation can be approximated by a linear
combination of functions from this set. Such sets exist, examples are (cf. [14, 22])

Vo= {Jakr)e™,n=0,%1,%2,...}, (26)

W= {{exp(z’k(wcosszm—f-ysinszm)),m =01, ... %= 1},n= 1,2,...}. (27)

By J,, we denote the cylindrical Bessel functions of the first kind. In Fig. 4, we depict the local
approximation space on a patch w; arising from overlaying a patch-function which is constructed
from the piecewise linear shape functions with a linear combinations of plane waves from W,
being directed in angels 61,...604. In a finite element context, one expects that, by incorporation

Fig. 4. Local PUM-Ansatz

of functions from V or W into the FEM ansatz space, the quality of approximation is increased
significantly. This is confirmed by Melenk and Babuska [21] who prove the approximation estimate

?m)’
s = umll < C(@, ;) ( “mm) il (28)

Here, m is the number of basis functions from W that are used in the approximation ansatz.
The approximated function uy is any homogeneous solution of Helmholtz’ equation on a bounded
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Lipschitz domain  C R2. While this is the same convergence rate as for the p-version, the increase
from m to m + 1 adds only one DOF whereas an ever increasing number of DOF is added if
advancing by degree in the p-version with polynomial approximation. While thus the question of
approximability is favorably settled, the problem is how to execute the standard FEM technologies
of element assembly and boundary fitting when using knowledge-based shape functions.

Variational form: Consider the boundary value problem

—Au—Ku=0 " on Q, (29)
b =1, gn Fy; (30)
O,

5’5 =u on I'y, (31)

where Q is a domain in R? with boundary I' = I'o UT;. The FEM equations are found from the
weak form

/ (VuVT)—k2m‘)) dmdy+/ (u~ﬁo)5\ds+/ ﬁxd3=/ 110 ds,
Q To Ty N1

where )\, x are Lagrange multipliers. This equation is obtained by applying Green’s theorem of
partial integration to the weighted residual ansatz

/(—Au—kQU)TJdmdy+ (u — @) Ads =0
Q Fo
and replacing x = 8_u on I',.

In the Trefftz method, one includes the non-essential boundary conditions into the weighted
residual ansatz, yielding

/(—Au—k2u)ﬁdxdy+/ (u—ﬂ)j\ds—!-/ x<~6—u—ﬂ1) ds=0.
Q T I on

Again one chooses the trial functions for u such that the domain integral vanishes and only the
integral on the boundary has to be resolved.

4. NUMERICAL EVALUATION

Model problem: We solve the Helmholtz equation in 2D on the square = [0, 1] x [0, 1]. Figure
5 (a) shows the domain and a partition into uniform finite elements as used in [2]. The problem is
formulated as

—Au—k*u=0 in Q

with boundary conditions
, ou
tku+ — =g on I,
on
where the function g is chosen such that the exact solution is a plane wave

uez g ezkx -
propagating in direction 0, i.e., k = k{cos 0,sin6}.

This problem has been solved in [2], using the Galerkin FEM, Galerkin Least-Squares and the
Quasistabilized Galerkin FEM with piecewise linear trial functions. Furthermore, the same problem
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a) FE-mesh b) Plane wave in direction 6

Fig. 5. Domain, FE mesh and exact solution
was solved in [21] (cf. also [22]) by the PUM using approximation space W from Eq. (27) — plane
waves.

Trefftz Method: For comparison, we implemented the solution by Trefftz method, using the trial
function

N
ur = Z UmPm (Z,Y) , (32)

m=1

where ¢,, € Wy are plane waves in direction #,, = 27m/N. For simplicity, we replaced
the Sommerfeldt-type boundary condition on I' with a Dirichlet condition u = 4, assuming

@ = e** g € I'. We assume that wavenumber k is not close to any of the discrete eigenval-

ues of the Dirichlet problem. Testing subsequently with ¢, m = 1... N, we solve the variational
problem: Find ur such that

[ wr - ). =0 (33)
for all n =1,2,..., N. This leads to the algebraic system
Tu=g (34)
with a dense N x N-matrix T the entries of which are t,,, = / Gmén. Vector u contains the
r

unknown coefficients wu,,; the entries of the rhs vector are g, = [ @¢,. Once u is computed,
Iy

function ur can be evaluated at any interior point. We measure the domain error in L? norm

eq = (/Q [ter — UT|2)1/2 - (35)

Convergence: It is easy to see that the solution of eq (33) is equivalent to the minimization
problem:

min [ |v—al?. (36)
veW Jr
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Here, W denotes the traces of functions w € W C H'(Q) on T; obviously W C L*(T'). The
solution v = ur of Eq. (36) is unique. By the approximation result (28), convergence up — i is
assured on I'. Further, the domain error ue; — ur solves on 2 the Helmholtz equation with the
Dirichlet boundary condition e|r = (& — ur)|r. Then by Proposition 8.1.4 of [22]' we have the
estimate

lellz2) < llellar ) < C@NE — urllLzry

yielding convergence in the domain if convergence on the boundary is assured. For a similar method
to solve elasticity problems, see [6, 3.16; 3.20].

Remark 6: In this case, no loss of stability occurs with growing wavenumber k since one effectively
solves a least squares minimization problem with BB-constant 1 (independently of k). However the
situation changes if, instead of a Trefftz method over the whole domain, one applies a TFEM. This
leads to mixed FEM [5] where the question of stability arises and needs careful consideration.

Implementation: The algorithm has been implemented in double precision Fortran. The boundary
integrals are evaluated numerically using h-p- Gauss quadrature, i.e., the Gauss-rule with p = 50
nodes is applied on 1/h boundary elements. The same rule is used in 2D to evaluate numerically
the error ep in (35). We verify that the error is zero if the approximated exact solution lies in the
trial space. See, for example, Fig. 6 for § = 7/3: the error vanishes for m =6 and m = 12.

Convergence of Trefftz Method

Relative error in L2-norm on damain and boundary for different k

10 T T T T T
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----------- k=4, dom
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Fig. 6. Convergence of Trefftz method — angle of plane wave is § = %

Observations and discussion: We are interested in the rate of convergence and in the influence
of wavenumber k on convergence. We chose 6 = £ to make sure that the approximated wave does
not lie in the trial space. The convergence rates for different & is shown in Fig. 7. The convergence

IThis proposition is shown for the Robin boundary conditions. In the Dirichlet case, it holds only with the
assumption that k is not close to a discrete eigenvalue
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Convergence of Trefftz Method

Relative error in L2-norm on damain and boundary for different k
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Fig. 7. Convergence of Trefftz method — angle of plane wave is § = %

behavior is highly dependent on wavenumber k. As in the FEM, there clearly exists a “minimal
resolution” (i.e., the minimal number of DOF to render a decreasing error). If the resolution is
larger than minimal the error rapidly decreases with increase of DOF. In Table 1, we collect the
number of DOF necessary to render a relative error smaller than 10%, 1% or 0.1%, resp.

Table 1. DOF necessary in Trefftz method to stay below indicated error level

error | k=1 k=2 k=4 k=8 k=16
10% 5 8 12 30 49
1% 6 10 18 32 54

0.1% 9 13 22 36 54

The rate of convergence is exponential (linear in the linear-log plot) for sufficiently large DOF.
The behavior is of the form Iner = aN + b suggesting a dependence

er ~ CeN

where N is the cutoff in the ansatz (32).

The lower peaks in Fig. 7 occur whenever one of the waves in the trial basis has a wavevector
that is directionally very close to the exact wavevector — cf. the observation for # = 7/3 in Fig. 6.

Finally, let us compare the Trefftz method with the methods in [2] and [22], see also [21]. As
in these references, we chose the incoming wave with angle § = 7/16. In Table 2, we compare the
number of DOF needed for accuracy e. The DOF for FEM and QSFEM have been estimated in
[22] from the examples in [2]. We give the results for the PUM on one and on 64 square elements,
corresponding to n = 1 or n = 8 subdivisions of the sides, respectively. In both cases, convergence is
achieved by increasing the number of “analytical” DOF within the patches. Note that the PUM in
the case n = 8 leads to a banded system matrix similarly to the FEM. Both in the Trefftz method
and the PUM, we use the approximation space W. However, in the PUM, the Helmholtz sesquilinear
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Table 2. DOF necessary in different methods to stay below indicated error level, k = 32.

€ 10% 1% 0.1% 0.01%
FEM 5900 5800 580000 5800000
QSFEM 840 8400 82000 800000
PUM,n=1 88 104 120 120
Trefftz 88 92 94 95
PUM,n=8 | 162 486 1134 1134

form extends over the domain whereas in the Trefftz method, integration is performed only on the
boundary. For both methods, we tabulate the relative errors in L?-norm over the domain Q.

We observe that the Trefftz method needs the least number of DOF. A direct comparison
of results PUM/Trefftz is given in Table 3. We compare for three wavenumbers, k£ = 1,4,32,
respectively, the results of PUM vs. Trefftz method. The dashes in the table indicate that no
further convergence was observed beneath an error level of E-07 ... E-08 — see the remark below.

Table 3. PUM vs. Trefftz method: comparison of results for different wavenumber and DOF.

k=1 k=4 k=32
DOF PUM Trefftz PUM Trefftz PUM Trefftz

8 .2092E-02 .1793E-02 | .3103E-01  .4191E+400 | .9923E+00 .1119E+01
24 .2047E-06  .1232E-08 .9917E-3 .1284E-04 | .9971E+00 .1150E+01
40 .1801E-08 .1608E-07 .8764E-6 .5094E-08 .106E+01  .8811E+00
56 .8868E-08 = .99108E-09  .5416E-08 | .1087E+401 .8006E+00
72 o - .8158E-8 .2579E-08 | .4484E+00 .5362E+00
88 = = = - .6413E-01  .1605E+00
104 — - = = .3755E-02 .8164E-05
120 - = = - .1320E-05 .2829E-08

We observe that — for the problem considered — the PUM for n = 1 and the Trefftz method
are of similar efficiency with respect to the number of DOF in the discrete model. An effectivity
analysis that also estimates operation counts for the PUM and compares to respective estimates
for the FEM and QSFEM is contained in [21].

Remark 7: Both in the PUM and Trefftz method, the errors level off at 1.E-07 ... 1.E-08. This
effect has been investigated for the PUM by Melenk [22, p.150]. Comparing the FORTRAN double-
precision results to high precision results that are obtained using symbolic manipulation in MAPLE,
it is shown that the effect of leveling-off is due to round-off errors. In the evaluation of the sym-
bolic computations, the errors decrease as theoretically predicted. It is observed that the condition
number of the PUM matrix grows very fast as the number of DOF is increased.

5. CONCLUSIONS

The growing awareness that the standard h-version of the FEM performs poorly for the solution of
the Helmholtz equation has led to different propositions and investigations of improved methods.
The Helmholtz sesquilinear form — which is the starting point for Galerkin-type approximations —
loses stability as wavenumber k grows. We recall that both good stability and approximability are
necessary to get fast convergence of a numerical method. From this angle, our overview of different
methods shows that the convergence can be equally well improved by either enhancing stability or
approximability of the standard method. We considered two stabilized methods which we compared
to methods that include the fundamental solution into the ansatz space. In 1D, one can design by
both approaches a FEM with optimal convergence (no pollution). In a special case, the stabilized
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stiffness matrix is equivalently obtained from an approximation ansatz using analytical shape-
functions. The analytical shape functions are the limiting case for the h-p-version of the FEM. Thus
the FEM with analytical shape functions is called here h-oo-FEM. This FEM trivially yields the
exact solution in 1D. In 2D, we proposed a h-oo FEM with directional enrichment on rectilinear
grids. In two dimensions, stabilization is, in general, more complicated whereas approximation
enhancement by h-p-FEM is well researched and can be performed in the standard way. A way to
further enhance approximability is to include analytical solutions of Helmholtz’ equation into the
trial space. This is done in the traditional Trefftz method and in the recently proposed Partition
of Unity Method (PUM). Comparison of implementations on a simple 2D model problem shows
that both methods are equally efficient, compared to the standard and stabilized h-version FEM.
It seems very promising to test these high-approximating methods on more realistic problems.
However, applying the Trefftz approach on super-elements (Trefftz-FEM) leads to a mixed-hybrid
formulation for which the question of stability is still open. The PUM, on the other hand, is a
Galerkin method based on the bilinear form. Stability, approximability and convergence are well-
researched. The open questions concern conditioning and efficient implementation.
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