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We describe a new Quasi Trefftz-type Spectral Method (QTSM) for solving boundary value and initial
value problems. QTSM combines the properties of the Trefftz method with the spectral approach. The
special feature of QTSM is that we use trial functions which satisfy the corresponding homogeneous
equation only approximately. These trial functions are represented in the terms of a truncated series of
eigenfunctions of some eigenvalue problem associated with the problem considered. The method has been
found to work well for different elliptic problems with the Laplace, the Helmholtz and the biharmonic
operators. We also consider some nonstationary parabolic problems including the problem in the domain
with moving boundaries. The possibilities of further development of QTSM are also discussed.

1. INTRODUCTION

In this paper we describe a new numerical method for solving boundary value and initial value
problems. The elliptic problem

Lu(%) = f(Z), T€QCR, i=1,23, (1)
Bu(z) =g¢(z), I € dQ, (2)

where L is a linear differential elliptic operator and B is a boundary operator, will be our initial
concern. Nonstationary parabolic problems in the domains with fixed and moving boundary will
be considered in Sec. 4, 5.

Boundary methods based on the use of the complete system of solutions are applied widely to
the problems like (1), (2). They are usually called Trefftz methods [1,2].

The Trefftz idea is that the approximate solution of (1), (2) is represented as

K
uk (Z) = up(Z) + Y ©(Z|ar), (3)
k=1
where u,(Z) is any particular solution of (1), ®(Z|a) is the solution of the homogeneous equation
Lo(z|a) =0, (4)
and a; are some parameters which are chosen to satisfy approximately boundary condition (2):
min | Bux — |, (5)

where the norm || - || is defined on 9.
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Various algorithms can be derived from specific choices of norm in (5) and trial functions in (3).
For example, the fundamental solutions of homogeneous equation (4) with singularities located
outside the domain {2 can be used to obtain the functions ®. This approach, known as the Method
of Fundamental Solutions (MFS), has been intensively developed in recent years [3-11].

MFS for the homogeneous elliptic equation

Lu(z) =0, Z€Q (6)

with boundary condition (2) assumes, as an approximation to the solution, a function
K -—
uk (Z) = Y ar - (T | &), (7)
k=1

where U(Z | &) is any solution of the problem
LY (z|&k) = 6(Z — &) (8)

Here § denotes the Dirac delta-function and the source points i are located outside 2. When MFS
is applied, equation (8) is not subjected to any boundary condition and, therefore, the free space
Green functions in representation (7) are used.

The parameters {gx, fk},{f___l are selected in order to approximate the boundary data, e.g.,

K 2
min /69 <Z a - U (Z &) —g(i)> ds (9)

Tk Ek k=1

for the Dirichlet boundary condition u (Z) = g (Z),Z € 0. A nonlinear minimization process should
be used because not only g in (9) but also the source points ¢ are unknown. Nonetheless, the
linear version of such technique, when only the coefficients g are determined, is also applicable [7].

MFS was applied effectively to two- and three-dimensional linear potential problems [8], to
biharmonic problems [5,9], to problems involving the boundary singularities [6] and free boundaries
[10]. The nonlinear version of MFS is particularly effective in application to problems which are
governed by a linear equation but are subjected to nonlinear boundary conditions [11].

At the same time MFS is applicable only to problems for which the fundamental solutions of the
governing equation are known. Furthermore, it loses its advantages when the governing equation
of the problem under consideration is inhomogeneous. These restrictions considerably narrow the
field of the MFS application.

In this paper we propose a new technique which is close to MFS but is based on the spectral
representation of the solution. It should be remarked that spectral methods have been long and
succesfully used for numerical solving the partial differential equations. They demonstrate the
superior approximation properties for problems possessing smooth solutions and which are defined
in simple regions (e.g., rectangular or circular ones) [12,13]. The method proposed in this paper
seeks to combine the flexibility of the Trefftz methods with the superior approximation properties
of the spectral methods. We call this method QTSM (Quasi Trefftz-type Spectral Method) [14-16].
QTSM, in our opinion, allows to overcome some of the MFS limitations and extends a field of
application of the spectral methods.

The detailed description of QTSM is given in Sec. 2. Here we only remark that in accordance
with the Trefftz approach we seek the solution of (1), (2) in the form

K
’LLK(I—I:‘) =Up(i‘)+2qk-\11(i'|§_k). (10)
k=1

But contrary to other Trefftz methods we use the trial functions ¥(Z |€}) which satisfy the corre-
sponding homogeneous equation

LY(z|&) =0, ZeQ (11)
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only approximately and, according to a spectral approach, are represented in the terms of a trun-
cated series of smooth global functions from the orthogonal set {¢n(Z)}:

(Z|&) = Z dn (&k) - on(Z), &)

where ¢, (Z) are the eigenfunctions of some eigenvalue problem associated with the problem con-
sidered. The fact that we use the trial functions which do not exactly satisfy (11) on one hand,
needs additional efforts to control the calculation accuracy but, on the other hand, it considerably
extends the set of trial functions. The spectral representation makes such trial functions especially
effective when dealing with nonstationary problems (see [15,16]).

In order to test QT'SM we consider mainly two-dimensional problems with an exact analytic
solution (see Sec. 3, 5). But the method suggested can be applied to more general problems in the
domains with a complex geometry, including three-dimensional ones.

2. GENERAL DESCRIPTION OF QTSM

As mentioned above, QTSM falls into spectral methods. Unfortunately, eigenvalue problems can be
solved analytically only for simple L, B and 2. Therefore, we consider the solution domain §2 as a
part of some simple domain Qg (e.g., square or rectangle) extending in a proper way the operator L
on the whole ©y and choosing the appropriate boundary conditions on 92 so that corresponding
eigenvalue problem in £y can be easily solved. Namely, let us denote by By and Ly the boundary
operator on 9y and the extension of the operator L on ¢ respectively. It should be noted that
if 9Q and 99y have a common part, then By must correspond to boundary condition (2) on this
common part. We assume that the eigenvalue problem

Lop=—=Xp in o,
Bop =0 on 0

(13)

can be easily solved analytically, the eigenfunctions {¢,}52; form a complete orthonormal system
in L?(), the corresponding eigenvalues {\,}52, are positive and A\, — co as n — oco. Some
examples of the choice of the domain Qy and the boundary operator By are presented in Sec. 3, 5.

The basic idea of QT'SM is that we look for the approximate solution of (1) in the form (10),
where u,(Z) is the particular solution of (1), gy are the unknown coefficients, the source points
& € Qo \ Q and the function U(Z|€) satisfies the inhomogeneous problem

{Lo\I/( z|§) =I(z|€) in Qo,
¥ (14)
BO\I/(.flf) =0 on BQO

Here I(Z|€) is a d-shaped source function which satisfies the following conditions:
(i) The function I(Z| ) considered as function of Z is a finite linear combination of the functions {¢y }:

M

I(&|€) = ) cal€) - #n(). (15)

n=]1

(ii) For any small € > 0 there exist M and e-neighbourhood C;(€) of the source point ¢ such that
|1(z|€)] <e (16)
for any 7 ¢ C.(£).
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It should be stressed that, in fact, we replace equation (1) by the equation

K
Lou () = fo(T) + > ax - 1(z|&), 7 € Q, (17)
k=1

where fo (Z) is the extension of the function f (Z) on €.
If the source functions I(z|¢) are sufficiently compact, i.e. for any small € < 1

K
U Ce(é) € 0\ €, (18)
k=1

then we have the following bound of the error caused by replacing equation (1) with equation (17):

|Lur (z) - f(Z)| =

K -
> ak - I(z|&)
k=]

K
<€~Zlqk|, z € Q.
k=1

Substituting (15) in (14), we get the function ¥(Z|£) in the form of expansion (12) with

dn, (E) = Cn/\(f)

If the right-hand side of inhomogeneous equation (1) is represented as a finite expansion with
respect to the functions {¢,}:

: (19)

M
f@) =) Fuou(@), (20)
n=1
then the particular solution u,(Z) can be easily found in the same form:
< F
up(Z) = Z Vo on(Z), Vo= S (21)
n=1 L

From (10), (12), and (21) we obtain that the solution uf (Z) is represented as a finite expansion
with respect to the functions {¢,}:

M K
uk (Z) = ZUn'Wn(E)a Un :Vn+ZQk'dn(§k)- (22)

The unknown coefficients g have been determined by a collocation procedure from boundary
condition (2).

Here some comments are necessary:

1) The central point of the QTSM realization is the construction of the source functions I(z|€)
with the properties described above (see (15), (16)) for different systems of the functions {¢, }. This
question have been discussed in [14,17]. In this paper we use the following complete orthonormal
in L2([0,1]) systems of the one-dimensional functions:

go%l)(x) =2 sinnrz, /\511) =n?7%, n=1,...,00; (25
0D (z) = V2 cos(n — 1/2)mz, AP = (n—1/2)%72, n=1,...,00; (24)

) (g) = Y2Ioln®) @ _ o g 2
Do) =S 0=k, n=1,...00, (25)
where Jy(z) and J;(z) are the Bessel functions of order 0 and 1 respectively, p, is n** zero of the
function Jo(z). Functions (25) form a complete orthonormal system in L? ([0, 1]; z).
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We define for each of the systems {cpn)} the source functions
. M . . o
9)e) =3 ri - () - o (z), i=1,2,3, (26)
=l
where
i) = ()
e =T ( M+1/M+1)' (27)

Here [ is a free parameter which we use to optimize the source function 10 (z | £). It should be
noted that in the case i = 1 formulae (26), (27) correspond to a well-known method of the Lanczos
o-multipliers [18].

To judge the properties of source functions (26) we present in Table 1 the values of

Gu(wl€) = max [IO(:19)/10e19) (28)
for {M = 30, | = 6}, {M =50, | = 10}, {M = 70, | = 10}, and {M = 100, | = 12}. We

introduce the function G (z|§) for the followmg reasons: (1) to scale the sources with different
M and [; (2) to smooth the oscillation of }I (z lf)‘

which monotonically decreases as |z — &| increases. The calculations carried out show that if the
source point ¢ is sufficiently far from the boundaries of the interval, then the function IM(z | ¢)
is dependent only on the difference z — £. So we set & = 0.5 in all the calculations presented in
Table 1.

So the function G (x| €) is a majorant

Table 1. The majorant G, (z]0.5).

( X “ G30,6 GsO,IO [ G70,10 | G100,12
0.50 1.0 1.0 1.0 1.0
0.55 0.58 0.39 0.16 0.41-107*
0.60 || 0.95-10~' | 0.19-10"' | 0.18-107* | 0.36:107"
0.65 || 0.21-10°2 | 0.27-107* | 0.59-107° | 0.50-107'?
0.70 || 0.44-107° | 0.76-10"° | 0.18-107° | 0.12-107 "3
0.80 || 0.12-107® | 0.82-10~'* | 0.12-107*2 | 0.18-107**
0.90 || 0.18:1077 | 0.20-107'2 | 0.53-107'* | 0.18-107**
1.00 || 0.53-107% | 0.89-10*® | 0.15-107'* | 0.18-107**

Let us remark that the behaviour of the other source functions I®)(z |€), i = 2,3 is similar to
the one demonstrated in Table 1 [17]. Thus, formulae (26), (27) allow to obtain the appropriate
source functions I (z|¢) for each system of the functions ¢ (z), i = 1,2,3.

It should be stressed that the source functions I®)(z | £) can be applied directly to the one-
dimensional problems only. For two- and three-dimensional cases the source functions can be ob-
tained by multiplying I by each other (see Sec. 3, 5).

2) As shown above, QTSM is applicable to the inhomogeneous equations with the right-hand
side expanded with respect to the functions {¢,}. A variety of techniques may be used to obtain
expansion (20). For example, it is possible to use first some smooth extension of the function f(z) to
the whole ¢ and then the standard Fourier series expansion procedure. However, the calculations
carried out show that this approach provides a relatively low accuracy. Another way of looking at



554 S.A. Lifits, S.Yu. Reutskiy and B. Tirozzi

it is as follows: let {2}/, (J > M) be some points distributed in the domain 2. We write the
collocation conditions at these points:

M
ZFn(Pn(zz)zf(zz)a i=1,...,J (29)
n=1

So we obtain the system of J linear equations and solve it by least squares procedure. This method
provides a very high accuracy (see subsec. 5.2 where it is applied to expand the initial function ).

We note that if the right-hand side of the governing equation can be represented as a product
of functions of one variable or as a linear combination of such products, then the simpler alternate
version of this algorithm can be used (see (46) — (48)).

3) Evidently that the accuracy provided by QTSM (as well as the stability of the method in the
case of nonstationary problems) is dependent on the location of the source points €x. In this paper
we don’t include the coordinates of & in the number of the unknowns. But the nonlinear version
of QTSM, when we seek not only gx but also £k, is also possible.

Some remarks about the location of the source points in the one-dimensional case are given
in [16]. The examples of the distribution of the source points in the two-dimensional domains are
presented in Sec. 3, 5.

3. BOUNDARY VALUE PROBLEMS: NUMERICAL RESULTS
3.1. Example 1
First, we apply QTSM to the two-dimensional inhomogeneous problem
Au(z,y) = f (z,y), (z,y) €QCR?, (30)

u(z,y) =0, (z,y) € 0N (31)

Here A is the Laplace operator. We restrict our consideration to the case when the solution domain
Q is located inside the square Qo = {(z,y) : 0 < z,y < 1} (see Fig. 1).

8

T

| o0
} X
0 RN 1

Fig. 1. Solution domain for Examples 1 and 2.

We choose the complete orthonormal in L?() system of the functions

onm(,9) = o1 (z) - oD (y) (32)
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and denote by A, the eigenvalues of the Laplace operator corresponding to functions (32):
Ao = 72 (12 + m2) (33)

(see (23)). Then we introduce the source function

M

I(z,y|&n) =IV(z]€) - ID(y|n) = Y cam(&,) - Oam(z,y), (34)

n,m=1

(1), ()

cam (&, "7) =Tp - Pnm (&, 7))

(see (26), (27)) and replace equation (30) by

K

Au(z,y) = f(z,9) + D - I(z,y &, mk),  (Ekmk) € Do\ Q (35)
o

(cf. (17)), where gx are the unknown coefficients. The source points ({x,7x) are located on some
curve which is equidistant from the boundary 992. We consider this problem for each specific domain
Q) separately.

We assume that

M
f(z,y) Z Fom - onm(2,9) (36)

n,m=1

and seek the solution of (34) as

K
uk (2,y) = up(z,y) + Y @ - ¥(z,y| &k, k), (37)
k=1
where (see (21), (19))
M
(T, Y) = Y. Vam Onm(z,y), Vam = —f"m ; (38)
n,m=1 T
M
Y@ ylen) = Y dunlen) - oun(@9),  dunleon) = — &) (39
n,m=1 nm

Then we choose N (N > K) collocation points (z;,y;) on the boundary 02 and, using boundary
condition (31), obtain the linear algebraic system for the coefficients gj:

K

Z \Il(xiayi |§k,7)k) "Gk = _up(xiayi)a 1= 13 s aN' (40)
k=1

We solve this system by least squares procedure.
Thus, we represent the approximate solution of (30), (31) in the form

M K
UK (I y Z Unm (an(x y) Unm = Vnm + Z gk * dnm(fk;")k)' (41)
n,m=1 k=1

The algorithm described above can be applied to problem (30), (31) in any good enough bounded
domain 2. But to test QT'SM we consider a simple example when (2 is the disk of radius R centered
at the point (z.,y.):

Q= {(&,y) : (z — 70)2 + (y — y)? < B} (42)
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and the right-hand side of (30) takes the form

flz,y)=F (z—=c) (y—ye), F = const. (43)
In this case problem (30), (31) has the exact analytic solution

2 — P 2 2 2
ue(l'ay) :f(xay) : 12’ Vo (.’E—ZL’C) +(y_yC) C (44)

To estimate the accuracy we introduce the maximum absolute error of the calculations
e = max |uxc(¢,) — ue(z,9)]. (45)

In practice, we take N; checking points which are uniformly distributed inside .

Some results are presented in Table 2. In all the variants we use z, = y. = 0.5, R = 0.1, N = 40,
N; =79. The source points are located on the circle of radius R+ H (H = 0.2) centered at (z., y.).
We take F' = 10° to obtain the maximum value of the solution of order 1. So the data in Table 2
characterize not only the absolute error but also the relative one.

Table 2. Errors e for Example 1 with R = 0.1, F = 10°, N = 40, H = 0.2.

| | k=20 | K=30 | K=40

M=30,l=6 | 018-10"% | 0.37-10"* | 0.37-107*
M =50,1=10 || 0.17-107* | 0.45.10"" | 0.13-1077
M=70,1=10 || 0.47-107% | 0.16-107% | 0.56 - 107!

It should be noted that the right-hand side of (30) is a product of functions of one variable.
Therefore, for obtaining expansion (36) we can use the following algorithm. First, using the collo-
cation procedure together with least squares method, we obtain two one-dimensional expansions:

1—$cz2f (1) 7 :I:E[.’L‘C——R,.’IZC-{—R], (46)

E 9 oM(y), y€lye — R,yc+ R (47)

If z. = y., then, of course, fr(f) = fy(z,y). We take J = 30 collocation points on each segment and
Mp =20 < M terms in (46), (47). Next, we obtain the necessary representation by multiplying
(46) and (47). Finally, we get

F-fO % n<Mp, m<Mp,
Fpm = (48)
0, n>Mgrp or m> Mp.

We compute the function f (z,y) from formulae (36), (48) at the same points in which we calculate
the error e4. The deviation from (43) is less than 0.18 - 10719
3.2. Example 2

Here we consider the equation akin to the previously described in subsection 3.1 but with the
Helmholtz operator:

(A-P)u@y) =f(z9), (3.9)eQCR (49)
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We subject it to boundary condition (31).

A special feature of QTSM is that the algorithm of solving (49), (31) is exactly the same as for
(30), (31). We must only use in (38), (39) the eigenvalues

Ny = 72 <n2 + m2) +p2 (50)

of the Helmholtz operator instead of (33).
To test QTSM we consider the problem in the circular domain  (see (42)) and set f (z,y) =
F = const. Then problem (49), (31) has the exact analytic solution

_F ([ Io(pr) _
ue(xay) = P (m - 1) ) gt e {m = mc)z + (y - yc)z’ (51)

where Ij is a modified Bessel function of order 0.

The values of the error e4 (it is defined similarly to (45)) are shown in Table 3. We use p = 10,
F =-500,z. =y.=0.5, R=0.1, N =40, Ny =79, H =0.2.

Table 3. Errors e4 for Example 2 with R = 0.1, p = 10, F = —500, N =40, H =0.2.

B [ k=20 [ K=30 | K=40

M=30,1=6 | 016-10"° | 0.83-107° | 0.84-107°
M =50,1=10 || 0.42-107% | 0.34-107% | 0.34-107°
M=70,1=10 || 0.32-107° | 0.32-107% | 0.32-107°

3.3. Example 3

In this subsection we deal with the inhomogeneous biharmonic equation in a closed bounded domain
in the (z,y)-plane. We assume that the problem in hand has two axes of symmetry {z = 0} and
{y = 0} and restrict our consideration to the quarter of the plane {(z,y) : z > 0,y > 0}. Namely,
we consider the problem

Au(z,y) = f(z,y), (z,y) €, (52)
ou
u(e,y) = 5~ (2,9) =0, (z,y) €T, (53)
u Su
X 0m=250m=0, Ope 59
ou u

Here T is a part of the domain boundary lying in the quadrant {(z,y) : « > 0,y > 0}. As before,
we imbed the solution domain into the square Qg = {(z,y) : 0 < z,y < 1} (see Fig. 2).

This time we introduce the functions

onm (@, Y) = ¢ (@) - o) () (56)

(see (24)). Due to the choice of the functions ¢nm, conditions (54), (55) are always fulfilled. Bound-
ary condition (53) is used to obtain the unknown coefficients gj.
It is easy to verify that

A2(an (ma Y) = —Anm Pnm (m,y) ) (57)
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4
1
Qo
I
b
Q
X
0 a 1
Fig. 2. Solution domain for Example 3
where
Mum = = ((n = 1/2)% + (m = 1/2)%)" - x*. (58)
We use here the source function
I(z,y]€,m) = I®(]€) - I®(y|n) = flcnm(m) - Pum(2,Y), (59)
Myt

cam (€, "7) _7'(2) "'m ‘an(ga )

Further, the algorithm is identical to one described in subsection 3.1. It should be stressed that
from boundary condition (53) we obtain not only equations (40) but also

ou :
Z Ewyllgkv’r’k) gk = —a—;(l‘i,yi), | 17 R 1N' (60)

Thus, we have 2N linear algebraic equations (40), (60) for the coefficients gj.
We carry out calculations for the domain © which is the quarter of the ellipse

2
Q={($,y)&'§'+b2 SL m,yZO}

8
]‘Q
o

and f (z,y) = F = const. Then problem (52) — (55) has the analytic solution [19]

2 2\? b % 15N
ue(m’y)=u0 (1_55"‘1)_2 3 UOZF(J_*_I)T—FW) v (61)

The results of the calculations are presented in Table 4. The error e4 is defined similarly to (45).
The source points are located on the arcs of two ellipses

{( ) % v 1 0 1,2
T,yY): - =, ey ot e SOy
V:a+H)e2 " b+H)? y J

We take K /2 source points on each arc. In all the variants we use a = 0.25, b = 0.15, F' = 0.75-10°,
N =40, Hy =0.2, H, =0.3, N, = 79.
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Table 4. Errors e4 for Example 3 with a = 0.25, b= 0.15, F = 0.75 - 10%, N = 40, H, = 0.2, H, = 0.3.

| K=20 K =30 K =40
M=30,l=6 | 054-10"7 | 0.54-10"7 | 0.54-10"
M=501=10 || 0.44-10~° | 0.11-107*° | 0.95-107*
M=170,1=10 | 0.58-10"° | 0.63-10"'* | 0.31-10""

As evident from Examples 1-3, we can apply the algorithm described above to any two-
dimensional equation of the type (1) with the operator

E=P(-4), (62)

where P is some polynomial with constant coefficients. We need only that P has no zeros on the
positive semi-axis. We must replace only the eigenvalues Anm of the Laplace operator in (38), (39)
by —P (Anm)-

It should be also noted that in [14] we consider examples of the QTSM application to some
other elliptic problems including axisymmetric and periodic ones, the problem with infinitely long
boundaries, the problem in the doubly connected domain.

4. INITIAL VALUE PROBLEMS: GENERAL DESCRIPTION

In this section we investigate the peculiarities of the QTSM application to nonstationary problems
[15,16]. Let us consider the parabolic equation

%%(:E,t)=Lu(:E,t)+f(a‘:,t), TENCR:, i=1,2,3, (63)

with the boundary condition

Bu{z,t) =g(%,1), €0 (64)
and the initial condition

w{%.0)=h(z), T (65)

For solving problem (63) — (65) we leave the spatial variable Z continuous and discretize (63) in
time by using any implicit time-stepping method. In particular, we use the Crank-Nicholson scheme

G+1)(7) — w0 (z U+ (% ) (z ;
u (Z) —u (Z) L Lu (Z) + Lu (z) +f(‘7+1/2)(.'73), (66)
At 2
but it is possible to apply any other, including multistep ones. Here u(j)(i‘) = u (:Y:, t(j)),
fUt2(z) = f (:E, (t(j) 4 t(j+1)) /2), t0) = j . At, and At is a time discretization step.
Denoting p? = 2/At > 0, we obtain the sequence of the coupled stationary problems:
(L-2%) u*D)(z) = SU(3) = - (L +p%) ul)(3) — 20/ (z). (67)

If fU+1/2)(z) and uU)(Z) have the form of the spectral expansions with respect to the eigen-
functions {¢n(Z)}:

M
f(J+1/2) (z) = Z F1(lJ+1/2) - on(Z), (68)

n=1
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w9 (z Z UD . o, (), (69)
then the rlght—hand side of (67) can be easily represented in the same form:
M
50z = 3 (- p2) - UY) = 2FG41D) - () (70)
n=1

h (Z), we can solve stationary problems

So, having originally expanded the initial function u(?) (z) =
(Z) in a convenient form of spectral represen-

(67) obtaining every time the right-hand side SU+1(z
tation.
Let us remark that if the function f (z,t) takes the form

Zaz fz 57 (71)

then we can, using one of the procedures described above, expand each of the stationary functions

fi(@):
M
2) = Y Fop - galE). (72)
It is evident that at some instant t = tU+1/2) we get

(73)

e

N
F+1/2) = zf: o (t(j+1/2)) .
=1

Finally, let us note that if the time discretization step At and the source points are fixed, then
in solving each of problems (67) the same set of the trial functions {U(Z &)} is used.

5. INITIAL VALUE PROBLEMS: NUMERICAL RESULTS
5.1. Example 4

In this subsection we apply QTSM to the axisymmetric initial value problem with the Laplace
space operator and Dirichlet boundary condition. We assume that the problem in hand has the
plane of symmetry {z = 0} and restrict our consideration to the half-space {z > 0}. Then the
problem may be written in cylindrical coordinates as

S rm) =Iulma) +f(haD), (A e, (7)

u (T,Z,t) =g, (T’z,t) ) (T,Z) € F) (75)

g—z (r,0) =0, (r,0) € Q, (76)

ou

o (0 2} =@, (0,2) € Q. (77)

u(r,z,0) =h(r,z), (r,z)€ Q. (78)
Here

19 0 0?
T ror (rg) +@ )

and I' is the boundary of the cross-section of the three-dimensional solution domain considered in
(r,z)-plane (see Fig. 3). We also assume that it is possible to put § into cylinder
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Fig. 3. Solution domain for Example 4

Qo= {(r,2) 0L r, 2 <1} (80)

In accordance with the general QTSM approach described in Sec. 4 we discretize (74) in time by

using the Crank-Nicholson difference scheme and obtain the sequence of the stationary equations
(cf. (67)):

(L~ 97) D) (r,2) = = (L +52) u® (1, 2) ~ 209412 (r,2), p* =2/t. (81)
In this case we take the system of eigenfunctions

(an(ra Z) = W$13) (T) : 901('1%,) (Z)a (82)

which possess the needed symmetry (76), (77). The corresponding eigenvalues of the axisymmetric
Laplace operator are

Anm = H% + (m = 1/2)2 7r2 (83)

(see (24), (25)).
We also introduce the source function
M

I(r,z|&,m) = I®(r|&) - 1P (z[n) = D cam(&,n) - @nm(r, 2), (84)

n,m=1

Cnm(é 77) = T( ). g) <an(§,77)

and seek the approximate solution of (81) in the form
WG (1,2) = a1 2) 4 3 g Wl 216 me). (85)
k=1

We represent the solution u(é)(r, z) and the function fU*1/2)(r,z) as finite expansions with
respect to the functions {@nm }:

Z nm “onm (7, 2), (86)

n,m=1
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M

f(j+1/2) (r,2) = Z Ff({;‘;—lﬂ) “ onm (T, 2). (87)
n,m=1
Then we get
2\ 17() (J+1/2)
+1 (J+1) i+1) _ ()\ m_p)Unm_2an
(J n; . V J (r’ Z)v Vn(1]n+ )= 22 Ketses p2 ) (88)
< cnm (€5 1)
W (’I",Z'f,n) = Z dnm(é‘:n) ’ ‘pnm(r,z), dnm(gan) = _T—Q- (89)
n,m=1 nm +D
The unknown coefficients q(] ™1 must be chosen to satisfy the boundary condition
™ (r,2) = g0 (r,2), (r,2) €T (90)

We take the collocation points {(r,2;)}X., on the boundary I' (N > K) and, using (85), obtain
the linear algebraic system

zwz,msk,m) Ut = _ulH Dy, 2) + g0 (riyzi), i=1,...,N. (91)
k=1

Let us remark that, as it is mentioned above, if the time discretization step and the source
points are fixed, then the trial functions {¥(r,z | &, m;)} are independent of j. Therefore, if the
collocation points are also fixed, then systems (91) have the same matrix (but, of course, the

different right-hand sides) at various j. This allows to construct an effective numerical algorithm.

(J+1) (U+1)

After determining q;’" " we can write uy '’ (r,z) in the same form as (86):

K .
w2 Z UG - onm(r,2), UGHD = VD + 5 ¢ - dopn (&, mi) (92)
n,m=1 k=1

and so the algorithm is closed.
As a checking example, we consider the particular case when the solution domain  is the quarter
of the disk of radius R < 1,

g(r,z,t) =0, h(r,z)=0
and

f(T,Zat)=F'<1— 72 ), F = const.

In this case the problem considered has the exact analytic solution [20]

F-(R*-p)-(TR*-3p*) 12FR® i (=1)"" sinap —alt

)= 3
ue(r,z, ) 60 R2 p7l’5 Ly n5 ) (9 )
where we denote p = V72 + 22 and a,, = n7n/R. .
Similarly to (45) we define the maximum absolute error at the time ¢ = ¢(%):
e%) = max ’u(é) (ry2) — ue (r,z,t(j))| . (94)

As before, we take N checking points which are uniformly distributed inside Q.
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Some results are presented in Table 5. In all the variants we use R = 0.25, N = 40, At = 1074,
N; = 79. The source points are located on the arc of the circle of radius R + H centered at the
origin. Let us remark that ue(r, z,t) tends to
F-(R?-p?) - (TR? - 3p%)

60 R2
as t = 0o. We take F = 60/7R2 to obtain ue(0,0,00) = 1. In doing so we obtain that

Hele. 2.00) =

|ue(0,0,0.1) — 1| < 1077,

So the data in Table 5 also characterize the relative error.

Table 5. Errors e/ for Example 4 with R = 0.25, N =40, At = 10~*.

[ ¢ [ M=30,1=6, H=0.18 | M=50, =10, H=0.15 | M=10, I=10, H=0.12

0.00 0.52-1078 0.52-108 0.52-1078
0.02 0.10-1074 0.43-1075 0.30-1075
0.04 0.13-107* 0.59-107° 0.35-107¢
0.06 0.15-10~* 0.67-1075 0.22-107°
0.08 0.16-10~* 0.72-1075 0:23:10~°
0.10 0.16-1074 0.76-1075 0.25-1076

5.2. Example 5

Here we consider the problem which has only one essential difference from the problem described
in subsection 5.1: the solution domain varies with time. Namely, we consider the axisymmetric
problem with governing equation (74), (79) with f (r,z,t) = 0 in the sphere of variable radius
R (t). We use cylindrical coordinates and denote

Q(t) ={(r2):0<r*+2 <R(), r,z>0}. (95)
We assume that the boundary motion law is known and take it in the form:
R(t)=pB(1+1t)Y? B =R(0)=const< 1. (96)

We restrict our consideration to such ¢ that the solution domain €2 (t) is in cylinder (80).
We subject equation (74) to conditions (75) — (78) with

1

g (T‘,Z,t) = E(t_) (97)
and
_ 1 Erf(p/2) R
h('l‘,Z)—-;'W‘z—), P = T2+22, (98)
where

2 T g2
Erf(z) = 7 /0 e ¥ dy.

It is easy to verify that the function

L Bf@d) 0
Ue (r)zat) = P Erf(ﬁ/Z) ) (pvt) = 2\/m (99)

is the exact solution of the problem in hand.
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The solving algorithm is almost identical to the one described above. It should be only stressed
that the collocation points (r;, z;) are now located on the moving boundary

F(t):{(r,z):0§r2+22=R(t), r,zZO} (100)

and the source points (£, 7x) are also moved. In particular, we place the source points on the arc
of the circle of variable radius R (t) + H, H = const. So, in this case to determine the coefficients
q,(cJ 1) We obtain the sequence of linear algebraic systems like (91) with different matrices.

To expand the initial function A (r, z) with respect to the functions ¢y, we use the procedure
described in Sec. 2 (see (29)).

Table 6. Errors e%) for Example 5 with M = 30, | = 8, R(0) = 0.25, N = 40, K = 30, At =107%.

Lt ] @ |
0.0 | 0.16-1077
0.5 | 0.54-1075
1.0 | 0.44-107°
1.5 | 0.38-107°
2.0 | 0.34-107°
2.5 | 0.32:107°
3.0 | 0.30-10°

We present some results of the calculations in Table 6. The value e%) has the same meaning
as in the previous subsection. We use M = 30, [ = 8, R(0) = 0.25, N = 40, K = 30, H = 0.2,
At = 1073. We note that ¢t = 3 corresponds to the doubling of the initial disk radius.

Let us remark that in [16] we consider some another problems with moving boundaries including
the problems in which the boundary motion law must be determined in the solving process (so-called

Stefan problems).

6. CONCLUSIONS

The main aim of this paper is to give a general description of the Quasi Trefftz-type Spectral
Method (QTSM) and to test it on simple model problems. QTSM combines the properties of the
Trefftz and spectral methods. It is applicable to stationary as well as time-dependent problems.
QTSM preserves all the appealing features of Trefftz methods such as flexibility and adaptiveness.
Its implementation on a computer leads to simple codes and is not expensive on CPU time or
memory.

The following lines of the present work generalization seem to be of special interest. The first
is the extension to the three-dimensional problems. The second is the treatment of problems with
a more general governing equation. The third direction concerns the application of the nonlinear
versions of QTSM. These will be the subject of future investigations.
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