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Polynomial representation of hybrid finite elements
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We introduce the hybrid-Trefftz FE formulations for linear statics of solids as well as for linear (slow
velocity) steady fluid dynamics. Moving least square procedure is given to obtain continuous secondary
fields (such as stresses for solids), which improves the results. For nonlinear problems the governing
equations are satisfied in the discrete least square residual form. Also for such problems the hybrid FE
formulation is shown.

1. INTRODUCTION

In this paper, we introduce different hybrid FE approaches for elastostatic problems and for station-
ary fluid dynamics. If the governing equations describing the continuum behaviour inside the domain
are linear, we can use polynomial approximation to satisfy them in a strong sense (hybrid-Trefftz
FE formulation). Moreover, special functions which will satisfy also the local boundary conditions,
can be used to improve the element properties. Satisfaction of interelement continuity defines the
connection between internal and boundary fields of primary variables and the discretized form for
the FE formulation is obtained. The hybrid-Trefftz FE formulations for both linear elastostatics
and slow incompressible stationary fluid flow are given.

In nonlinear problems the governing PDE describing the behaviour of the continuum are non-
linear and it is not possible to satisfy them in the strong sense. The hybrid formulation is possible
for linearized incremental form of governing equations in strong sense, however, the computational
procedure is much more complicated for single iteration step than it is in linear case. So we give
also another approach using discrete least squares formulation in order to satisfy the governing
equations.

Navier-Stokes equations describe the behaviour of fluid continuum. Although the mass conti-
nuity is a linear equation, the momentum equations containing convection and diffusion terms are
nonlinear. In this case we can combine the approaches and satisfy the mass continuity in strong sense
and momentum equations in the discrete least square form. The formulation of hybrid elements is
then formulated in an iterative form.

In notation, we often use a right superscript with miscellaneous meaning. To avoid confusion,
any quantity raised to any power is enclosed in parentheses. Thus, the square of z; is denoted by

(z;)?, which is different from z?.

2. GOVERNING EQUATIONS FOR ELASTOSTATICS OF SOLIDS AND FOR STATIONARY
FLUID DYNAMICS

We will consider an isotropic solid. For general large displacement, large rotation problems, the
governing equations describing the elastostatic behaviour of the continuum are the Lame-Navier
equations expressing the equilibrium in displacements u;
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bi + (A + 1) wjgi + pui g+ (N + 2 0) wjin wik + fhws kU
F(A 4 1) ujjk ik + B uk,gj Uik + (A4 2 @) wj g wj g uig
1 Uk Ut Wid + B (kg + Uj k) Ui kg + XUk k Ui 5
+p G gk Ui kG + AUk Uk Ui =0, (1)

where A and p are Lame constants, b; are components of the body force vector. The index after a
comma, denotes the differentiation according to the initial (undeformed) coordinate direction and
Einstein’s summation is used for repeated indices in tensor variables or in their products. We use
Cartesian coordinate system z;. With a bar we denote functions, which will be supposed to be
given. The indices are equal to 1, 2 for 2D and 1, 2, 3 for 3D problems.

The Green-Lagrange strain tensor is

1
e = 5 (Ui +uj+uk;up;) (2)
and corresponding second Piola—Kirchhoff stress tensor is

o = (Wi 56) + X6 U g+ A G kg Ukt Uk Uk (3)
where d;; is the Cronecker delta.

For small displacement problems the equilibrium equations, strains and stresses are linear func-
tions of displacements and we can neglect products of their derivatives. Thus, the equation (1) will
contain the first three terms of left side, the strain tensor two terms and the stress tensor first three
terms of their right hand sides. All equations (1)—(3) are then linear functions of displacements.

The boundary conditions are in the form

u; =u; on Iy, (4)
where displacements u; are given, or

t;

njaijzt_,- on Ft, (5)

where tractions ¢; are given. n; is a unit normal vector component. Also mixed boundary conditions,
where some components of displacements and another components of tractions are given, can be
considered (e.g. symmetry conditions).

The governing equations for stationary Newtonian fluid expressed in velocity components v; and
pressure p are the mass conservation equation

(pvi)i=0 (6)
and the momentum (Navier—Stokes) equation
- 2
P Vijj = —Pj 0 + bi + p (vig; + i) + (ff =3 N) Vjjij » (7)

where p is the fluid density, 1 and & are the shear and bulk viscosity, respectively, b; is the body
force vector similar as that for solids.
Boundary conditions can be given in velocity components

v = U (8)
and/or in traction components or pressure

t; =1t;,

p =p,
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where

t; = nj 0y (10)
and

oij = —pdij + Tij

2
Tij = (Vi +0ji) +6ij (K= S 1 | Vkk s

oi; and 7;; are the stress and deviatoric stress tensor components, respectively.
Navier (momentum) equations are linear only for slow velocities. Then the left hand side of (7)
is equal to zero.

3. HYBRID FE FORMULATION FOR ELASTOSTATICS

We use a hybrid FE formulation in which the primary field satisfies all governing equation inside
the element for linear problems and is approximated by polynomials [1]. Another field of primary
variables (displacements) is defined on interelement boundaries only.

For linear elastostatic problems the displacements inside the element are approximated by

{u} = [4]{c} + {u’} = {u"} + {u’}, (12)

where [A] is a matrix of polynomial terms of given order, {c} are unknown coefficients and {u®}
are functions satisfying the nonhomogeneous part of equilibrium equations (1), which are now in
the form

()\ + M) Uj ji + KU Ui 55 = —b;. A (13)

We can include into {u®} also special functions satisfying both homogeneous equation (13) inside
the element and local boundary conditions (like local load conditions on the boundary [1], etc.).
Note, that the polynomials must be full in order to satisfy properly the governing equations. We
use polynomials up to 6th order for 3D problems and up to 11th order for 2D problems.
Let us examine the first part of {u} in (12)

{u"} = [A]{c}. (14)

The corresponding strains can be obtained from partial derivatives of [A] in the form (we omit here
the upper index h for simplicity)

{e} = [E]{c}, (15)
where matrix [E] contains the derivatives of [A]. The stress vector is obtained from
{0} = [D][E]{c} = [D-E]{c}, (16)

[D-E) is symbolic notation for the matrix product [D][E].
Substituting the stress components into the homogeneous solution of (13) we obtain

(@] {c} = {0}, (17)

where [Q] contains the derivatives of [D-E]. We split the matrix [Q] and the vector of coefficients
{c} into two parts — dependent (@], {c!} and independent [Q] {c'} ones, so that we compare
the terms by polynomials with equal polynomial terms (z;)® (z2)? (z3)? for 3D or (z1)" (z9)? for
2D and obtain

QU {c} +[Q1{c'} = {0}, (18)
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where [Q9] is a square matrix. From (18) we can express
{c'} = - [T [Q{c'}. (19)

All the calculations (14)—(19) are performed symbolically for all elements and for the same material
model once only.

In this way we obtained the reduced vector of unknown coefficients {c'}. We denote it by {q}
i.e. {g} = {c'} and after splitting also the matrix [A] in corresponding way, we have

{u} = (A7 - (AR @) {q} + {u°} = [Bl{g} + {u"} (20)
and from (20) we can find strains, stresses and tractions on the element boundaries

{e} =[E]{q} + {°}, (21a)

{o}=[D-E}{q} + {0°}, (21b)

{t} =[S {q} + {t°}, (21c)
where

[S] = [T][D-E] (22)

and [T is a matrix of unit normal cosines transforming the stress vector into the surface traction
vector

{t} = [T]{o}. (23)

All matrices [B], [E], [D-E] are obtained symbolically in polynomial form once for each material.

The particular vectors {u’}, {€°}, {¢°} and {t°} are obtained in similar way if the body forces b;
in (13) are expressed in polynomial form.

However, we include into {u’} also other important cases, such as concentrated loads, continuous
tractions on the plane or curved boundaries, etc., when we choose the function {u’} so, that it will
satisfy not only the equilibrium equations, but also local boundary conditions. We can find such
functions for quite general tractions from the half plane solution for straight line boundaries and
from circular domain or an infinite domain with a circular hole for curved boundaries [2]. Similarly
we can find expressions for 3D problems from Boussinesq type solution [3]. Especially simple task
is to find such solution for straight boundaries, where using the Boussinesq solution (B.S.) the
boundary conditions are satisfied on the whole straight boundary. The solution can be used for
curved boundaries also, but in that case the boundary conditions are satisfied by the B.S. in
the point of applied load only. It is, however, a good approximation as we demonstrate in the
example of a ring in plane stress conditions loaded by concentrated forces on opposite sides of inner
radius (Fig. 1). As the problem is double symmetric, only one quarter of the problem was solved
numerically.

The displacement field (20) and corresponding tractions (21c) will be incompatible between the
elements. To impose the compatibility between elements we choose another independent displace-
ment field {G} defined on the element boundaries only and interpolated by means of shape functions
[N] and displacements {U®} in nodal points of the element.

{a} = [N]{U"}. (24)

The compatibility between the internal variables {u} and {¢} and corresponding boundary vari-
ables will be enforced by the variation [4, 5]

= [, 3" (6 D ar+ [ (0" () @) ar+ [ 607 () - (@) a0 =0, (29
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a) tangential stresses

b) shear stresses

Fig. 1. Stress field obtained from displacement field approximated by polynomial of the 4th order inside the
element; shape functions of the 2nd order on the interelement boundaries; p = 0.3

where I', Ty, and T'; are parts of the element boundaries, where tractions ¢ and displacements u are
given and interelement boundaries, respectively (mixed boundary conditions of I'; and I are also
possible, e.g. for symmetry conditions). § denotes the variation and the right superscript T denotes

the transposition.
The variation

v / 5{a)" {¢}dr = 0
Lol ¥

(26)

enforces the equilibrium between the elements.
Substituting (20) and (21) into (25) we obtain

[H]{q} = [GI{U°} + {p},

where

= [ (s Blar- [ [BTis)ar,

T

61= [ (sIT v,

(27)

v = [ 181" (- @) ar = [ 1517 (@)~ {a)) ar = [[ (8 uyar

and from (26) we get

Y. (A" {g} = {R")

all
elements

with

(B}=- & [N {#}ar.

all
elements

1

(30)
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Substituting {g} from (27) into (29) we get the final equation for the whole region

[K1{U} = {R}, (31)
where the stiffness matrix and equivalent nodal loads are

(K] = > [GI"[H](G], (32)

{R}={R"} - > [GI"[H)™" {p} (33)

all
elements
and {U} is the vector of nodal displacements of the whole region.

Note, that the subsidiary displacement field {@} and thus also the nodal displacements {U} are
defined on the interelement boundary only. This form of hybrid element formulation reduces the
problem remarkably, especially, if the structure is thin walled and/or if it has complicated form. In
such case for better accounting of the local effects, we can use higher order approximation of the
fields inside the elements, although number of element degrees of freedom can be relatively low.

Having obtained the displacements in the whole structure from the solution (31) we get the
polynomial coefficients in elements from (27) and stresses from (21b). As we can see from examples
given in Fig. 1, the stresses between the elements are incompatible (the interelement equilibrium
and boundary conditions are satisfied in the weak sense only). The best continuity between the
elements is obtained in tangential stress components, i.e. the components which are not contained
in the boundary and interelement conditions. It is well known, that hybrid FEM formulations give
better results inside the elements and worst in a thin layer around by the element boundaries.

The results can be much improved and smooth stress can be obtained, if we calculate the
stresses from displacements obtained in nodal points and boundary conditions by moving least
square interpolants [6], however, in our case we use the interpolation polynomials (20)-(21) not over
one element, but over element patches and add corresponding nodal displacements and boundary
conditions to obtain enough equations to resolve the unknown polynomial coefficients {q} as follows

S wiar) (Bl {g} + (v} - ()" + X wes) (Sl {g} + (%)~ {1}) £ min,  (34)
I J

where w(z) is weighting function, which is a positive continuous function and is maximum at the
point where we calculate the stress and decreases monotonically with increasing distance away from
this point. It can be an exponential function of the form

T

w(zy) =e ¢ (m)z , (35a)

where ¢ is a constant, r is the distance between the point of the domain (POD) and the point I
where the boundary condition or nodal point displacements are taken into account, and r, is the
radius defining the domain. The domain is defined by the sphere (3D) or the circle (2D) around
the POD with this radius.

Also weight functions of the polynomial type

wizy) =1—3 (é>2+2 (éy (35b)
w(zy) =1—-2 (;’;)2 + (éy (35¢)

are convenient for this purpose. The functions {u°} and {t°} are those as defined in (20) and (21c)
and {u} and {t} are the nodal displacements calculated from (31), and prescribed displacements
and tractions in the chosen discrete points of the boundaries.
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As this is a local approximation of the field variables, it is not necessary to choose approximation
polynomials order high (usually second or third order polynomials for the matrix [B] is good
approximation) and also the number of equations (discrete point values for (34)) need not be much
higher than the number of {g} coefficients.

Computing {g} from (34) the stress components in the POD will be given by (21b).

4. HYBRID FE FORMULATION FOR SLOW VISCOUS FLOW (LINEAR STEADY FLOW)

We consider slow incompressible steady flow. In this case the problem is linear in the pressure p
and velocity components v; and it is described with following mass and momentum conservation
equations

v;; =0,
2,2 (36)
P — iz =0.

If we want to approximate velocities and pressure by polynomials, it is necessary to choose one
order lower polynomials for pressure then for velocity components, i.e.

{vi} = [A1{c}},
{p} =[AP]{c"}.

If we split again the polynomial terms on dependent and independent, we can express the
dependent terms by independent so that (36) will be satisfied in strong sense. Denoting the vector
of all independent coefficients from {c}} and {c”} by {q} we can express

{v} = [B"]{4},
{p} = [B"]{a},

where {v} contains all velocity components. From velocities we can similarly as by solids express
tractions (according to the relations given in the section 2) corresponding to the deviatoric stresses

{t*} = [8"]{q}- (39)

The tractions from hydrostatic stress (pressure) are given by

(37)

(38)

tf =-nip (40)
thus

() =—[ m[B7) na(BY) ns[BY]] {a} = ~[B*{a}, (41)
which give the resulting tractions in the form

it = (&} + {7} = (18] - [B*)) {g}. (42)

Further we define velocity and pressure field on the interelement boundaries
{o} = [N"{V°},
{p} = [N?}{P°},

where [N'] and [NP] are shape functions and {V®} and {P®} are vectors of velocity components
and pressures in nodal points on interelement boundaries, respectively.

Variational formulation defines the compatibility of interelement and boundary field variables in
the weak sense similarly as it was for solids. The formulation is similar than that for solid mechanics,

(43)
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but we have now kinetic energy of the fluid and power of external forces instead of deformation
energy and work of external forces in solid mechanics (7, 8]. Compatibility of boundary fields of
velocities and pressures on interelement boundaries is given by

/F By (i deg / 800y (p — §) dT
i I
+ 0t; (v; — ;) AT — dv; (t; — t—z) dl' =0, (44)
Ty Tt

where T, Ty, T; are parts of the element boundaries where velocity ¥; and tractions t; are given
and interelement boundary, respectively. v(,) is the normal component of the velocity vector

Vin} = ViNy (45)

and n; is the component of outer normal to the element surface.
Substituting corresponding terms from (38)—(43) into (44) we have

( /Fium [$°]" [B*]dT + /r (BT (B7)dr - /F B[S dr) 5

- [N ar vey - [ (BT (v ar (P

i

L / (5"]" {5} dr + / (BT {f}dT = 0 (46)
) % T
(H{g} = [G*]{V®} + [G*]{P°} + {r}, (47)
where
[B™] = {n}T [B"]. (48)

As the velocities and pressure are independent fields, the interelement equilibrium in the weak
form will be satisfied by

> [ snitidr=o (49)
I

all
elements

and

Z /F_fs(ﬁni)’vidFE Z /F.(S;b'v{n}dI‘:O (50)

all all
elements elements

and after substitution for corresponding field variables we have from (49)

> [vTistdarig = Y (6 o) = 0} 61)

all all
elements elements

and from (50)

> [ BT Y 67 (g} = {0} (52)

all all
elements elements
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Substituting for {g} from (47) into (51) and (52) yields

[GU)T[H]H GV [GY]T [H] T [GP] {ve} {R"}
- , 53
%1: [GP)T [H] [GY] [G”]T[H]'I[G”]} {{Pe}} ; {{R”}} a

elements elements

where
{R*} = —[G]" [H]" {r},

(54)
{RP} = —[G"IT [H] {r}.

Equation (53) is resulting system of linear equations used for the resolution of nodal velocities and
pressures for the whole region. Some numerical implementations and results were published in [10,
11]. An example of results is presented in Fig. 2.

0.02—prrr

0 0.01 0.03 0.05 0.07 0.09
b) isolines of y/{u} - {u} field, {u} is the velocity vector

Fig. 2. Pressure and velocity fields in 2D channel small velocity (linear flow), u = 0.01 Pas

5. HYBRID FE FORMULATION FOR NONLINEAR PROBLEMS

The hybrid-Trefftz FE formulation is based on the satisfaction of all governing equations inside the
region (element) in the strong sense. This is not possible in nonlinear (NL) problems, i.e. when the
governing equations are NL.

We have several possibilities how to proceed in such case. Let’s consider for simplicity 2D in-
compressible steady flow of the fluid. °

V1,1 +U22 = 0. (55)
The governing equations inside the region are the Navier-Stokes (N-S) equations

ViV Fv2v12+Pp1 — by — p (Vi +vi2) =0, (56)
V221 +V2V22 + P2 — ba — pu (V211 + v202) = 0.

The mass conservation equation (55) is linear, the momentum equations (56) are nonlinear.
Suppose, that we obtained approximate solution in iterative procedure after n — 1 steps and want
to find a better solution in incremental form by linearizing the N-S equations.
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Using the polynomial expansion for velocities and pressure, the equation (55) will be satisfied
in strong sense. Then the incremental form of this problem will be

Avly + Avg, =0 (57)
and
vP AvE +of T Aot 4+ 05T Avty + o] Add
+pfi — p (AU?,H a5 AU?,22)
=by — [0 ol ol olg 4+ pt T = (VT + 005 )]
Vit ARy +opT! Aof + 03Tt Aof + 035t Avg o
ol — s (D0F 1 + Avfg,)
= by — [0l BTt o ol T — e (3] + 083 )] -
We can proceed as follows:
(1) Find polynomial expansion for rhs (right hand side) of Eq. (58).

(2) Find particular solution for rhs.

(3) Find matrices [B"] and [BP] according to the section 4 for homogeneous equations (57) and
(58). Note, that we have to solve the linear system like (18) for each element and for each
iteration step.

(4) Proceed like for linear system and find increments of n-th step.
(5) Repeat points (1) to (4).

Thus we can see, that the procedure is much more complicated for each iteration step than that
for linear analysis. Moreover, as we can see, if we use this procedure for some 3D problems like
geometric nonlinearities, then Eq. (1) gives very complicated incremental expression with many
terms (there are 36 polynomial expressions in it, i.e. 3 displacement components, 9 first and 24
second derivatives).

A more effective procedure for NL problems can be obtained, if the governing equations inside
the element will be satisfied in discrete least square sense.

We will choose again polynomial approximation of primary variables {u} and split polynomial
terms so, that the part of coefficients denoted by {c} will be reduced in order to satisfy the governing
equations and the other part {q} will serve to fulfill the boundary and interelement continuity

{u} = [A%{c} + [A{q}. (59)
Let us denote
L(u) =0 (60)

the governing equations inside the domains (L is the differential operator). Let us have an approx-
imate solution of the problem from (n — 1)-th iteration step. We shall look for the next, improved
approximation in n-th iteration step. For this we will use the Taylor expansion of L in the vicinity
of (n — 1)-th solution and use the first term of the expansion only

ar»-1 oL

L(u) = L™ (u) + Sra A+ s

{Aq"}. (61)
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We express the partial derivatives in finite differences in components as

oLr—!  L(u(cf~" +d¢j)) — L(u(cj ™))

] — n=1

ac; ~ dc; BT (62)
oLn1 i L(u(q;.l—l +6Qj)) "‘L(U(q;'l_l)) — -1

dg; %; Y

where dc; and dg; are very small increments of ¢; and gj, respectively. L.,; and Lg,; will define the
values L ; and L, ; in the discrete point .

We will require, that the square error of (60) will be minimum for the increments {Ac"}, i.e.

lF i " A AT
2 (L7 (u(e) + L3 Ach + L7 Agr)” = min (63)

1

what can be written in the matrix form (we omit the upper indices for iteration step)

(L {Ac} + [Lg] {Ag} + {L})* = min (64)
which gives

LT [Ld] {Ac} = —[Ld]" [Lg] {Aq} — [Ld" {L}. (65)

From this equation we can express {Ac} and obtain {Au"} from Eq. (59) in the form

{Au"} = [B"{Ag"} + {Au"}, (66)

where (omitting the upper indices for iteration steps again)
: -1
B]  =[A7-[4Y ([Ld"[Ld]) " (Ld" [Lq), (67)

(A} = —[4) (izd" L)) (" {L). (68)

Further we proceed as in the linear case and compute {Au"} in nodal points for the whole region
and from it we have

{u"} = {u""} + {Au"}. (69)

Note, that we can use this algorithm also for linear problems, and obtain the solution in one
step. The solutions will be identical if we use the same polynomial expansion, but also splitting on
d and i parts.

Although the problem of steady flow of the fluid is nonlinear, the continuity equation (conserva-
tion of mass) is linear. So we can satisfy this equation in a strong sense as we did by linear problems
and thus reduce the problem and only the momentum equations will be solved iteratively.

As we mentioned, we receive the better efficiency, the better all governing equations and corre-
sponding boundary conditions will be satisfied. In fluid mechanics it is necessary to use very fine
meshes in the vicinity of solid boundaries, if we consider a viscous fluids, because of large gradients
in primary variable fields at boundary layers. In hybrid formulations, we can use special functions of
the approximate solution for boundary layers [9] in order to better satisfy the governing equations
and boundary conditions at the same time.
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6. CONCLUSIONS

The following conclusions can be made from this research:

e Polynomial representation can be used to formulate hybrid FE for both solids and fluids. If
the problems are linear, the governing equations can be satisfied in strong sense and we obtain
the hybrid-Trefftz formulation.

e For nonlinear problems the governing equations inside the element can be approximated by
polynomials which satisfy the governing equations by minimizing their least squares of errors.

e Local effects, such as concentrated loads or shape irregularities, resulting in large gradients
in element fields can be solved very effectively by large elements, if the local effects are
conveniently modelled by additional functions satisfying locally all governing equations and
boundary conditions. High accuracy of the solution can be achieved without fine meshes also
in regions with very high gradients or with singular fields.

e The resulting system of equations contains the nodal points on interelement boundaries only,
so that the problem can be considerably reduced especially if thin layers of the continuum are
to be modelled, like it is by thin walled structures.

Further development of the method should be made especially in the following areas:
e special approximation functions for particular purposes
e application for nonlinear problems

e solution of transient problems
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