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The reported research presents a finite element formulation for folded plate analysis based on the p-
version of the hybrid-Trefftz finite element model. The internal displacement field of the elements consists
of a suitably truncated T-complete set of in-plane (u,v) and out-of-plane (w) components which satisfy
the respective governing differential plane elasticity and thin plate (Kirchhoff) equations. Conformity
is enforced in a weak, weighted residual sense through an auxiliary displacement frame, independently
defined at the boundary of the element and consisting of displacement components i, @, w and normal
rotation ¢ = w,. The displacement frame parameters are the global Cartesian displacements U, V', W
at corner nodes and the hierarchical side-mode parameters for normal rotation and the global Cartesian
displacement components, an optional number of which is allotted, formally, to mid-side nodes. The
investigated approach is assessed on numerical examples.

1. INTRODUCTION

The hybrid-Trefftz (HT) finite element model [1] is the oldest and most popular version of the so-
called T-elements, a class of formulations [2, 3] which attempt to unite the versatility of conventional
finite elements with the accuracy and high convergence rate exhibited by the boundary solution (BS)
approaches. The common feature of this class of formulations is that the displacement field of the
element has to satisfy the governing differential equations of the problem a priori, as in the classical
Trefftz’s method [4], and the interelement continuity and the boundary conditions are then enforced.
In the standard HT formulation, these conditions are enforced through an auxiliary displacement
frame independently defined at the element boundary in terms of nodal parameters, which are the
final unknowns of the problem (exactly as in the case of the conventional assumed displacement
FE). The p-version of the HT formulation applied in this paper is concerned with elements of
adjustable accuracy exhibiting a fixed number of degrees of freedom (DOF) at element corner
nodes and an optional number of hierarchic side-mode DOF allotted for convenience, formally, to
mid-side nodes. A detailed assessment of various advantages of such elements over the conventional
FE may be found elsewhere [5].

In principle, a HT folded plate p-element may be obtained by coupling the HT plane elasticity [6]
and Kirchhoff plate [7] p-elements. However, since the former is based on enforcing the C° confor-
mity on the in-plane displacement components u and v, while the latter requires the enforcement
of the C' conformity on the out-of-plane displacement component w, a difficulty arises at the com-
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mon boundary of two not-coplanar elements. Moreover, an additional problem is encountered as a
consequence of the assumption of equal normal rotation along the common part of the boundary of
two or more assembled elements. This assumption leads to the unjustified vanishing of the in-plane
shear strain at any common corner node where three or more not-coplanar elements meet. These
problems, inexistent in the case of the Reissner-Mindlin plate bending model, may in the case of
the Kirchhoff plate theory be solved only if use is made in the HT element formulation of a suitably
modified displacement frame. Here the consideration of the existence of the out-of-plane internal
displacement field w and of the corresponding normal rotation ¢ = dw/8n at the element boundary
leads to the conclusion that the normal component ¢ of the frame may be rendered independent
of the out-of-plane displacement component @ of the frame. This in turn makes it possible to use
for 1 the same interpolation as for the in-plane components % and © and thus solve the conflict
between the C° and C' conformity requirements at the element boundary as well as the problem
of representation of the in-plane shear at corner nodes where three or more not-coplanar elements
meet.

Z‘;W O e ﬁ,\},W
| A . §,'AU, 'AV, AW, 'AD,
)_ — 2Aﬁs 2Avs 2AW!2A¢!
. Y;V
’/ etc.
X;U

Fig. 1. Typical mesh of HT folded plate p-elements

The above outlined approach is presented in detail in the next section. This approach makes
it possible to generate the folded plate p-elements which after the transformation from the local
(z,y,2) to the global Cartesian reference frame (X,Y,Z) possess (Fig. 1) three global Cartesian
displacement DOF (I]r WV, W) at the element corners and an optional number of hierarchic side-
mode DOF for the normal rotation ¢ and the global Cartesian displacement components.

Several numerical examples presented in Section 3 were studied to investigate the reliability, the
accuracy, and the h- and p-convergence of the new HT folded plate p-elements. Their advantages
and shortcomings are discussed and other concluding remarks are presented in Section 4.

2. THEORY
2.1. Short recall of the element approach

An obvious alternative to Rayleigh-Ritz methods as a basis for a finite element (FE) formulation
is the class of the so-called T-element formulations [2, 3] initiated in 1978 [1] and associated with
the method of Trefftz [4]. The common feature of all T-element approaches (of which now many
alternative formulations exist [3]) is the use of a non-conforming element displacement field

m
u=u+Y Mjc =1+ Me, (1)
Jj=1
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o .
where ¢, stands for unknown parameters and u and M; are known functions chosen so that the
governing differential equations (and as a consequence the equations of equilibrium and constitutive
relations) are satisfied in the element subdomain Q. If these equations are written as

Lfu=Db (2)

(£ linear differential operator matrix. b term representing the specified load on 29), then the
satisfaction of (2) for any value of undetermined parameters ¢; implies

Lu=b and LM; =0 onQ°. (2a.h)

From (1) can readily be derived the corresponding conjugate vectors of generalized boundary dis-
placements and boundary tractions,

v=v+Nc and t= E + Te (3a.b)

at the element boundary I'*. What is left is to determine the parameters ¢ so as to enforce on v
and t the following conditions:

e the interelement conformity and the kinematic boundary conditions

vi=vl on nNrf, v¢=% on renr,, (da.b)
e the reciprocity and the statical boundary conditions

t+t/ =0 on NI/, t:=t on NIy, (de.d)

(e and f stand for two neighbouring elements, I',, and I'; for the supported and the free parts of
the domain boundary I' = T',, UT; . ¥ and t are the imposed quantities).

The most frequently used T-element approach [1, 2, 3] is to link the T-elements through an
interface displacement frame surrounding the element and approximated independently of (1) in
terms of the same nodal DOF, d, as used in the conventional assumed displacement elements:

v=Nd on I'¢=0Q°. (5)

It is assumed that this auxiliary field is such that at a common portion of the boundary of any two
neighbouring elements, e and f,

vi=vl on renrv’. (5a)

Then enforcing first in a weak sense the conformity on u

/ 5tT (v — S)dr =0, (6a)
]"C
and next using the equivalency of virtual works
sdTr = [ s9Tear - [ svTEA, (6D)
. e

where r stands for equivalent nodal forces associated with the nodal DOF d, enables one to elimi-
nate the undetermined parameters ¢ and derive for the element the customary force-displacement
relationship

r=r+kd. (7)
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The load dependent part r of r and the symmetric positive definite stiffness matrix k in (7) are
readily evaluated (for details see e.g. [2]) as

r=g—-GH 'h and k=GH!GT, (7a,b)
where
H= | T'TNdl'= | NTTdl, h=/ TTvdrl, (8a,b)
Ie I'e Ie
G=[ N'™Tdr, g=/ N'tdr- [ NTgdr (8c,d)
Ie re e

(note that to obtain a nonsingular matrix H, the homogeneous solutions M; in (1) should not
contain any rigid body modes [1]). Clearly such elements can be handled exactly as the conventional
elements (use of the standard direct stiffness method for the element assembly) and as such be
implemented without difficulties into standard FEM codes.

2.2. Application to folded plates
2.2.1. General outline of the approach

If considered in its local Cartesian reference frame (z,y, z) (Fig. 2), the membrane (m) and the plate
bending (b) components of the response of a folded plate element may be uncoupled. The general
HT element formulation from the preceding subsection is applied in turn to the assumed in-plane

Z;W

Plane xy

X;U
Fig. 2. Typical folded plate HT p-element
and out-of-plane displacements, u = u™ = {u,v} and u = u” = {w}, and yields two independent
force-displacement relations,
r™ = r™ 4 k™d™ (membrane component), (9a)
r® = rb4kbdP (plate bending component) (9b)

which may be combined into a single one stated as

r={‘;f}={’;:}+lk; fb]{'gs}zhkd. (9c)
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To allow the standard element assembly to be performed (direct stiffness method), the above
relation should then be transformed from the local (z,y, z) to the global (X, Y, Z) reference frame,

R =R +KD (10)
by the application of the standard transformation process:
R=LTF, K=LTKkL, (10a,b)

where L stands for the orthogonal transformation matrix (see paragraph 2.2.4) which defines the
local DOF in terms of the global DOF of the element:

d=L1LD. (10¢)

2.2.2. Plane elasticity component

Here the internal displacement field has two components

u™ = { " } . (11)
v
The conjugate vectors v™ and t™ at the element boundary I'* have the following definitions
tm 1z Nz + ny N,
vm:{u}, tm={1ﬂ}={ T yxy}, (1231]:))
v ty fiy Ny + ngNay
where n, ,n, are direction cosines of the external normal, 7i, to element boundary and Nz, Ny, Ngzy
are membrane forces:

Et ou dv
— — —_— e 1
N, 1_v2@h+vm), (13a)
Et v ou
_ Bt (0 oOu 13b
Ny 1—uﬁﬁw+”&)’ (13b)
Et ou Ov
N 13
Ny 2(1+u}(ay*'ax) e

(t — element thickness, E — Young modulus, » — Poisson’s ratio).
The governing differential plane elasticity equations (plane stress assumed) may be explicitly
written as

Et (3211. 1—-vd*u 1+4v 62'0) 2

1—2 -Eim_z-i_ 2 ;3‘_?2”{- 2 OJzoy T

Bt v 1—-vd*v 1+4v Pu =
Tt st | = b,
1—v2 \ 9y? 2 Oz 2 9dzdy

, (14)

where b, , 5_,,, stand for body forces. For b, = const, E—)y = const , the particular part of the solution
may be taken as

u byy?
flm= u =1+V _:z:J (15)
E by:c2

<o
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A T-complete set of homogeneous solutions M (j = 1,2,...) may be obtained in a systematic
way if one considers in turn the real and the imaginary parts of the four complex functions,

= (2) rom(3) ()
- (3) -0 (3) ()

Ck=-—(1+u]i(§)k

z k
Dk=—(1+'f)(3) k=1,2,...

(i= V-1, z = z+iy, Z = z—iy, d — scaling factor equal to the average distance between the
element center and the element corners) and uses them in the following generating sequence:

7/

ReB; ReC; ReD;
ImB;, ImC7 ImD,

M™ = [MP,MP,.. ] =FE

ReA.g ReB; Re(C; ReD,
ImA2 Im}32 ImC;; IHIDZ

ReA3 ReB3 ... etc.

ImA; ImBj3 ... etc. ()

The absence of the term with A; in this sequence is due to the fact that u = Re A;, v = Im A,
result in a vanishing strain mode (rigid rotation).
The displacement frame

-m _ | U
v *{ﬁ} (18)

along a particular side A — C — B of the element (Fig. 3) may be expressed in terms of the two
nodal displacement vectors at corner nodes A and B,

d% = {ag 94}", dB={ip 98)}" (19a,b)
and of a vector containing an optional number of hierarchic side-mode DOF, attached for conve-
nience to mid-side node C,

. . T
m {IA&C A & 2Atc %A } . (19¢)
With the frame functions displayed in Fig. 3, the components % and ¥ have along the element side
A — C — B the following distribution:
= N]ﬁ_,q + Ngﬁ‘.B + f\?;; 1Aﬂc + N5 2Aﬂc =55

= ﬁlﬁ,q + ﬁgﬁg + Z ﬁgk_'_l kAﬂc (20&)
k=1,2,...
e = T .
v = Nyi4 + Novpg + z N2k+1 Ave . (20b)
k=12....

The use of the above expressions, specific to plane elasticity, along with the general HT-element

relations (7) and (8a-d) yields the uncoupled membrane terms r ™ and k™ in the force-displacement
relationship (9a).
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a) Modes associated with corner nodes O

Displacements 1,V, and w

Normal slope ¢ = Wy

Ny =% (1-8)
Ny =2 (1+9

b) Modes associated
Displacements 0,v, and w

®,
®

@Me
C
!

(@]

with mid side nodes A
Normal slope ¢ = wp

_ etc
Nj = 1- &2 Ne=1
Ny =& (1-&?) Ne=§
N, =£2(1-&?) N; =§2
] 1
e;.c eic

Fig. 3. Frame functions of HT folded plate p-element with 3 DOF at element corners and an optional
number (M) of DOF at mid-side nodes
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2.2.3. Plate bending component
Here the internal field u® has a single component
u’ = {w} (21)

and the conjugate vectors vP and tP at I'® are assumed as
jug

i w Qs ny Qe + nyQy
v={ w, 3 =14 dw/dz ;, tP={ —M,, = —neMe—nyMzy o, (22a,b)
Wy ow/dy —Mnyy —ny My — nyMzy
where
0 ad
Q.= —D%Vaw, Q, = —Da—yvzw, (23a,b)
0w w 8w &%w
e A i) == tucliers i 23
M, D(3$2+vay2), M, D(3y2+V8x2)' (23¢,d)
w
=-D(1- 23
M:ry (1 V) dzdy ( e}
and where
Et?

o 24
D=1 (1—12) (24)
The governing differential plate equation is stated as

b
=2 25
Viw D (25)

where V4 = 9 /92 +20%/0228y? + 8* /0y* and b, stands for distributed load. The particular part
of the solution may be found easily for various types of continous or discontinous loads [8]. Here,
as an example, will only be given the two simplest of them, namely

o B 4 -

w = 6247 for uniform load b, = const (26a)
and

o P P

W= ——r%Inry for concentrated load P; at zp,yp (26Db)

167D

where

b= (z—zp)* + (y—yp)”. (26¢)

A T-complete set of homogeneous solutions M Jt-’ (j =1,2,...) is conveniently assumed in the
form of biharmonic polynomials, which can be generated in a systematic way by taking in turn the
real and the imaginary parts of two complex functions,

Ay (5)2 (z)k and By = (%)M (27a,b)
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(r? = 22 4+ 42, d — scaling factor as in paragraph 2.2.2), namely:
M° =M} MS,...|=[Redy ReB, ImB,
ReA; ImAl ReBl ImBl

Red; ImA; ReB; ImB; © - etc-]- (27¢)

As Im (z/d) = 0, this generating sequence yields for k = 0 only three homogeneous solutions.
The components of the displacement frame vector ¥ may conveniently be expressed in terms of
two functions, 1 (transverse displacement) and ¢ = W, (normal rotation), namely

w w
=% Wy p=14 NgPp—ny0w/0s ¢, (28)
Wy Ty @ + 0w/ 0s
where
d/9s = —n,0/0x + 1,0/ y (28a)
and where for a particular boundary segment A — C — B (Fig. 2) of length [4p = 2a
fig = #(UH“UA): My = —ﬁ(xs—ﬂfﬂl) : (28b,c)

If the segment A — C' — B belongs to the interelement boundary, common to two neighbouring
elements, then 7, and 7, are equal to the components n; and n, of the unit vector of the external
normal of the one of the two elements along the boundary of which the sequence A —C — B defines
the anticlockwise rotation (Fig. 2). They are equal to —n; and —n, for the element where the
sequence A — C' — B corresponds to the opposite sense of rotation.

In order to ensure the conformity of displacements along a common side A — C — B of two or
more not-coplanar elements, the transverse displacement 1 will be interpolated in the same way as
the in-plane displacements @ and ¥ in paragraph 2.2.2. On the other hand, the C' conformity will
be enforced through the frame function (@, defined independently of w, only in terms of hierarchic
normal rotation parameters associated with the mid-side node C. As a consequence, the subvectors
of nodal parameters in A, B and C are now assumed as follows:

dy ={wa}, dj={ws} (29a,b)
and
T
de ={ pc : 1Adg 1A(ﬁc 2A'lf.!c ZA(IBC + ... ete } . (29c)

With the shape functions displayed in Fig. 3, @ and ¢ along the element side A — C — B now have
the following definition:

W = Ny + Notwg + NatAwg + Ns2 At + ...

= Nyoa+ Nowp+ Y, Nopyr*Adic, (30a)
k=12,...

¢ = Nugc + N'Apc + Ns*Ade + ...

Il

Nyge + > Nok14*Age . (30b)
=12,
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The possibility of using in the HT Kirchhoff plate formulation an ‘underconforming’ displacement
frame with a single parameter at element corners has for the first time been investigated and
justified in Ref. [9].

As in the case of the plane elasticity component (paragraph 2.2.2), the use of general relations

(7a,b) and (8a,b) along with the specific expressions of this paragraph yields the terms r® and k®
in the force-displacement relationship (9b).

2.2.4. Evaluation of the resulting global force-displacement relationship of the folded
plate p-element

We designate by Q the 3x3 transformation matrix involved in the global to local Cartesian coor-
dinate transformation

=Q(X-Xo), (31)

where x = {z,y,2z}, X = {X,Y,Z} and where X¢ (see Fig. 2) stands for position vector of the
origin O of local coordinates of the element. For future use, we split the matrix Q into two parts,
Q™ and QP defined as

Q" = ! Qu Q12 Qi3

d Q°= ] 31a,b
On Om an} and Q [QSI Q32 Qas] (31a,b)

Let now the vector of global DOF of the element in (10) be assumed as
T
p={Df b .. Bf}, (32)

where N is the number of element nodes (N = 8 for a quadrilateral element) and where D;
(i = 1,2,... N) stand for subvectors of nodal DOF belonging alternatively to nodes o at element
angles (odd i) with 3 DOF,

D,={0: Vi Wi}, (32a)
and to mid-side nodes A (even i) with an optional number (M) of DOF,
D; = { @ IAU; AV AW 'Ag;
2AU; 2AV; 2AW; 2A¢; ... }T- (32b)

While the displacements are represented by their global Cartesian components, the rotations keep
their local form (@ = 1, where 1 is the out-of-plane displacement), as they do in the vectors d™
and d® of local DOF of paragraphs 2.2.2 and 2.2.3.

Instead of forming explicitly the transformation matrix L in (10c) for the whole element, it is
computationally more efficient to perform the transformations node by node. Thus for each i the

vectors T ™ and r }’ are converted into }Etl— and for each i and j > 1 (to account for the symmetry),the
matrices ki and kz?j are converted into K;;. Provided that all mid-side nodes of the element have
the same number (M) of DOF, only 4 smaller transformation matrices need to be evaluated:

e matrices L (2 x 3) and L% (1 x 3) common to all element corner nodes o,

e matrices L% (M™ x M) and L% (M® x M) common to all mid-side nodes A.
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Table 1. Optional numbers M of global DOF at mid-side nodes and corresponding numbers of local DOF
for membrane(M™) and plate bending (M®) components

M 1 5 9 13 17 ete.
M™ 10 2 4 8 etc.
MP 1 3 5 7 9 et

Note that M™ and MP® in the above (Table 1) stand for the numbers of membrane and plate
bending DOF which correspond in the local reference frame to the optional number M of global
DOF at the mid-side nodes of the element. These matrices transform the subvectors of the global
DOF D; at corner nodes o or mid-side nodes A into the subvectors of the local DOF d{* and dE’ ;
namely

d™ = L7D; and d?=LYD; at element angles, (33a,b)
d™ = LPD; and d?=L2D; at mid-side nodes. (33¢c,d)

Observing that in (33a,b), respectively (33c,d), the definitions of d™ and d? are identical to those
obtained through the replacement of A by i, respectively C by ¢ in (19a) and (19c), respectively
(29a) and (29c), makes it possible to obtain explicitly the following transformation matrices:

¢ nodes o (odd 1)
m—-Q™ and LY =QP, (34a,b)

e nodes A (even 7, assumed M = 9)

D = e s s S e S S RS SEE . (34c)

.........................

Li=10 ! 05 1 ! 045 0 |> (34d)

where 0,,, stands for a m x n matrix of zeros.

With the above matrices, we may now set simply

]

To
Ri = L) P+ (L)) FP, (35)

T
K = (LM)TKILr + (L?) KjL} (35b)
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and substitute:
LP=LT and LP=LY% ifiisodd
L"=L% and L?=LY ifiiseven
LP=L% and LY=LY if;isodd

LF =L¢ and L}-’zL% if j is even |

- (35c-)

2.2.5. Implementation

Since no area integration is needed, a single FE subroutine may cover a family of folded plate
p-elements presenting a polygonal boundary (Fig. 2) with an optional number of sides. Such a
subroutine should automatically adjust the number m of homogeneous T-functions of the internal
displacement field of the element to its number of sides and the optional number of side-mode DOF
of each of them.

The rank condition of a HT p-element states that [1] a minimum of

m = NDOF — NRIG (36)

linearly independent T-functions (NDOF — number of nodal DOF, NRIG — number of rigid body
modes) is necessary, but sometimes not sufficient, for its stiffness matrix to have full rank. In our
case such a rule should separately hold for each of the two uncoupled folded plate components —
the membrane component (9a) and the plate bending component (9b) — later combined into a
single force-displacement relationship (9c). If attention is focused on the quadrilateral element —
only this member of the element family was used in the numerical studies of Section 3 — then the
minimum of

m™ =4M™ +5 respectively m® =4M® +1 (37a,b)

linearly independent T-functions, have to be used to evaluate the stiffness matrix k™, respectively
k. The standard eigenvalue tests of these matrices (see [6] and [9]) have reported a vanishing
number of spurious zero energy modes, thus confirming that the values of m™ and m™ shown
above need not be augmented.

3. ASSESSMENT

The crucial problem of the investigated approach is its capability of reliably predicting the in-
plane shear stress components in corners formed by the intersection of three or more not-coplanar
panels. This problem is studied in Example 1. The remaining examples further assess the advocated
approach through comparison with results available in the working literature.

3.1. Example 1 (Fig. 4)

The stiffened steel panel (Fig. 4) was subjected to uniformly distributed shear load p and solved
for the following three combinations of thicknesses specified for the panels 1 to 3:

1: t; =0.01L, t, = t3 = 0.0001L
2: ty =ta =13 =0.01L ’ (38a—c)
3: t, =0.0001L, ty =t3 = 0.01L
In order to take into account the symmetry with respect to the plan (Z = 0), only the part

Z > 0 of the structure was considered while imposing W =0 for Z = 0. The calculation for each
of the above combinations of thicknesses was performed for the following discretizations:
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Y:V

Z;{?V' é) @é %

Fig. 4. Example 1: Stiffened steel panel (v = 0.3, L = 1000 mm) under uniform shear load

e Mesh of 15 HT folded plate elements (3 x 3 elements for panel 1, 1 x 3 elements for panels 2
and 3) with M = 13, 17 and 21 side mode DOF at mid-side nodes, corresponding to a total of
Nact = 363, 463 and 563 active DOF.

e Uniform meshes of cubic isoparametric shell elements with 6 global DOF (3 displacements,
3 rotations) at nodes situated along A — B, A — D and A — F and with 5 DOF (3 global
displacements, 2 local rotations) elsewere:

Mesh 1: 2 x 2 elements for panel 1, 1 x 2 elements for panels 2 and 3; Nacr = 194 DOF
Mesh 2: 4 x 4 elements for panel 1, 2 x 4 elements for panels 2 and 3; Nact = 686 DOF
Mesh 3: 8 x 8 elements for panel 1, 4 x 8 elements for panels 2 and 3; Nact = 2456 DOF

The results displayed on Table 2 show that, although based on the Kirchhoff assumptions, the
HT folded plate elements have the capability to predict reasonably well, for a large range of ratios
of thicknesses, the in-plane shear force at the corner formed by the intersection of the three not-
coplanar panels. While the first (38a) and the third (38c) combinations of thicknesses produce, at
point A in panel 1, results close to those tending at the limit respectively to Nxy = p (pure shear)
and Nyy = 0, the combination (38b) is an intermediate case. Note also that the HT element results
seem to converge to those predicted by the solution with a mesh of 128 cubic isoparametric shell
elements, based on the Reissner-Mindlin assumption and integrated numerically with 3 x 3 x 2
Gauss points. In spite of a very large number of unknowns, this reference solution is, unfortunately,
not yet fully converged (see e.g. the predicted shear force at the free corner of panel 1, in the last
column of Table 2).

The study is completed by a comparison of results for displacements at corner points (Table 3)
and distribution of shear forces Nxy in the panel 1 along its diagonal A — C' (Figs. 5 to 7). These
results clearly show the purely local character of the steep gradient solution in the neighbourhood
of the corner A, which cannot be accurately represented without a local refinement of the FE mesh,
but which has only little influence on the solution elsewhere.
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Table 2. Example 1: In-plane shear force Nxy : p at corners of panel 1 (Fig. 2) for three combinations of
thicknesses (see (38a—c))

2 Case
Point Element mesh (382) | (38b) | (380)
15 HT-p, (M =13) | 1.000 | 0.961 | 0.313
A | 15 HT-p, (M =17) | 1.000 | 0.926 | 0.230
15 HT-p, (M = 21) | 1.000 | 0.870 | 0.164
128 cubic isopar. 1.000 | 0.819 | 0.078
15 HT-p, (M =13) | 1.000 | 1.000 | 0.999
B 15 HT-p, (M =17) | 1.000 | 1.000 | 0.999
15 HT-p, (M = 21) | 1.000 | 1.000 | 0.999
128 cubic isopar, 1.000 | 1.000 | 0.999
15 HT-p, (M = 13) | 1.000 | 1.000 | 1.000
15 HT-p, (M =17) | 1.000 | 1.000 | 1.000
% 15 HT-p, (M = 21) | 1.000 | 1.000 | 1.000
128 cubic isopar. 1.000 | 1.000 | 1.000
15 HT-p, (M = 13) | 1.000 | 1.000 | 0.999
D 15 HT-p, (M =17) | 1.000 | 1.000 | 0.999
15 HT-p, (M =21) | 1.000 | 1.000 | 0.999
128 cubic isopar. 1.000 | 1.000 | 0.996

Table 3. Example 1: Global displacement components EU : p and EV : p at corner points

Case

Point | Quantity E‘em‘;“t (38a) | (38b) | (380)
s 102x | 10°x | 10%x

15 HT-p, (M = 13) | -0.000 | —-0.000 | -0.000

B EU :p 15 HT-p, (M =17) | 0.000 | -0.000 | -0.000
15 HT-p, (M = 21) | -0.000 | -0.000 | -0.001

128 cubic isopar. -0.005 | -0.002 | -0.001

15 HT-p, (M =13) | 2.600 | 2.599 | 2.583

EU:p 15 HT-p, (M =17) | 2.600 2.600 2.583

15 HT-p, (M =21) | 2.600 | 2.599 | 2.583

128 cubic isopar. 2.600 | 2.598 | 2.584

< 15 HT-p, (M = 13) | 0.000 | -0.000 | —0.010
EV:p 15 HT-p, (M =17) | 0.000 | -0.000 | -0.010

15 HT-p, (M = 21) | -0.000 | -0.000 | —0.010

128 cubic isopar. -0.000 | -0.000 | -0.012

15 HT-p, (M =13) | 2.600 | 2.599 | 2.593

EU:p 15 HT-p, (M =17) | 2.600 | 2.600 | 2.593

15 HT-p, (M =21) | 2.600 | 2.600 | 2.593

H 128 cubic isopar. 2,600 | 2.598 | 2.594
15 HT-p, (M =13) | -0.000 | -0.000 | -0.000
EV:p 15 HT-p, (M = 17) | -0.000 | -0.000 | -0.000
15 HT-p, (M = 21) | —-0.000 | -0.000 | -0.001
128 cubic isopar. -0.000 | -0.002 | -0.001
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Fig. 5. Example 1: Distribution along A — C of shear force Nxy in panel 1 in case of very weak stiffeners
(see (38a)). a) Uniform mesh of HT elements b) Uniform mesh of cubic isoparametric elements
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Fig. 6. Example 1: Distribution along A — C of shear force Nxy in panel 1 in case of equal thicknesses of all
panels (see (38b)). a) Uniform mesh of HT elements b) Uniform mesh of cubic isoparametric elements
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Fig. 7. Example 1: Distribution along A — C of shear force Nxy in case of very weak vertical panel (38c).
a) Uniform mesh of HT elements b) Uniform mesh of cubic isoparametric elements
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3.2. Example 2 (Fig. 8)

The structure formed by two inclined rectangular panels, clamped along one edge and free on
the remaining part of its boundary, was analyzed for a vertical and horizontal load, uniformly
distributed along the free edge parallel to the X axis (Fig. 8).

ZW

XU

Free edge

Fig. 8. Example 2: Steel structure (» = 0.3) formed by two inclined panels. L; = 125 mm, Lz = 100 mm,
t =12 mm, o = 30°

The HT element solution was performed for two uniform meshes, 1 X 2 and 3 x 6, with M = 5,
9, 13, 17 and 21. Figures 9 and 10 display the results of a convergence study of the horizontal
and vertical displacements of the corner node A in terms of the number Nacr of active DOF of
the element assembly. The displacement components were normalized with respect to the ‘exact’
solution obtained by the Aitken acceleration procedure [10] applied to the three consecutive HT
element solutions obtained on a uniform 7 x 14 mesh with M = 13, 17 and 21.

Figures 9 and 10 also display the results obtained with three uniform 3 x 6, 6 x 12 and 12 x 24
meshes of quadrilateral shell elements from the FE library of the program ANSYS [11]. These
20 DOF elements use a bilinear interpolation of the in-plane displacement components for the
membrane part of the solution and apply four overlaid Batoz [12] and Razzaque [13] triangles
(DKT) to represent their plate bending action.

3.3. Example 3 (Fig. 11)

This example was taken from the paper by Scordelis et al. [14]. The end diaphragms supporting
the roof were assumed to exhibit infinite in-plane and vanishing out-of-plane rigidity. Owing to
symmetry, only one half of the span was analyzed. Some results of the solution obtained with
different folded plate elements are displayed on Figures 12 to 14.

The HT element solution was performed with 1 x 5 (single element per panel) and 3 x 6 (Fig. 11)
meshes, each of them used in turn with M = 5, 9, 13, 17 and 21 DOF at mid-side nodes. It is
worth mentioning that with the 3 x 6 mesh, excellent accuracy is observed already with 9 DOF
at mid-side nodes. Further increase of the number of these DOF does not noticeably change the
results. The results obtained with 3 x 6, 6 x 12 and 12 x 24 ANSYS folded plate elements as well
as with the same meshes of the SQ2 quadrilateral shell elements [15], as displayed on Fig. 12 and
13, obviously tend to converge to the same solutions as the HT p-elements. On the other hand, the
results of the analytical solution taken from Scordelis et al. [14], which have been obtained with
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Fig. 9. Example 2: Convergence study of deflection components at corner A (Fig. 8) under vertical load p.
HT-elements (M =5, 9, 13, 17, 21) and ANSYS elements (3 x 6, 6 x 12 and 12 x 24 meshes)
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Fig. 10. Example 2: Convergence study of deflection components at corner A (Fig. 8) under horizontal load
q. HT-elements (M =5, 9, 13, 17, 21) and ANSYS elements (3 x 6, 6 x 12 and 12 x 24 meshes)
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Fig. 11. Example 3: Folded plate structure with 3 x 6 HT element mesh. E = 1.06 x 107 psi, v = 0.3,
t = 0.063 in.
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Fig. 12. Example 3: Convergence study of vertical displacement at point B (Fig. 11)
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Fig. 13. Example 3: Convergence study of longitudinal membrane stress at point B (Fig. 11)
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Fig. 14. Example 3: Distribution of longitudinal membrane stress along B — A (Fig. 11)

only four Fourier’s series terms, are not yet sufficiently converged (see the intermediate results in
(14]) and cannot be used as the reference solution.

In Fig. 14, which shows the longitudinal membrane stress along the segment B — A, the only
difference between the simplest possible HT p-element mesh (each panel represented by a single
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element) and the very dense 12 x 24 mesh of ANSYS elements appears at the supported boundary,
where the longitudinal membrane stress should vanish (o x4 = 0). The error of the ANSYS element
solution is here, locally, about 10 times larger than the one of the HT element solution.

4, CONCLUDING REMARKS

The folded plate HT p-elements presented in this paper were obtained by coupling in a single
force-displacement relationship the independent in- and out-of-plane contributions represented re-
spectively by the plane elasticity [6] and the Kirchhoff plate [9] HT p-elements. The principal
difficulty of using the Kirchhoff rather then Reissner-Mindlin plate bending theory was the C :
conformity conditions to be enforced on the out-of-plane displacement w along the common part
of the boundary of two not-coplanar panels, while permitting the in-plane shear deformation in the
corner formed by three or more generally disposed non-coplanar panels. This last feature, natural
in the Reissner-Mindlin type plate bending concept, is in the case of the Kirchhoff assumptions
only possible if use is made of a suitably modified displacement frame formulation within the HT
p-element concept. In the formulation studied in this paper, the strong requirement of conservation
of the angles in the common corner of three or more not-coplanar elements was released in order to
allow for the in-plane corner shear. The simplest practical approach to reaching this aim consisted
in replacing the customary ‘exactly and minimally conforming’ displacement frame [16] by an ‘un-
derconforming’ one, with only 3 DOF (displacements U, V, W) at the element corners while the
normal rotation ¢ was interpolated, independently of displacements, only in terms of the mid-side
node rotation parameters. As a consequence, the definition of the out-of-plane displacement com-
ponent 1 was the same as that used for the in-plane components % and . However, the definition
of the local rotation components as obtained at the element corners either from the frame function
@ or derived from 1 was no longer unique. As was shown in [9], the admissibility of such a frame
is due to the fact that the matching process between w, wg, wy and W, W, Wy indirectly tends to
enforce the missing unicity condition on the frame field since no such default exists for the assumed
internal displacement field w of the element.

The new folded plate p-elements were implemented in the FE library of the general purpose FE
program SAFE [17] and thoroughly assessed on a series of benchmark problems. These numerical
studies, of which only a part was selected for publication, have shown that the in-plane shear at
corners where three or more arbitrarily disposed not-coplanar elements meet is reliably predicted
over a large range ratios of the element thicknesses. Moreover, the solution accuracy and convergence
rate have favorably compared with the existing folded plate elements.

Though excellent HT plate bending p-elements based on the Reissner-Mindlin assumptions are
now also available [18], the main practical interest of using the Kirchhoff plate theory in the folded
plate element formulation is the simplicity of input data for specification of various boundary
conditions, the lower cost of evaluation of the element matrices (the T-complete set of internal
functions in [18] includes the modified Bessel functions, expensive to generate), and the availability
of load terms accurately representing various patch or line loads [19]. This last facility makes it
possible to accurately evaluate e.g. the moment concentrations in a box-girder bridge under the
wheels of a lorry, without mesh refinement, simply as a part of the overall analysis of the bridge.
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