Computer Assisted Mechanics and Engineering Sciences, 4: 491-500, 1997.
Copyright © 1997 by Polska Akademia Nauk
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The paper propose two adaptive algorithms based on a Trefftz method for two-dimensional Laplace equa-
tion satisfying the maximal principle. First one for given the error tolerance and an initial number of
terms in the solution expansion, the algorithm computes expansion coefficient by location of boundary
conditions and evaluates the maximum absolute error on the boundary. If error exceeds the error the tol-
erance, additional expansion terms and boundary collocation points are added and process repeated until
the tolerance is satisfied. The second one is based on Galerkin formulation of Trefftz method and utilizes
the exact potential error norm for predict a new mesh and new solution expansion until the tolerance is
satisfied.

1. INTRODUCTION

A successful application of various self-adaptive techniques in FEM and BEM prompted attempts
to use them also in the Trefftz method [1-5], with the hope of overcoming some numerical difficulties
inherent in this method.

One of the problems encountered when using the Trefftz method is the selection of a number
of trial functions used in the approximate solution. If the number of trial functions is small, the
accuracy of the solution my be unsatisfactory; on the other hand too large a number of trial
functions may lead to ill-conditioned system of the linear equations from which function multipliers
are determined. This phenomenon is common for all versions of the Trefftz method. In the case
of using the boundary collocation method, one may be confronted with an additional difficulty,
which is the so called Runge phenomenon. It manifests itself in the occurrence of great errors in
satisfaction of the boundary conditions between the collocation points, despite the fact that at the
collocation points themselves, the conditions are fulfilled exactly.

~ The numerical difficulties mentioned above can be avoided by using some adaptive versions of the
Trefftz method. Two such versions are proposed in this paper. They are intended for solving the two-
dimensional Laplace equation satisfying the maximal error principle. In the first version, for a given
error tolerance and for initial number of terms in the solution expansion, the algorithm computes
the expansion coefficients by the collocation of boundary conditions and evaluates the maximum
absolute error on the boundary. If the error exceeds the error tolerance, additional expansion terms
and boundary collocation points are added and the process repeats until the tolerance is satisfied.

The second version is based on the Galerkin formulation of the Trefftz method and utilises the
exact potential error norm for predicting a new mesh and new solution expansion until the tolerance
is satisfied.
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2. VERSIONS OF TREFFTZ METHOD USED IN ADAPTATION

We consider the two-dimensional potential problem. The governing equation and the boundary
conditions, expressed in the polar co-ordinate system (R,#) are
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where @ is the potential function. @ and g are the specified values of the potential and of its normal
derivations, respectively. €2 is the domain occupied by the object, while I'y and I'y are the parts of
boundary (I' = I'; + I's). n denotes the outward unit vector, normal to the boundary.

For the Trefftz method the potential ® is approximated by superposition of a finite number of
the T-compete functions N;(R,6) (i =1,...,n), each multiplied by a coefficient a;
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The set functions N;(R,0) are adopted in a manner that they satisfy the harmonic equation
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The undetermined coefficients a;, in turn, are calculated in a way that guarantees approximate
satisfaction of the boundary conditions. Depending on how the trial functions are constructed and
how the boundary conditions are satisfied, several versions of the Trefftz method can be distin-
guished. In presentation of our adaptation procedure we will consider only two versions, namely:
a) boundary collocation method, b) boundary Galerkin method.

Before proceeding to a detailed discussions of the two methods let us specify the residuals on
the boundaries. They are of the form:
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The first one is obtained by substituting Eq. (4) into Eq. (2). The second one results from substi-

tuting the approximate normal derivative
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into Eq. (3).

2.1. Boundary collocation method

In the boundary collocation method we require vanishing of the residuals R; and Ry at some
selected points belonging to boundaries I'; and I's.



Self-adaptive Trefftz procedure for harmonic problems 493

For M, collocation points selected on boundary I'y this requirement has the form
Za'l ] :—SE(P)v Pj€F17 j:]-)"'aMlu (9)

while for My collocation points on boundary I'y it is
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If n = M; + M, the equations (9)—(10) for a sufficient basis for determining the searched coeffi-
cients a;.
2.2. Boundary Galerkin method

Introducing the weighting functions W; and Wj of residuals (6) and (7), respectively, we can form
the weighted residual equation

/ WiR, dF+/ WRydl' = 0. (11)
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If we choose W7 and Wy as follows: W; = %i and Wy = —Nj then Eq. (11) becomes
n
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where
By = /F1 aaNnJN dr — NJ 88N dar, (14)
fro= 5 aaNnJ—dF / Njgdr. (15)

It is easy to recognise that Eq. (12) reflects the essence of the Galerkin method.

3. ADAPTIVE ALGORITHMS

To measure the quality of the approximate solution (4) one must utilize an appropriate norm
of error which will provide a scalar measure of the distance between the exact and approximate
solutions. Here, as a norm, we adopt the maximal absolute distance between the exact solution ®
and the solution ®

ERR; =max | ®—®|. (16)

According to the maximal error principle [6], the maximal error for boundary method applied to
the Laplace equation, occurs at the boundary.

For the examples considered below the maximal error ERR; is found by incremental search in
200 equally distributed control points on this part of boundary where boundary condition is fulfil
approximately. ¢
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3.1. Boundary collocation method

The maximal error in the boundary collocation method is a function of a number of trial functions n
(number of collocation points) and co-ordinates of collocation points. Consequently, the adaptation
procedure should minimise the error by searching for the optimal position of collocation points and
by optimisation of their number. In general, the optimisation of the co-ordinates of the collocation
points when their number n is fixed, is a relatively complicated nonlinear problem. On the other
hand, by increasing a number of collocation points with the fixed co-ordinates, in the end, we get
ill-conditioned set of linear equations (9)—(10).

Some simplifications of the above nonlinear problem can be achieved by using the followmg
adaptive collocation algorithm:

Step 1. Choose an initial number of expansion terms (trial function) n in approximate solution (4).

Step 2. Input the error tolerance TOL, and T'OLy of satisfaction of boundary conditions (2) and
(3), and choose M; and My (n = M; + Ms) which are the initial numbers of equidistant
collocation points on boundary I'; and I'g, respectively.

Step 3. Find an approximate solution (4) to the problem by collocation on points chosen in Step
2, by solving the equations (9)—(10).

Step 4. Evaluate the approximate solution at test points along the boundary. Find the maximum
absolute error ERR; and its location LOC; on I'j and maximum absolute error ERRy and its
location LOC5 on T's.

Step 5. If ERR, > TOL; and ERRy > TOL,, then introduce additional collocation points at the
locations LOC, and LOC5, update the number of equations n = n+2, and find the approximate
solution by collocation of the boundary conditions. Otherwise terminate the calculations and
output the results.

Step 6. Repeat Step 4.

3.2. Boundary Galerkin method

The maximal error in the Galerkin method is a function of the number of trial functions and of the
integration procedure applied at the boundary. In boundary integration we choose some number
of boundary elements and some number of integral points using the Gauss quadrature on element.
The purpose of the proposed adaptive algorithm is the optimisation of the number of trial functions
and of the number of boundary elements. The number of Gauss quadrature points is prescribed
and is not subjected to optimisation.

The adaptive algorithm for Galerkin method consists of the following steps:

Step 1. Input: INN - initial number of trial functions, INNI — initial number of boundary ele-
ments, NIM A — maximal number of boundary elements, M M AX — maximal number of trial
functions, TOL - error tolerance of satisfaction of boundary conditions, TOL1 - maximal dif-
ference between two following values of integrals.

Step 2. Calculate K;;, f; and solve linear set of equations (13)
Step 3. Find the maximal error of satisfaction of boundary condition ERR.
Step 4. If ERR < TOL then terminate the calculations and output the results, else

Step 5. f INN > MMAX or INNI > NIMA then stop, else
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Step 6. If difference between the last two errors ERR is greater than TOL1, then INNI = INNI+
1 and go to Step 2 adding one more boundary element else

Step 7. Substitute initial value for the number of element INNI, i.e. INNI = INNI + 1 and go
to Step 2 adding one more trial function.

4. TEST PROBLEMS

In this section, the proposed adaptation algorithms are used for solving two test problems. In all
these problems, special trial functions which fulfil not only governing equation but also boundary
condition on some part of boundary are applied [7].

In order to evaluate the conditioning of the linear set of equations (13) the following measure is
used:

1 o
B = EIIBII B~ (17)
where
n n
Bl =, |>_ > b (18)
1=19=1
Problem 1

Saint-Venant torsion problem of a square rod

The cross-section of the rod under consideration is shown in Fig. la. Because of multiple sym-
metry of the cross section of the bar, the torsion problem can be considered for a selected repeated
element of the section. The element itself, as well as its boundary value problem, are presented in
Fig. 1b.
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Fig. 1.

Let us assume the approximate solution for the repeated element in the following form:

n
& =3 agR**D cos(4(k — 1)6) . (19)
k=1
This solution fulfils exactly not only the differential equation, but also boundary conditions:
0P T
%—0 for 6=0 and for O—Z. (20)

The only condition that is satisfied approximately is that related to segment AB:



496 J.A. Kotodziej and R. Starosta

1
<I>:—§R2:O for X=1, 0<Y<1. (21)

The behaviours of maximal local errors as a function of number of trial functions for three
versions of the method, namely: (1) collocation method with equidistant collocation points, (2)
collocation method with adaptation and (3) Galerkin method with adaptation are shown in Fig. 2.
One can observe that for the first method, the maximal local error decreases with the increase of the
number of collocation points monotonically. However, this takes place only below a critical certain
number of collocation point. With the increase of the number collocation points the condition
number increases, what is shown in Table 1, and set of linear equations is ill-conditioned. At
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Fig. 2. Maximal local error as a function of number of trial function for problem I. 1 - collocation method with
equidistant collocation points, 2 — collocation method with adaptation, 3 — Galerkin method; (For collocation
method the number of trial function is equal to the number of collocation points)

Table 1. Maximal local error ERR; and condition number 3 versus of number of collocation points n

n | COLLOCATION | CONDITION || n | COLLOCATION | CONDITION

ERROR ERR; NUMBER g ERROR ERR, NUMBER g
3 0.62752E — 02 0.53319E + 01 || 30 0.18000E — 04 0.12639E + 22
6 0.83438E — 03 0.15193E + 03 || 33 0.13975E — 04 0.73676E + 24
9 0.29524E — 03 0.60685E + 04 || 36 0.69075E — 05 0.44576E + 27
12 0.14687E — 03 0.31583E + 06 || 39 0.92770E — 05 0.27825E + 30
15 0.86792E — 04 0.51692E + 08 || 42 0.90482E — 05 0.17836E + 33
18 0.57066E — 04 0.19657E + 11 || 45 0.21096E — 05 0.11697E + 36
21 0.39744E — 04 0.87759E + 13 || 48 0.18280E — 04 0.78251E + 38
24 0.29588E — 04 0.43058E + 16 || 49 0.22470E — 04 0.68708E + 39
27 0.22938E — 04 0.22685E + 19 || 50 0.55810E — 03 0.60451E + 40
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large number of the collocation points errors increase and oscillate. When we use the adaptation
techniques, the maximal local error, in general, is less than in the version without adaptation, but
it oscillates.
Problem II
Potential flow past circular cylinder placed between parallel walls

In the analysis presented, the infinite region of the flow is replaced by a finite region indicated

in Fig. 3a by the broken line. The formulation of the boundary problem for the repeated element
the selected finite region is shown in Fig. 3b.

a) b)

y“ YA
LLLLLLLIALLLLLLL) ®=1
—ﬁ_> \ @ |=0
s L Vo=0 -y
: 2 D=0
7777777777777 777 E ®=0 2 X

Fig. 3.
The approximate solution for the considered element has been assumed in the form:
n
b=3a (R*" - E2(2’°_1)R1'2k) sin((2k — 1)6) . (22)
k=t

This solution fulfils exactly the differential equation and the boundary conditions:

=0 for R=FE andfor 0=0, (23)

0P ™

— = f =—. 24

50 0 or 0 5 (24)
The only two conditions satisfied approximately are:

d®=Y for X=2, 0<Y<LI1, (25)

d=1 for Y=1, 0<X<2. (26)

Results of the maximal local error and the conditioning index for this problem are shown in
Fig. 4, Fig. 5 and Table 2.

5. CONCLUSIONS

From the present study the following conclusions can be drawn.

(1) In contrary to the adaptive boundary element method or adaptive finite element method, in
the adaptive Trefftz method (both in the collocation and Galerkin’s versions), the error estimator
does not need to be used. Firstly, it is known from the maximum error principle that the maximal
error occurs at the boundary, secondly, the solution is given in the explicit form that enables one
to determine the maximal error in a simply way by incremental searches.
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Fig. 4. Maximal local error as a function of number of collocation points for problem II for boundary ¥ = 1.
1 - collocation method with equidistant collocation points, 2 — collocation method with adaptation
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Fig. 5. Maximal local error as a function of number of collocation points for problem II for boundary X = 2.
1 - collocation method with equidistant collocation points, 2 — collocation method with adaptation
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Table 2. Maximal local error ERR; and condition number (3 versus of number of collocation points n

FOR EDGE X =2 FOREDGEY =1

n | COLLOCATION | CONDITION (| n | COLLOCATION | CONDITION

ERROR ERR; NUMBER 3 ERROR ERR; NUMBER g
6 0.1404E + 00 0.1297E + 04 6 0.7397E — 01 0.1297E + 04
9 0.1072E + 00 0.1066E + 06 9 0.4838E — 01 0.1066E + 06
12 0.9025E — 01 0.8972E + 07 || 12 0.3643E — 01 0.8972E + 07
15 0.8242E — 01 0.9900E + 09 || 15 0.3033E — 01 0.9900E + 09
18 0.7995E — 01 0.3249E + 12 || 18 0.2718E — 01 0.3249E + 12
21 0.8070E — 01 0.1431E+15 | 21 0.2581E — 01 0.1431E + 15
24 0.8379E — 01 0.3343E + 16 || 24 0.2516E — 01 0.3343E + 16
27 0.8833E — 01 0.2260E + 18 || 27 0.2516E — 01 0.2260E + 18
30 0.9393E — 01 0.3978E + 20 || 30 0.2504E — 01 0.3978E + 20
33 0.1002E + 00 0.4950E + 22 || 33 0.2578E — 01 0.4950E + 22
36 0.9128E — 01 0.2028E + 25 || 36 0.2251E — 01 0.2028E + 25
39 0.4962E — 01 0.1404E + 28 || 39 0.1261E — 01 0.1404E + 28
42 0.8124E + 00 0.6491E + 29 || 42 0.1944E + 00 0.6491E + 29
45 0.2153E + 00 0.3572E + 33 || 45 0.5315E — 01 0.3572E + 33
48 0.5243E — 01 0.7097E + 33 || 48 0.1867E — 01 0.7097E + 33
51 0.1254E — 01 0.1721E + 37 || 51 0.2378E — 02 0.1721E + 37
54 0.1148E + 00 0.2936E + 39 || 54 0.8251E — 01 0.2936E + 39
57 0.7868E — 01 0.2480E + 43 || 57 0.7868E — 01 0.2480E + 43

(2) For the boundary collocation method with equidistant collocation points, the maximal lo-
cal errors initially decrease monotonically with the increase of the number of collocation points.
After passing a critical number of the collocation points, such behaviour fails to continue and the
errors increase and oscillate. The reason for that behaviour is the worsening of the equation set
conditioning with increase n.

(3) In using the adaptive collocation method, the maximal local error, in general, decreases with
the increase of the number of collocation points but not in a monotonic way. One can observe
oscillations, but in principle the error in the adaptive version of the boundary collocation method
is lesser then in the version with equidistant collocation points. Moreover, in the adaptive version,
error is controlled in the calculation process and calculations can be stopped if the error in several
consecutive adaptation cycles increases.

(4) Similarly as in the boundary collocation with equidistant collocation points, for the boundary
Galerkin method the maximal local errors initially decrease monotonically with the increase of the
number of trial functions. After passing a critical number of the trial functions, such a behaviour
fails to continue and the errors increase and oscillate. In the adaptive boundary Galerkin method,
the maximal error depends on the number of the trial functions significantly more than on the
number of the boundary elements. Thus, in the adaptation process the basic problem resides in
finding the optimal number of trial functions using a reasonable number of the boundary elements
and reasonable number of points in the Gauss quadrature.
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