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The purpose of the paper is to propose of a way of constructing trial functions for the indirect Trefftz
method as applied to harmonic problems possessing circular holes, circular inclusions, corners, slits, and
symmetry.

In the traditional indirect formulation of the Trefftz method, the solution of the boundary-volume
problem is approximated by a linear combination of the T-complete functions and some coefficients. The
T-complete Trefftz functions satisfy exactly the governing equations, while the unknown coefficients are
determined so as to make the boundary conditions satisfied approximately.

The trial functions, proposed and systematically constructed in this paper, fulfil exactly not only the
differential equation, but also certain given boundary conditions for holes, inclusions, cracks and the
conditions resulting from symmetry. A list of such trial functions, unavailable elsewhere, is presented.
The efficiency is illustrated by examples in which three Trefftz-type procedures, namely the boundary
collocation, least square, and Galerkin is used.

1. INTRODUCTION

The concept of the Trefftz method consists in the application of analytically derived trial functions,
sometimes called T-functions, identically fulfilling certain governing differential equations inside
and on the boundary of the considered area. The most popular trial functions are those known as
Herrera functions or T-complete Herrera sets of functions [2-5]. For two-dimensional problems of
the Laplace equation, for bounded Q* and unbounded Q™ regions, they are of the form

Ot ~{LRe(2™), m(2*); m=1,23.:.}, (1)
0 — {1n (ac2 +y2) Re(z™™), Im(z"); n= 1,2,3,...}. (2)

The purpose of this paper is to propose a way of constructing some trial functions for application
of the indirect Trefftz method to solution of harmonic problems related to domains possessing
circular holes, circular inclusions, corners, slits, and symmetry. The advantage of the proposed trial
functions is that they fulfil exactly not only the differential equation, but also certain boundary
conditions for holes, inclusions, cracks and the conditions resulting from symmetry.

The derivation of the trial functions is based on the general solution of two-dimensional Laplace
equation in polar co-ordinate system

o(r,0) = Ao+ 410+ A0Inr+ Y (Bur'" + Cor ™) cos(Anf)

n=1

o0
= Z (D,ﬂ“)‘" + Enr")‘"> sin(Ap0). (3)
n=1
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In the classical Trefftz method, the unknown coefficients of the trial functions are calculated
from a variational principle that takes into account boundary conditions on the whole boundary.
In this paper three Trefftz-type procedures, namely the boundary collocation, least square, and
Galerkin is used. The last one can be recognised as the traditional Trefftz method.

2. TREFFTZ METHOD. THREE INDIRECT APPROXIMATIONS

Consider the governing equation and boundary conditions in the form:

VZp =0 in Q, (4)

=0 on Ia, (5)

0

2£=7 om Iy (6)
where V2 is the two-dimensional Laplace operator, ¢ is the unknown function, g—z is the normal

derivative, ® and q are given functions and I' = T'; + I's.
The weak formulation of the boundary-value problem (4-6) can be expressed in the weighted
residual form as follows

/szfdeJr/ Wl(cp—w)dm/ W, (@’i—q) dr =0, (7)
Q I Ty 8'n,

where W, W, and W, are weighting functions.
When using the Trefftz method, the solution of the boundary value problem (4-6) is approxi-
mated by a set of complete and regular functions

n
=) a;N, (8)
1=1

where a; are the undetermined coefficients, and N; are “trial” functions chosen so as to satisfy the
equation

V2N; = 0. (9)

Substituting (8) into (7), we get

[ w S aii— ar+ [ w T
I' ' =1 o ¥ 1) 2 i1 ! on

Depending on the selected weighting functions W7 and Wo, one obtains various variants of the Tre-
fftz method. In what follows, three variants that can easily be identified as the boundary collocation,
least square, and Galerkin methods are discussed.

- q) dr = 0. (10)

2.1. Boundary collocation method

Adopting
W1=5(P])a I)J'EF]_, j=1...,m, (11)
W2:5(Q1)7 QjEFQ, j=17"'am2a (12)

where 6(P;) and 6(Q;) are the Dirac delta functions, and n = m; + mg, we get the boundary
collocation method. System of linear equations for unknown coefficients a; is in the form:
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Zaz j) =9(F;), Pj€eTn, (13)
2, 9N; 3.
¥ g é(Q i) _ 9(Qj), Qj€Ts. (14)
i=1 A
2.2. Least-square-method formulation
When W, and W5 are adopted in accordance with Eq. (15),
ON;
W1=N1 and Wz—a— j=1,...,'l’l, (15)
on’
Eq. (10) becomes
/ (ZazN go) dF+a/ (Z )dI‘:O, R s (16)
I i=1
giving the least-square formulation of the problem.
The matrix form of Eq. (16) is
KA =f, (17)
where
ON; BN
= N;N;dr 18
B / he /1*2 on Bn (18)
N‘
fi = Nj¢dF+a/ %ﬁdP (19)
I

T, On

with a being the weighting parameter that preserves the numerical equivalence between the first

and the second terms of the above equation.

2.3. Galerkin formulation

Taking
N.:
W1=£9——l and W2=—-Nj, j:l,...,n
on

and substituting them to Eq. (10) we get the Galerkin formulation:

ON; " 9N,
/Fl - <Za,N (p) dr'= /ZN]- (;aia

Matrix form of Eq. (21) is

KA =1,
where
ON; ON;
P r—
Kj; v n —=N;d NJ o dr,
ON; _

i = —2pdl’ — N;qdI'.
fJ Iy ango T, ]q

-—6> dl'=0, j=1,...,n

(23)

(24)
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3. CONSTRUCTION OF TRIAL FUNCTIONS
3.1. Bounded region with L axes of symmetry
Consider the simply-connected region whose geometry and boundary conditions are symmetric

with respect to L axes of symmetry (see Fig. 1a). We will discuss the trial functions for repeated
element, bounded by two consecutive lines of symmetry, as shown in Fig. 1b.

X
a) b)
Fig. 1.
Boundary conditions resulting from symmetry have the forms
g—(g =) for g=0, (25)
%—(g =0 for 0= % (26)

Differentiating solution (3) and making use of Eq. (25), we get

0 — _ .
a_(’g - = A; +Aslnr — Z An (B,ﬂ)‘" + Cpr A”) sin(\,,0)

n=1

o0
+ Z i (Dnr)‘" + Enr_)‘"> cos(A,0) =0

n=1
from which one can deduce that

Ay =D, =E, =0.
Since the solution must be limited for r = 0, then

Ay =0C, =0.

Thus we have

o0
p= Z AL cos M\, 0.

n=1
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The solution may be further specified by using (26):

bd =— OOE AnAnr*»~Lsin(\ z) =10
- n n n -
00 6=1 o L
from which

Ao=Ln, where n=123,...
Hence, the final form of exact solution is
o0
= Z AprP=1 cos[L(k — 1)0]. (27)
k=1

After truncating the infinite series present in Eq. (27) to n first terms, we get the approximate
solution

n
¢ = a;iNi(r,0), (28)
i=1
where
N = 1,

N; = rHDeos[L(i —1)0], i=2,3,...

are the Trefftz functions for considered case.

3.2. Region with L axis of symmetry and circular central hole

Consider the two-connected region, symmetric with respect to L axes, with the circular hole as
shown in Fig. 2a. Let the boundary conditions are also symmetric and, moreover, let potential on
cylinder be constant. The repeated element for this region is shown in Fig. 2b.

~—

~

Fig. 2.
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The boundary conditions resulting from the constant potential on inner cylinder, having radius
E, and from the symmetry conditions are as follows

p=1 for r=E, (29)

dp

% =0 for 0 = O, (30)

Oy T

AP —_—— 31

90 0 for 0 T ( )
From condition (30)

8—('0 =A;+ Azlnr i An (Dnr'\” + Enr_)‘”) = 0.

80 0=0

n=1

So
A1 =Dy =E, = (.
From condition (31)

d¢ - A =X ¥ w2 n
— :_Z)‘" Bpr' 4+ Cpr™ " ) sin \,— =0,
)\n% =Tn,
A = Ln.
So, now

o0
o(r,0) = Ag + Az lnr + Z (Berk + Ckr_Lk) cos Lk#.
k=1

Using condition (29) we receive

o0
(E,0) = Ay + A nE+ Y (BeE™ + CLE~) cos Lk = 1
k=1
and

Cr=—BE* and A+0+A;InE =1,

AO =1- A2 InFE.
Finally, we get the exact solution in the form
r o0 Ik E2Lk
o(r,0) =1+ A In = + kglAk P e cos(LkB). (32)
The approximate solution, obtained after truncating the infinite series, is
n
¢=1+Y aiNy(r,6), (33)
i=1
where
r
Ny = In—
1 n E7
. E2L(i—1) . )
Ni = (T‘L('L 1) _ TL(—z:i)—- COS[L(Z m— 1)9], 1= 2,3,4, -

are the searched Trefftz functions for the case considered.
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3.3. Region with corner

Consider the simply-connected region having the shape of an angular sector, with a vertex angle
2a, as shown in Fig. 3a. Assume that the potential on two sides of angle is equal to 0 and, that the
angular sector has symmetry.

As a repeated element let us assume the wedge shown in Fig. 3b. The boundary conditions for
the wedge are

e -

a) b)
Fig. 3.

0

a—(g =0 fOI‘ 6= 0 (34)
and

=0 for O=a. (35)
After similar considerations as in sections 3.1 and 3.2 one obtains

o
_ E@k-1) oog [ (o — ] 36
7 kZ::lAkTZ cos[za( 1)0| . (36)

Consequently, the approximate solution is of the form
n
¢ =Y a;iNi(r,0) (37)
=1
with the Trefftz functions as follows

i) g | (9 ] =
N; =r2 cos[2a(2z 18, i=1523...

3.4. Region with a corner and a cylindrical cutting

Consider region shown in Fig. 4.
For this region, approximate solution is

@ =Y a;Ny(r,0) (38)
i=1

with the Trefftz functions given by

) 7r21‘—-1 4
™ 2i— a 21—
Ni:(y«izal————Eﬂi_l)cosKg ! 1)9}, 1=1,2,3,...
rr e «a




508 J.A. Kolodziej and A. Uscilowska

Fig. 4.
3.5. Corner with a jump of potential at the corner

Consider the region shown in Fig. 5.

with the Trefftz functions N;(r,0) defined as follows

N; = r2igin (L‘&), i=1,2,3,...
«

3.6. Region with L axis of symmetry and a circular central hole without source inside

Consider two-connected region with L axes of symmetry. The inner boundary is circular, with
radius equal to E (see Fig. 6). Assume that boundary conditions are symmetric and the potential
on cylinder is constant and fulfils integral relation (43).

Boundary conditions are

© =Yg for r=2EFE, (40)
Op

56 = O fOI‘ 9 = O, (41)
op

is
s A f —
56 = or 6=, (42)
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(p,9=0 2
Vo =0
y 1 i
L
: 9=
0
| E (p,9=0
Fig. 6.
2T 8‘)0
- df = —7E. 43
/0 90 |, " (43)
The approximate solution is of the form
¢ = o+ Y ailNi(r,0), (44)

=1

where the Trefftz functions are given by

K (ru - Ew) cos(Lif), i=1,2,3
i = L ’ I

3.7. Region with a circular inclusion and one symmetry axis

The region of this type can be encountered when considering the thermal problem in a fibrous

composite.

3.7.1. Composite with perfect contact

In the case of perfect thermal contact between a fibre and matrix, the boundary conditions are:

dor

= = <r<

20 0 for 0=0, 0<r<E,

8@11:0 for 6=0 E<r<l1

00 ), =LA
s

or =1 for 6:57 0<r<E,
s

e =1 for 0:5, E<r<1,

s

Pr = QIr for 030357 r.= B,

o1 dp11 ™

—— = F f << -, r=E.

The exact solutions which satisfy the above boundary conditions are of the form:

(45)
(46)
(47)
(48)
(49)

(50)
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(p =1 2 ‘\\‘\\
= V (pn=0 AN .
(pI= I \ \\k\
¢, =F o
\\\
0] =1 2 r \\
I V (pI=O :\
\\\
\ll
|
\
/\(—) Py =0 (pn,e=0 i
X
E
Fig. 7.
for the fibre
or=1+ Z Agr?*=1 cos[(2k — 1)6], (51)
k=1
for the matrix
4k—2
wrr=1+ Z (1+F)yr?* 14 (1 - F)——- —e | cosl(2k — 1)6). (52)
The approximate solutions are
n
¢r =1+ aiN/(r,0) (53)
i=1
n
()ZII =1+ Z a'iNiII(Ta 0)7 (54)
i=1
where
N} = % 1lcos[(2i —1)0], i=1,2,3,...
1 _ 4i—2
NH = 5 (1+F)r2’"1+(1—F)72i—_—1— cos[(2 —1)6], i=1,2,3,...

are the Trefftz functions for the fibre and matrix, respectively.

3.7.2. Composite of three components, all with perfect contact between constituents
The boundary conditions for this case are as follows
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H/2
E
Fig. 8.

%:o for =0, 0<r<E-H/2 (55)
%‘%1:0 for 6=0, E-H/2<r<E+H)/2, (56)
oprrr B
W_O for 9——0, E+H/2ST§1, (57)
or=1 for 0=3r2-, 0<r<E-H/2, (58)
orr =1 for 9:%, E-H/2<r<E+H)/2, (59)
orrr =1 for 6= g E+H/2<r<]1, (60)
wr =1 for Ogﬁgg, r=FE—H/2, (61)
D11 = Prit for 0<6< -;3 r=E+H/2, (62)
A1 oprr T
ar Far for 0__9_2,7" E - H/2, (63)
Qo _ poemr g 0<o< ™ r=E+H (64)
or or =T=g

The exact solutions which satisfy the above boundary conditions are of the form:
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for the fibre

pr=1+ Z Apr®* =1 cos[(2k — 1)6],
k=1

for the intermediate layer between fibre and matrix

E —-H/2 4k—2
orr =1+ Z (14 F)r?*=1 41— F)%] cos[(2k — 1)6),
for matrix
E—H/2\*7?] 4,

2
cos[(2k — 1)0).

The approximate solutions are
n
Pr =1+Za¢N (’I‘ 9)
i=1

n
err =1+ ZaiNi”(’r, 0),
1=1

n
Grrr = 1+ Y a;NM(r,0),
1=1
where

NI = r%7leos[(2i —1)6], i=1,2,3,...,

NI :% (1+ F)r*1 4+ (1—F)(—§-_-£—§——-W] cos[(2i— 1)8l, 4=1,2,3,...,
41
NIT = i{ (1+F)(1+U)+(1-F)(1-0) (%‘%) ]r%"l

xecos[(2i—1)0], i=1,2,3,...

are the Trefftz functions for three components of the composite

3.7.3. Imperfect contact between fibre and matriz

(1+F)(1-U) <E + g)%_? +(1-F)(1+U) (E - £>4H] r(?’c—l)}

a+ra-0 5+ oo paro (p- g)“’] T—<2i—1>}

(65)

In the case of imperfect thermal contact between a fibre and matrix, the boundary conditions are:

0pr

— p— < <
20 =0 for 6=0 0<r<E,
_(9 L =00 for 0=0, E<r<lI,

00

(71)

(72)
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(pn=1 \Y (pnz()
=G =09y
N
5 (pl,r - (pH,r
o 2
¢ =1 \% ¢=0
/\6 P =0
E
Fig. 9
T
pr=1 for 9=§,OST‘SE,
T
err =1 for 9=§,E§r§1,
Oy m
G- =1 —¢r1 for 0<60<_, r=E,
or 2
dpr  Oprr ™
F(,)T o for 0_0_2,r E

The exact solutions which satisfy the above boundary conditions are of the form:

for the fibre

@1 =1+ Apr® ! cos[(2k — 1)6],

k=1
for the matrix

_ — , 1 2%k—1
orr = 1+ ;Akg {L+F-(k-1)G]r

+E%1[1 - F — (2k —1)G] r~ ¥~ cos[(2k — 1)6].

The approximate solutions are

n
orr =14 ZaiNi”(r, 0),

i=1

n
@r =1+ aN/
i=1

(r,0),

(77)
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N} = % leos[(2i —1)0], i=1,2,3,...,
1 .
N = {1+ F - (2i - 1)G]r¥!
+EY4-2 [1—F— (2 —1)G] T—(2i—1)} cos[(2: —1)8], i=1,2,3,...

are the Trefftz functions for the fibre and matrix, respectively.

4. NUMERICAL EXAMPLES OF APPLICATION OF SPECIAL KIND OF T-FUNCTIONS

In this section the three versions of the Trefftz method discussed above, are applied to two-
dimensional problems governed by the Laplace equation. The problems include a variety of ge-
ometry ranging from simple rectangular form to curved shapes and arbitrary quadrangles.

In order to compare efficiency of the three versions, we adopt as an error index, the maximal
distance between the approximate solution ¢ and the exact solution ¢:

ERR = max | — ¢| (81)

The maximum error my be expected to occur on the boundary according to the maximum principle
(see [1]).

For the examples considered below the maximal error ERR is found by incremental search in
200 equally distributed control points on this part of boundary where boundary condition is fulfilled
approximately.

4.1. Torsion of regular polygonal bar

Consider a regular polygonal bar with L sides. A repeated element for this bar is shown in Fig. 10.

¢="05r ?

Fig. 10.

The boundary value problem for the repeated element can be formulated as follows

Vip=0 in 0<z<1, 0<y<z-tgh (82)
with the boundary conditions

Op

560 = 0 for 6=0, (83)

Oy T

% =0 for 6= E, (84)

0.5r2  for 0<f< = ! (85)

= —{. f— r= —

# - - L cosf’

where r = (2% + ¢?)1/2, 0 = arctg(y/z).
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In accordance with the discussion carried out in section 3.1 the approximate solution of this
problem is given by

P = zn: apr?*=1 cos[L(k — 1)8).
k=1
The matrices and right hand vectors for three considered methods are presented below.
A. The collocation method
K, = r7* Y cos[L(k - 1)8;], ' (86)
fi = —05f2, L
where rj, §; are equidistant collocation points at boundary = = 1.

B. The least square method

T cos[L(j — 1)8] cos[L(k — 1)6]
Kj, = /0 (cos0)LG-D  (cos )LD de, (88)
o - cos[L ()]
fi =08 / (cos §)LG-D+2 Tl B

C. The Galerkin method

. T cos[(L(j —1) — 1)8] cos[L(k — 1)6]
Kjk = L(j - )/0 (cos 6)LG-1)-1 ' (cos §)L(k-1)

dé, (90)

—0.5L(j — 1) /0 B COS([C(;(Z);JL;IJQ] dé. (91)

It is worth noting that the first derivative of trial function N; is equal to 0, which leads to singularity
of the matrix K in formula (22). There are two ways of circumventing the difficulty caused by this
fact.

The first one is to introduce a point on the boundary and find an additional equation by collo-
cation method at this point which results in

fi

K = 7Y cos[L(k — 1)64], (92)

1

cos §
Other elements of matrix 1K are obtained by the traditional Galerkin method.

The second way is to omit the derivative of the first trial function and to use instead the
derivatives of the 2,3, ... (n + 1)-th trial functions.

The results obtained by using the collocation, the least square and the Galerkin methods are
presented in Tables 1 and 2.

It is clear from these Tables that the best accuracy is obtained by using least square method,
while the worst accuracy corresponds to the Galerkin method with the complete Herrera T-
functions.

where 01 = 57, 11 =
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Table 1. Maximal local error on boundary for polygon with 4 symmetry axis, n is the number of used trial

functions

Galerkin,
n | Collocation | Least square complete Galerkin, special functions

Trefftz- collocation n + 1 trial

functions with 1 point functions

ERR ERR ERR ERR ERR

3 | 0.3137E—02 | 0.5417E—02 | 0.2675E+00 | 0.3596E—02 | 0.7177E+00
6 | 0.4174E—03 | 0.5106E—03 | 0.6923E—01 | 0.3658E—03 | 0.1241E—01
9 | 0.1476E—03 | 0.1127E—03 | 0.5927TE—01 | 0.7961E—04 | 0.1413E—02
12 | 0.7343E—04 | 0.2755E—04 | 0.5811E—01 | 0.3201E—04 | 0.2901E-03
15 | 0.4345E—04 | 0.1365E—03 | 0.5588E—01 | 0.1981E—04 | 0.2920E—-04
18 | 0.2853E—04 | 0.8836E—04 | 0.5547TE—01 | 0.5205E—04 | 0.1098E—02
21 | 0.2012E—04 | 0.2304E—04 | 0.5617E—01 | 0.3724E—04 | 0.1247E—-03
24 | 0.1490E—04 | 0.7444E—04 | 0.5387E—01 | 0.2283E—03 | 0.2350E—03

Table 2. Maximal local error on boundary for polygon with 6 symmetry axis, n is the number of used trial

functions

Galerkin,
n | Collocation | Least square complete Galerkin, special functions

Trefftz- collocation n + 1 trial

functions with 1 point functions

ERR ERR ERR ERR ERR

3 | 0.3067TE—02 | 0.6995E—02 | 0.7361E—01 | 0.4843E—02 | 0.1516E—01
6 | 0.9370E—03 | 0.1456E—02 | 0.6087E—01 | 0.1205E—02 | 0.6356E—01
9 | 0.4472E—03 | 0.5552E—03 | 0.5002E—01 | 0.4923E—03 | 0.1102E—01
12 | 0.2713E—03 | 0.2500E—03 | 0.4974E—01 | 0.2270E—03 | 0.3506E—02
15 | 0.1861E—03 | 0.1175E—03 | 0.4820E—01 | 0.1006E—03 | 0.1175E—02
18 | 0.1375E—03 | 0.9572E—04 | 0.4933E—01 | 0.8173E—04 | 0.5006E—03
21 | 0.1068E—03 | 0.8124E—04 | 0.4934E—01 | 0.7377E—04 | 0.8011E-03
24 | 0.8607TE—04 | 0.8894E—04 | 0.4926E—01 | 0.8154E—03 | 0.9435E—03

4.2. Temperature in hollow prismatic cylinder bounded by isothermal circle and outer

regular polygon

Consider a long prismatic cylinder of uniform thermal conductivity with a concentric circular hole.
The adopted repeated element, as well as the formulation of its boundary value problem, are shown

in Fig. 11.

¢ 50

2

V=0

I
L

Fig. 11.
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The approximate solution based on the trial functions derived in section 3.2 has the form

r n EZLk
@(r,0) =1+ apln 5 + Z ak (rLk - —L—k—> cos(Lk6).
k=1 %

The matrices and right-hand vectors for the three considered methods are calculated in a similar
way as in the first test problem.

Results of solving this problem are shown in Tables 3 and 4.

Table 3. Maximal local error on boundary for polygon with 4 symmetry axis, and radius of inner cylinder

E = 0.8, n is number if used trial functions

n | Collocation | Least square Galerkin, Galerkin,
complete Trefftz- | special functions
functions
ERR ERR ERR ERR

3 | 0.1742E—-01 | 0.1055E-01 0.44546E+-00 0.9352E—-02
6 | 0.4952E—03 | 0.1159E—03 0.9588E+00 0.9154E—-04
9 | 0.2019E—04 | 0.2206E—05 0.1653E+00 0.1433E—-05
12 | 0.1172E-05 | 0.2386E—04 0.2498E—01 0.1977TE—04
15 | 0.8271E—07 | 0.6198E-03 0.1307E-01 0.1827E—03
18 | 0.6310E—08 | 0.8200E—04 0.2003E—01 0.2251E—-03
21 | 0.5592E—09 | 0.3629E—04 0.3896E—01 0.2119E—-03
24 | 0.3485E—09 | 0.1613E—03 0.1645E—01 0.1655E—02

Table 4. Maximal local error on boundary for polygon with 6 symmetry axis, and radius of inner cylinder

E = 0.8, n is number if used trial functions

n | Collocation | Least square Galerkin, Galerkin,
complete Trefftz- | special functions
functions
ERR ERR ERR ERR

3 | 0.1905E-01 | 0.1717E-01 0.5494E+00 0.1620E—-01
6 | 0.4469E—02 | 0.3485E—02 0.2653E-00 0.3296E—02
9 | 0.2133E—02 | 0.1325E—02 0.1771E+00 0.1340E—02
12 | 0.1290E—02 | 0.5969E—03 0.1545E+00 0.6902E—03
15 | 0.8853E—03 | 0.2828E—03 0.5604E—02 0.3937E—-03
18 | 0.6502E—03 | 0.2286E—-03 0.7529E—02 0.2483E—-03
21 | 0.5102E—03 | 0.2005E—03 0.7406E—02 0.1277E—-03
24 | 0.4049E—03 | 0.2111E-03 0.7007E—02 0.1419E-03

In this case, the smallest error occurred when the boundary collocation method with equidistant
collocation points was used.

The largest error was in the case of the Galerkin method with the complete T-functions, without
using conditions of symmetry. The least square method in integral sense turned out to be a little
better than the Galerkin method. In the last two cases special functions were used.
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4.3. Motz problem
One of the most popular test problems for two-dimensional Laplace equation is the Motz prob-

lem [6].
Formulation of the relevant boundary value problem is given in Fig. 12.

¢="0.5r 2

As the trial functions for the approximate solution one can be chosen those presented in section
3.3, with a = m. The approximate solution is

@(r,0) = Zn: arr k=172 ¢og [(%T—Ql> 9] . (93)

k=1

The matrices and right-hand vectors for the three considered methods are calculated in a similar
way as in the first test problem.

In this problem, because of the boundary condition we consider also the error of first derivative.
This error is
9¢

Oy

= 2P

FRRD = max
y=1 Oy

. (94)

y=1

Results obtained are shown in Table 5.

Table 5. Maximal local error on boundary for Motz problem, n is number if used trial functions

n Collocation Least square Galerkin, — special functions
ERR ERRD ERR ERRD ERR ERRD
3 0.5300E—01 | 0.1302E+400 | 0.2927E—01 0.1358E+00

7 | 0.4689E—03 | 0.1801E—01 | 0.2751E—02 | 0.4947TE—02 | 0.5989E—03 | 0.8258E—02
11 | 0.1039E—04 | 0.1908E—03 | 0.3961E—03 | 0.3535E—03 | 0.4129E—04 | 0.1044E—02
15 | 0.8574E—-06 | 0.1399E—03 | 0.2830E—04 | 0.6952E—04 | 0.3027E—05 | 0.1101E—03
19 | 0.9330E—-07 | 0.3476E—04 | 0.1765E—05 | 0.8654E—05 | 0.2260E—06 | 0.1217E—04
23 | 0.1803E—-07 | 0.5403E—05 | 0.1492E—06 | 0.9107E—06 | 0.8716E—07 | 0.2784E—05
27 | 0.3196E—-08 | 0.8849E—06 | 0.2397E—06 | 0.2373E—06 | 0.2031E—06 | 0.6747E—05
31 | 0.5461E—09 | 0.1794E—06 | 0.1042E—06 | 0.6203E—06 | 0.4986E—06 | 0.2216E—04
35 | 0.9314E—10 | 0.2585E—07 | 0.4190E—05 | 0.3470E—05 | 0.1063E—04 | 0.4674E—04
39 | 0.1590E—10 | 0.1553E—08 | 0.1720E—04 | 0.1586E—04 | 0.1475E—05 | 0.6813E—04
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5. CONCLUSIONS

A way of constructing the trial functions for the two-dimensional Laplace equation in regions
possessing symmetry, holes, inclusions or angular sector has been presented. In all the considered
cases the polar co-ordinate system has been used. The trial functions obtained by the proposed way
fulfil exactly not only the governing equation but also some boundary conditions. These special-
purpose functions can be use in hybrid Trefftz method approach, when the considered region is
divided into “large elements” or in the case where one approximate solution is applied to the whole
region.

The efficiency of the new special-purpose functions has been checked by solving some test prob-
lems. Solutions of the test problems have shown that the use of the special-purpose functions leads
to the maximal local error of few order lesser than the error resulting from the use of the standard
complete T-functions. The maximal error accompanying the calculations performed with the use of
these special-purpose functions weakly depends on the version of the Trefftz method but strongly
do on the number of trial functions in the approximate solution.

The test problems were solved by three versions of the Trefftz method: boundary collocation
method, the Galerkin boundary method and least-square boundary method, which gave an opportu-
nity of recognising the advantages offered by each of them. Namely, when the boundary collocation
method the matrix of linear system is obtained without integration on the boundary, which essen-
tially simplifies calculations. When the last two method are used, then the matrix of the equations
for the multipliers of the trial functions is symmetric.

The research was carried out as a part of the COPERNICUS project ERB CIPA CT-940150
supported by the European Commission.
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