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This paper presents the boundary-type schemes of the first- and the second-order sensitivity analyses by
Trefftz method. In the Trefftz method, physical quantities are approximated by the superposition of the
T-complete functions satisfying the governing equations. Since the T-complete functions are regular, the
approximate expressions of the quantities are also regular. Therefore, direct differentiation of them leads
to the expressions of the sensitivities.

Firstly, the Trefftz method for the two-dimensional potential problem is formulated by means of the
collocation method. Then, the first- and the second-order sensitivity analysis schemes are explained with
the simple numerical examples for their verification.

1. INTRODUCTION

Shape optimization problems of the structures and the machine elements are often solved by apply-
ing the gradient-type search schemes. The search schemes generally employ the first-order deriva-
tives of the object functions (sensitivities) and therefore, many researchers have been studying
the first-order sensitivity analysis schemes based on finite element, boundary element and Trefftz
methods [1-14]. By the way, some researchers have presented the search schemes using, in addition
to the first-order sensitivities, the second-order sensitivities and the second-order sensitivity analy-
sis sechemes based on the finite and boundary element methods [15-24]. The search schemes using
both first- and second-order sensitivities, as mentioned by Mlejnek [23], have faster and stabler con-
vergency property than the ordinary schemes using the first-order sensitivities alone. However, the
formulation of the second-order sensitivity analysis is very complicated and moreover, its compu-
tational cost is relatively high. For overcoming the difficulties, this paper presents the second-order
sensitivity analysis schemes by the Trefftz method. .

The Trefftz method is formulated by introducing the regular T-complete functions satisfying the
governing equations. Physical quantities are approximated by the superposition of the T-complete
functions. Since the T-complete functions are regular, the approximate expressions are also regular.
Direct differentiation of the quantities leads to the regular expressions of the first- and second-order
sensitivities.

This paper is organized as follows. Firstly, the present scheme is compared with the other
schemes based on the finite and the boundary element methods. The Trefftz method for the two-
dimensional potential problem is formulated by means of the collocation method. Then, the first-
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and the second-order sensitivity analysis schemes are explained. Finally, the schemes are applied
to the simple numerical examples in order to confirm the validity.

2. SENSITIVITY ANALYSIS SCHEMES

In this section, we shall compare the present scheme with the ordinary schemes based on the finite
and the boundary element methods (Table 1).

Table 1. Comparison of sensitivity analysis schemes

l " Solver type l Accuracy | Formulation
FEM Domain-type Lower Simple

BEM Boundary-type Complicated
Trefftz method || Boundary-type Simple

2.1. Finite element method

The finite element method is a very powerful tool for numerical analysis. Since, however, the domain
under consideration is discretized by the finite elements, the input-data generation is very difficult.
Besides, physical quantities are approximated by the linear combination of the interpolation func-
tions with nodal values. Since the interpolation functions are generally low-order polynomials of
the coordinates, the sensitivities, which are derived from the differentiation of the quantities, are
approximated by the lower-order interpolation functions than that of the original quantities. Espe-
cially, in the second-order sensitivity analysis, the interpolation functions are differentiated twice
and therefore, the relatively high-order interpolation functions have to be used for approximating
the original quantities. '

2.2. Boundary element method

Since the boundary element method is known as the boundary-type solution, the input-data gen-
eration is much simpler than the domain-type solutions such as the finite difference and the finite
element methods. The singularity of the integral equations, however, is a great difficulty. Quanti-
ties are expressed by the singular integral equations. Therefore, the sensitivities are expressed by
the hyper-singularity equations derived from the differentiation of the original equations. For the
regularization of the hyper-singular equations, we have to apply special formulations [2,5,8-11].
Such formulations, however, are very complicated.

2.3. Trefftz method

Since the Trefftz method is classified into the boundary-type solution, the input-data generation
is easier than the domain-type solutions. Quantities are approximated by the superposition of the
T-complete functions. The T-complete functions are not dependent on the shape parameters and
therefore, the accuracy of the sensitivities is not reduced by the differentiation of the quantities.
Since the T-complete functions are regular, the sensitivities are expressed by the regular expressions.
Therefore, unlike the boundary element method, they can be estimated easily without special
formulations.

3. TREFFTZ FORMULATION
3.1. Governing equation and T-complete function

The governing equation and the boundary condition of the two-dimensional potential problem are
written as follows.
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VZ2u=0 (in Q), (1)
u=1a (on Ty),

u (2)
qE%:' (on I'p),

where u and ¢ are the potential and its normal derivative on the boundary (flux), respectively.
0, T'; and I’y denote the domain occupied by the object under consideration, its potential- and the
flux-specified boundaries, respectively. 7 is the outward unit vector in the normal direction on the
boundary and () the specified value on the boundary.

The Trefftz method is formulated by introducing the T-complete functions uy,. uy, is a regular
function satisfying the governing equation:

Vii=0 (n=12,-"). (3)

The T-complete functions for the two-dimensional potential problems in the bounded region are
defined as [25-27):

u*={u1,u2,U3,---,Uzn,uzn+1,"'}T
z{l’rmejG,,rsejﬂ,_”’Tn%ejne,,r,nc\\yeine,_“}'r (n: 1’27...), (4)

where j is the imaginary unit and then, r and 6 are the plane polar coordinates whose origin is
taken arbitrarily.

3.2. Collocation formulation

The potential u is approximated by the superposition of the T-complete functions uy, with unknown
parameters an;

u~ = aut +agul + - +ayuly =alu*. (5)
By differentiating this equation with respect to the normal direction on the boundary, we have the
approximate expression of the flux
0
on
Since the above approximate solutions do not satisfy the boundary condition (2), the residuals
yield;

<

q=g =aiq} +aags+---+angy =a'q". (6)

R,

N

U —

=aTu*—a#0 onI'y,
(7)

Ry=G—G=aTq*—q3#0 onT,.
In the collocation method, the residual on the collocation point Pp, disappears. From Eq. (7), we

have

Ri(Py) =aTu*(Py) —@(Pr) =0 (m=1,...,M),

(8)
R2(Pm)=aTq*(Pm)_q(Pm)=0 (m=1,...,M2),

or
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where M; and Mj are the total numbers of the collocation points taken on I'y and I'y, respectively.
Assembling the above equations, we have

* * *
Uy Ujo Uy Uy
* * * ol
U21 U2 Uo N Us
ax
* * * S
Upnnt U2 Upp N a2 UM, (10)
* * * =5
q11 q12 aQ N qM,+1
* * * -
421 422 N an amM,+2
* * * s
L qM21 qM22 qM2N J \ IM1+M; )
or,
Kg = F (11)

where uy, (Pp,) = W, @5 (Pm) = G, 6(Prm) = tim, @(Prn) = G-

The coefficient matrix of Eq. (11) is the matrix with M (M = M; + M3) rows and N columns. If
M = N, it can be solved directly with LU-decomposition method and if M > N, the least square
method is applied to it.

4. SENSITIVITY ANALYSIS SCHEMES
4.1. First-order sensitivity analysis

We consider the first-order sensitivities of the potential and the flux with respect to the shape
parameter ;. The potential and the flux at the arbitrary point @) are approximated by Egs. (5)
and (6), respectively. While u* and q* are specified on the coordinates of @, a is dependent on
the profile of the object under consideration and the specified values on the boundary. Direct
differentiation of Egs. (5) and (6) with respect to ¢;, we have the approximate expressions of the
first-order sensitivities:

4 =alu*,

(12)
o a'qu* :
where (') = 0/0y;. & can be calculated from Eq. (11). Direct differentiation of Eq. (11) with respect
to ¢ leads to

Ka+Ka="f,
. (13)
Ka=f—-Ka.
If the specified values on the boundary are not dependent on ¢y, f =0 and therefore,
Ka= —Ka. (14)

Equation (13) or (14) is solved for a and then, a is substituted into Eq. (12) to calculate the
first-order sensitivities.
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4.2. Second-order sensitivity analysis

Differentiating of both sides of Egs. (12) with respect to ¢ again, we have the second-order sensi-
tivities:

: il
u=a u*,
; /T (15)
qg=aq",

where (') = 8/8¢py. a can be calculated from Eq. (13). Differentiation of Eq. (13) with respect to
or leads to

Ka+Ka+Ka+Ka=f,

T (16)
Ka=f - (Ka+Ka+Ka).
If the boundary condition is not dependent on ¢y, f = 0 and therefore,
Ké = —(Ka+Ké+Ka). (17)

Equation (16) or (17) is solved for 4 and then, a is substituted into Eq. (15) to calculate the
second-order sensitivities.

5. COMPUTATIONAL TECHNIQUES FOR ACCURATE SOLUTION
5.1. Condition number of coefficient matrix

The T-complete function, as shown in Eq. (4), is the power function of the distance between the
origin and the point r. The coefficient matrix K becomes near ill-posed as N and r increase.
Therefore, in this case, the system of equations can not be solved accurately. For overcoming this
difficulty, the following coordinate transformation is applied [28]:

e the object is moved parallel so that the origin is taken on the centroid, and

e the dimensions of the object are scaled up or down so that average of the distances between the
collocation points and the origin is unity.

By the above coordinate transformation, the coordinates (zi,yi) of the collocation point P; are
transformed as:

, _ Ti— ¢

Ty = D )

o Yi—Ye

Yi = _D—_‘)
where z. and 7, are the coordinates of the centroid on the original coordinates and D is the scaling
factor, which are given as:

1 M
mc:——n[ E Ty,
=1
1 M
:__2 - 19
yC Mizlyla ( )

1 M
1=1

(18)
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5.2. Corner points

The boundary points where the normal vector can not be defined uniquely and where the boundary
condition changes are referred to as corner points. In the collocation method, the collocation points
are taken on the boundary. Therefore, the placement of the collocation points on the corner points
strongly affects the accuracy of solution. This difficulty can be improved by applying “the double
collocation points”, which is often employed in the boundary element method using the conforming
elements for the same purpose.

The present method employs two kind of double collocation points; the coincident and the near-
by double collocation points. In the former, two collocation points are placed on the identical corner
point and each collocation point belongs to the different parts of the boundary. In the latter, two
collocation points are placed on the individual boundaries adjacent to the corner point. In what
follows, the former is employed at

e the points where the boundary condition changes, and
e the geometric corner point on the flux-specified boundary

and the latter at the remaining corner points.

6. NUMERICAL EXAMPLES
6.1. Heat transfer in square plate

A first example is the heat transfer in a square plate (Fig. 1). The boundary conditions are specified
as:

g=20 on segments AB and CD,
u = ug =1 on segment BC,

u = u; =0 on segment DA.

y
A
C B
=1
- X
0
|t
D ) ] _A

Fig. 1. Square plate

Figure 2 shows the placement of the collocation points for the computation. 44 collocation points
are placed uniformly on the whole boundary. 11 collocation points are placed on each segment
and then, the coincident double collocation points are on 4 corner points. Besides, 44 T-complete
functions are employed for the computation. As the shape parameter for the sensitivity analysis,
we take the distance L between the segments DA and BC.

This example is simple. We, therefore, would like to explain in detail the matrices and the
right-hand-side vectors in the initial and the sensitivity analysis processes.
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® Collocation points
O Double collocation points

Fig. 2. Placement of collocation points

6.1.1. Two-dimensional potential analysis

The collocation points are numbered counterclockwise starting from the point A. Therefore, the
collocation points 1 to 11 are taken on AB, the points 12 to 22 on BC, the points 23 to 33 on CD
and the points 34 to 44 on DA, respectively. From Eq. (11), we have

a=K~

where

1f,

*
q11 1

*
Uy2 1

*
Ug2 1

*
423 1

*
433 1

*
U3q 1

*
Ugq 1

*
a1 44

*
q11 44

*
U192 44

"
U292 44

%
423 44

*
433 44

*
U3q 44

*
Ugyq 44

\

(20)

1?22 $ (21)
g23

g33

U34

Uy |

Equation (20) is substituted into Egs. (5) and (6). The numerical results are not shown here. They,
however, well agree with the theoretical ones [13].
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6.1.2. First-order sensitivity analysis

L is taken as the shape parameter ¢;. Since the boundary-specified values are independent of ¢,
f = 0. Therefore, from Eq. (14), we have

oK
s qe—1Y9n
a=-K 3L a, (22)
where
I 0 0 1
0 0
5 Ouiy 1/OL -+ Ouj, 44/0L
K . )
oL V)
Oujy 1/OL -+ Oujy 44/0L
0 0
I 0 0 |

Equation (22) is substituted into Eq. (12).

Figure 3 shows the numerical results of the first-order sensitivities. The abscissa and the ordinate
indicate the sensitivities and the tangential coordinates ¢ starting from the point A, respectively.
The symbol A denotes the differentiation with respect to the shape parameter and then, the
superscript ex the theoretical results. The circles and the triangles indicate the numerical results of
Au and Aq and then, the solid lines their theoretical ones. The numerical results well agree with
the theoretical ones.

0.0 1.0
-0.2 H
— 0.5
AU
>
5 RN VN ki Q
- 7 0.0
-0.6 Numerical
Aq% results
-0.8 — - ® auf [[0°
A Aq
-1.0 -1.0
0 1 2 3 4

Tangential coordinate t

Fig. 3. Distribution of first-order sensitivities
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6.1.3. Second-order sensitivity analysis

L is taken as the shape parameters ¢; and . Since f= 0, from Eq. (17), we have

‘ 0’K JK Oa
Soms =1 il o
a=-K <8L2a+23L BL) , (24)

where 0K /0L and 0a/JL are calculated in the first-order sensitivity analysis and then,

0 0
0 0
52K 0%ufy /0L 0%uly 44/0L
== : : 25
dL2 R e (25)
0“u3, 1/0L 0“u3y 44/0L
0 0
0 0

Equation (24) is substituted into Eq. (15).

Figure 4 shows the results of the second-order sensitivities. The circles and the triangles indicate
the numerical results and then, the solid lines their theoretical ones. The numerical results well agree
with the theoretical ones.

0 4
A2uax
-1 A g — 2
A2qex

3 Du
o -2 0 =

-3—-4 »—-2

Numerical results
® A’u A g
4 i i =
0 1 2 3 4

Tangential coordinate ¢

Fig. 4. Distribution of second-order sensitivites

6.2. Heat transfer in thick-walled cylinder

A second example is the heat transfer in a thick-walled cylinder with inner and outer radii 7 and
ro(= 3r1), respectively. Considering the symmetry, one-eighth of the cylinder is taken as the domain
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for computation and the specified values on the boundary are (Fig. 5):

u = ug =1 on the outer wall,

u = u; =0 on the inner wall,

q=20 on the symmetric axes.
./‘/
Kd
q=0
u=uz=1
/7 \ u=ui=0
e
7
0 (o NN . ]

q=0
4]

I2

Fig. 5. Circular cylinder

The collocation points are placed uniformly on the whole boundary (Fig. 6). Total number of the
collocation points are 100; 36 collocation points on the outer wall, 18 on the inner wall and 23 on
each symmetric axis, respectively. The coincident double collocation points are placed on 4 corner
points. Besides, 100 T-complete functions are employed for the computation. The outer radius ry
is considered as the shape parameter for the sensitivity analysis.

® Collocation points
O Double collocation points

Fig. 6. Placement of collocation points

6.2.1. First-order sensitivity analysis

Figure 7 shows the results of the first-order sensitivities of the potential v and its derivative in
the r-direction u,. The abscissa and the ordinate indicate the sensitivities and the r-coordinates
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0.0 0.0

-0.1 [ Au® — -0.1

AU

X
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-0.3 - \\ 03
-0.4 - INumerical results \" e

® AU A AU

-0.5 ; . -0.5
1.0 1.5 2.0 2:5 3.0

rir,

Au

Fig. 7. Distribution of first-order sensitivities

non-dimensionalized by 1, respectively. The circles and the triangles indicate the numerical results
of Au and Awu, and then, the solid lines their theoretical ones. The numerical results well agree

with the theoretical ones.

6.2.2. Second-order sensitivity analysis

Figure 8 shows the results of the second-order sensitivities. The triangles and the circles indicate
the numerical results of A2u and A2q and then, the solid lines their theoretical ones. The numerical
results well agree with the theoretical ones.

0.0 5 0.0
Azu ex
-0.1 y
/-— -0.2
-0.2
’ eax
3 AU >,

o, -0.3- —-0.4 ¢
-0.4 — \<
— -0.6
-0.5 —| |Numerical results |

® Au A Azu,

-0.6 i I -0.8
1.0 1.5 2.0 2.5 3.0

r/r,

Fig. 8. Distribution of second-order sensitivites

7. CONCLUSIONS

This paper presented the first- and the second-order sensitivity analysis schemes based on the
Trefftz method. The physical quantities are approximated by the superposition of the regular T-
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complete functions. The expressions of the first- and the second-order sensitivities were derived
from the direct differentiation of the original quantities. Since the T-complete functions are not
dependent on the shape parameters, the accuracy of the sensitivity analyses is not reduced by the
differentiation. Besides, the T-complete functions are regular and therefore, the sensitivities can be
estimated more easily than the ordinary boundary element method using the singular fundamental
solution. Finally, the present methods were applied to the shape design sensitivity analysis of
the two-dimensional potential problems. The numerical results well agree with the theoretical ones.
Therefore, we can conclude that the present formulation is verified. By the way, although we consider
here the problems with only one design variable as the numerical examples, the present schemes
can be easily applied to the problems with more variables. In this case, however, the computational
cost may become expensive. For overcoming the difficulty, we now plan to implement the present
scheme on the parallel computer systems.
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