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A review is presented of a recent formulation of hybrid-equilibrium elements for modelling planar structural
problems. The formulation is based on the use of polynomials of general degree to approximate internal
stress fields and bounding side displacements. The existence of hyperstatic stress fields and spurious
kinematic modes are considered algebraically for both primitive and macro-elements, the latter providing
a means of controlling or removing the spurious modes in the former. Consideration is given to stress fields
which are statically admissible, and to Trefftz stress fields which are both statically and kinematically
admissible.

1. INTRODUCTION

The potential advantages of stress based elements, such as hybrid-equilibrium elements, have long
been recognized [1, 2, 4, 7, 10, 11]. In particular these elements offer to the designer the prospect of
using solutions for stress which satisfy strong equilibrium conditions throughout the structure. For
such a solution the stress field must (a) satisfy the differential equations of equilibrium within each
element, and (b) equilibrate with codiffusive tractions between elements or applied to the boundary
of the structure. Solutions of this nature are not generally produced by conventional finite element
procedures based on displacement fields.

However computational models formed from hybrid-equilibrium elements may carry the penalty
of being unstable for certain patterns of loading due to the presence of spurious kinematic modes or
“mechanisms”. The existence of such modes depends on the geometry of the mesh, and the nature
of the hybrid fields, e.g. the degree and completeness of polynomial fields, and the kinematical
admissibility of the stress fields. In the case of Trefftz stress fields the conditions for kinematical
admissibility are automatically satisfied.

Alternative techniques for addressing potential problems with these modes exist, and they in-
clude (i) the use of “smart” algorithms for the solution of the algebraic equations for the model
when the equations are consistent but dependent [7], (ii) the adoption of hybrid fields for elements
which have the effect of removing the spurious modes from them [10, 11], and (iii) the combination
of subassemblies of elements into macro-elements in which spurious kinematic modes are absent
or are entirely self-contained [1, 5]. It is not yet clear which is the optimum technique but some
drawbacks can be identified. For example the equations in (i) may become highly ill-conditioned
and yield unrealistic displacements notwithstanding reasonable stress fields; the definition of hybrid
fields suitable for (ii) may simply be achieved by increasing the number of internal stress parameters
and/or reducing the number of side displacement parameters, however this is likely to lead to a
weakening of equilibrium at the element interfaces.
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This paper presents a review of recent collaborative research studies into the properties of macro-
elements in technique (iii) in the context of 2-D planar structures modelled with hybrid-equilibrium
membrane elements. Earlier numerical studies were reported in [5], and the more recent studies
reported in this paper are intended to provide an algebraic approach to establish in a more general
way the static and kinematic properties of both triangular primitive elements, and macro-elements
built from them, using polynomial forms of hybrid fields. In Section 2 a general formulation of
triangular primitive elements is considered with vector spaces of stress and displacement fields,
including Trefftz stress fields in a special subspace. The duality of pairs of vector spaces is recog-
nized, and an equilibrium homomorphism is used to establish the existence of hyperstatic stress
fields and spurious kinematic modes. This is followed in Section 3 by an analysis of macro-elements
formed from triangular primitive elements connected together with one common internal geometric
node point. Some general properties are established by considering the rank of a statical matrix, in
algebraic form, which expresses the equilibrium and admissibility conditions for interface tractions
between the primitives.

2. TRIANGULAR PRIMITIVE ELEMENTS
2.1. General formulation of stress based hybrid elements

For the hybrid element statically admissible stress fields o and boundary displacements § will be
defined independently within the element and on each side respectively as in the formulation in [7].
These fields are expressed in Equation (1)

{o} =[8]{s}, and {8} =[V]{v}. (1)

The columus of [S] and [V] are independent and number ns and n. It is assumed that although
the sides are free to deform independently of each other, the columns of [V] span all three rigid body
modes of the element. On the element boundary stress {o} is equilibrated by tractions {t}=[N]{o}
which leads to the work product on the boundary expressed in Equation (2):

}{ {6} {t} dT = {v}T [D]{s} = {s}" [D]" {v} = {v}" {g} = {s}" {e} , (2)
where [D] = ¢ [V]T [NS] dI" and where:

{g} = [D]{s}, (3)
and:

{e} = [D]" {v} . (4)

This scalar work product means that vectors {g} and {e} represent generalised side tractions and
internal deformations which belong to vector spaces dual to those represented by {v} and {s}
respectively. Equations (3) and (4) can be considered as generalised equilibrium and compatibil-
ity equations for an element, with the generalised constitutive relations provided by the natural
flexibility matrix [F] in Equation (5).

Fl{s}={e}, where [F]= [[8]"[f)[8] a2, ®)

and [f] transforms stress to strain.
[D] has dimensions n, X ng and is a key matrix for the hybrid element. {v} is a spurious kinematic
mode or “mechanism” when it corresponds to zero deformation in Equation (4) without being a

rigid body mode. Such a mode, denoted by {vskm}, belongs to the nullspace of [D]T, does zero
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work for all stress fields within the element, and has zero corresponding stress from Equation (5).
The number of spurious kinematic modes, ngkm, is given by Equation (6):

Ngkm = N — 3 — rank [D] . (6)

{s} represents a hyperstatic stress mode, denoted by {spyp}, when it produces zero generalised
tractions in Equation (3). Such a mode belongs to the nullspace of [D], and does zero work for
all displacements of the sides of the element. The number of hyperstatic modes, nnyp, is given by
Equation (7):

Tipyp = Mg — rank [D}] . (7)

Combining Equations (6) and (7) gives a simple relation between the numbers of the two types
of modes:

Ngkm = (v — 3) — Mg + Ny - (8)

The rank[D] has been studied numerically [9], e.g. using singular value decomposition, but in
certain cases more general results can be derived in algebraic form. Before considering the properties
of primitive or macro-elements, the general structures of the vector spaces formed from polynomial
stress fields are reviewed.

2.2. Polynomial stress fields for membrane elements

Using vector space concepts, the complete polynomials of degree p, with reference to some set of
possibly oblique linear axes, form a stress space X? of dimension 1.5(p + 1)(p + 2) for plane stress
problems. It will be convenient to decompose the spaces into direct sums of subspaces X"P, each of
which contains stress components all of the same degree n (0 < n < p), i.e.

WPy . oX"d..H PP,

The stress components of X" have the form:

O a1z" + agz™ ty + asz" 2yt + ..+ anzy™ "+ an1y™
oy (=4 biz"+ boz™ Ly + b3z 2% 4+ ... +byy" ! + bpy1y” (9)
T c1z"™ + cox™ ly + c3x" 2y 4+ ..+ cnzy™ 1t + cpr1y”

and the dimension of £ is clearly 3(n + 1).

2.2.1. Statically admissible subspaces

In this subspace of X? the stresses must satisfy equilibrium with zero body forces, i.e. dive = 0.
When o belongs to " and Equation (9) describes contravariant components as in Figure 1 for
example, the vector div o is related by a non-singular transformation to:

do, OT
Bz " oy (nai +c2) 2" 1 4 ((n — 1) ag +2c3) 2" 2y + ... + (an + neps1)y" ! (10)
%U_y L %T_ (b + ner) 21 + (2bs + (n— 1) e2) 2" 2y + ... + (b +ca)y™ |

Yy T

When dive = 0 at all points z,y all the 2n coefficients in Equation (10) must be zero for each
value of n. This gives rise to 2n equations which relate the coefficients:

(n—1i+1)a;+ (2) ciy1 =05 (z')bi+1+(n—i+1)ci=0 S AR R (11)
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Fig. 1. Stress components at an oblique corner

3(n+1) —2n = (n+ 3) independent coefficients can be selected as by, ¢; to Cn+1, and an41. These
coefficients generate the subspace Xk of X" which has dimension (n + 3). Thus the space of
statically admissible stress fields 2’5’ A is the direct sum:

0, 1
Ty =S oZh 0.0 o..038,

and %, has dimension

n=p

S (n+3)=5+1)(p+6).

n=0

2.2.2. Statically and kinematically admissible subspaces — Trefftz stress fields

Each subspace Egﬂ contains a subspace of stress fields whose strains derived from the constitutive
relations embodied in [f] are compatible, e.g. for homogeneous isotropic material the stresses must
also satisfy V2 (01 + 09) = 0, where o and o, are the principal stresses, at each point. Assuming
such material and the use of orthogonal cartesian axes for simplicity, the stress fields from b 2o
give:

n+1
(014 02) = (05 + 0y) = Z (a; + b;) "ty =1

=1
and then
V2(0z +0y) = [n(n—1) (a1 + b)) + 2 (as + bs)] 22
+[(n—1) (n—2) (ag + by) + 6 (ag + bg)] 2" 3y + ...
+[2(an—1 +bn-1) +n(n—1) (ant1 + bny1)] y" 2 (12)

For the compatibility condition to hold at all points z,y it is required that each of the (n-1)
coefficients in Equation (12) be zero for all n > 2, i.e. there are (n — 1) independent relations
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between the (n + 3) independent coefficients by, ¢; to c,41, and a,41. This leaves 4 independent
coefficients (e.g. b1, ¢1, and ¢p41, any1) for each value of n > 2, and the dimension of the Trefftz
subspace EZIL% is 4. For n = 0 or 1 the statically admissible stress fields are all compatible and then
TR = Bgh. Thus the space of Trefftz stress fields 7. is the direct sum:

0, 1
E%R = E’IPR @ ETPR @ e @ E%I)R' @ s @ Eg\pR,

and Xf.; has dimension

n=p

3+4+ ) 4=(3+4p).

n=2

For the case of orthogonal axes the dependent stress coefficients ¢y to c, are given explicitly by
the following simple matrix equations in terms of the 4 independent coefficients [6]:

for n odd
(¢ ) 0 0 0
) n+1 b
: 1
' 1 Y ! e
n
< ¢ (= [Codd] L 1 ) (13)
. 0 0 Cn+1
n+1
1 an41
\ Cn ) L 0 . n+1 J
where
[Coad] =
[ (n—1) 2Cnot 0 (=1)*T 2.0 0 |
0 = 1). 7Ot 0 (=1)"72 2 .,.C,
el s 0 (1) 4., Ch 0
0 b 3) wlia 0 (-1)"T" 4 ,C4
Gl 2, (n b9 ) Chuasy 0 (=)™ (j=1) 2Cjoz 0
! 5y
0 (-1)F (n+2-3) nCnt1-j 0 (-1)"7" (j=1) nCjs
AT A il 0 (n—3) nCn_s 0
0 (—1)#41103 0 _(n-s) nln-3
(=1)"T° 2 ,Cs 0 iiln—1) oChs 0
i 0 (-1)*T 2.0, 0 (n=1) nCn-1 |

and for n even

where

" 3\ r ]
C2
: n+2 1 b
— o
S Cj r = [Cgven] n 1 Biat ) (14)
. - -
. n
1 an+1
\ Cn ) L n+2 |
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[Ce

even] ==

7 nCno1 0 0 (-1)" T 2,0
0 —(n—=2) nCn_z (-1)"2 2,0, 0
~(n—2) wCn-s 0 0 =17 4.0,
0 (n—4) 2Cra (~1)"F 4 ,C; 0
) j—2 . n42-—j :. :
0 (1T (n+2=3) aCntaj | (-1)7 " (j—2) nCjs 0
(-1)F (n+2=3) nCoti-j 0 0 (-1)"7 j nCis
0 (~1)*T" 4 ,C4 (n—4) nCn_s 0
(-1)"F 4,Cs 0 0 = (=2 50s-3
_02 (_1)%__22nc’2 —(n—2) nCn-2 0
(=1 "F" 2 uCi 0 0 n 2 Cai

In matrices [Cly4], and [CZ.,] terms such as ,,C; represent the binomial coefficients, i.e. ,C; =
!
%—T The remaining dependent coefficients a; to a,, and by to b,41 are defined by the
gt (n —j)!
Equation (11). This direct generation of Trefftz stress fields by Equations (11), (13), and (14) is an
alternative to the more usual, but indirect, generation via the formation of Airy stress functions

which satisfy the biharmonic compatibility equation [3].

2.3. Polynomial displacement and traction fields on the sides of a primitive triangle

Hybrid equilibrium elements require the definition of both internal stress fields and displacement
fields on the boundaries of the elements. The displacements are defined independently and sepa-
rately on each side of an element, and form the space AP with typical vector v when based on
complete polynomials of degree p. This space then has the dimension 3 x 2(p + 1) = 6(p+ 1). The
use of displacements of the same degree p as the stress fields is intended to lead to continuity of
normal and tangential stresses between elements, and hence to complete equilibrium. However this
desirable result can be frustrated by the presence of spurious kinematic modes in the primitive
elements.

Dual to the space AP there is the space of side tractions GP with typical vector denoted by
g. Two subspaces of GP are defined: G’é and G%E. G’é consists of those vectors g which satisfy
three independent global equilibrium conditions for an element. This subspace thus has dimension
6(p+1) — 3 = 3(2p + 1). Gy, is a subspace of G}, and contains tractions which satisfy not only
global equilibrium, but also three local equilibrium conditions at the three corners of a triangular
element. These conditions can be expressed in a variety of ways depending on the choice of axes or
stress components. However what they express is the local rotational equilibrium associated with
an infinitesimal element at a corner of a finite element — this is equivalent to the usual concept of
complementary shear stresses. With reference to Figure 1 this can be expressed in terms of local
contravariant stress components ¢/ or local normal and tangential traction components:

o'? — o' =0, or (761 + Ty2) — (0n1 — on2) coty = 0. (15)

It is clear that tractions belonging to G define single valued stress states within the corners
of an element.
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2.4. Equilibrium homomorphism of EIS’ A onto GZp, for a primitive triangle

A homomorphism e is defined by taking the image of a statically admissible stress field o as the
boundary tractions g which are in equilibrium with the stress field:

e: X8, - Glg. (16)

Clearly this mapping is “into” since all statically admissible stress fields have equilibrating
tractions which must satisfy all the global and local corner equilibrium conditions. What is not so
obvious is that the mapping is “onto” [6], i.e. every traction g € Gy has at least one stress field
o € XE, as an inverse image. An important consequence of this mapping being “onto” concerns
the dimension of the space of hyperstatic stress fields 3% when element stress fields are defined
to span X%,. When the boundary displacements belong to the complete space of polynomials of
degree p the hyperstatic stress fields represented by {s} in Equation (1) have zero tractions on the
element boundary and then nyy, = dimension EI}JIS = dimension Eg A - dimension G’éE.

Dimension G%E is found to be dependent on the value of p [6], and it can be simply determined
from the rank[A], where matrix [A] represents the projection of Gf; onto its quotient space GL/Ghy
i.e. dimension G&p, = dimension G} — rank [A]. [A] can be constructed as a 3 x 3(2p + 1) matrix
with coefficient a;; equal to the left hand side of Equation (15) for corner ¢ and traction distribution
j from a basis for G} In [6] it is shown that rank[A] = 0,2, or 3 when p = 0,1, or > 2 respectively,
and consequently dimension Gfp = 3,7, or 6p for the respective values of p.

2.4.1. Hyperstatic stress fields for triangular equilibrium elements

The mapping e is an isomorphism when p < 3 and then npy, = 0, whereas e is an homomorphism
for p > 4 and then npy, = 0.5 (p + 1) (p +26) —6p = 0.5 (p — 2) (p — 3). The single hyperstatic stress
field when p = 4 is a combination of stress fields from E% As Eg A> and Eé A, and is defined in terms
of the oblique axes of Figure 2 in Equation (17).

f 22 228 22%y z* 223y 2z2y% )
3 3b a 3b2 ab a?
2 2 3 2,2 3 4
- Y 2zy 2y 2z%y 2zy Y
o= F w TOY T e T T 17
{o} 3 ® b > 3a b2 ab 3a? (17)
L 20y 22%y  2xy? & 4z3y " 3z2y?  Axyd
3 b a 3b2 ab 3a2 /

This stress field is illustrated in Figures 3, 4, and 5, which include a plot of stress trajectories
[8] and a simplified “strut and tie” model to aid the visualisation of this mode of self stressing.
This mode would be typical of the stress fields arising from differential shrinkage of the material of
the element, although it should be noted that this stress field does not belong to 24y for a linear
elastic material.

2.4.2. Hyperstatic stress fields for the triangular Trefftz elements

Using the oblique axes of Figure 2, the oblique traction components on sides 31 and 32 which
equilibrate with the general stress field of Equation (9) are defined by:

{ty= —sinfy-x”{ Zl } on side 31,
1

{t} = —sin'y-y"{ el } on side 32.
Cn+1
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3 1

Fig. 4. 4th degree hyperstatic stress mode; simplified strut and tie model
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Fig. 5. 4th degree hyperstatic stress mode: distributions of principal stresses on (a) section A-A and (b)
section B-B

These tractions are thus functions of the four independent stress coefficients by, c1, cp+1, and
an+1 which correspond to a basis for 7% . Hence for the Trefftz element to have zero tractions on
these two sides implies that these four coefficients are zero for all values of n > 0, and consequently
the null-space of the mapping e : Xhg — G%E is just the zero stress field. Thus there are no
hyperstatic stress fields for the Trefftz polynomial element, and npyp = 0.

2.5. Spurious kinematic modes for the primitive triangular membrane element

The number of spurious kinematic modes, nskm, is given by Equation (8) and is tabulated for
elements with stress fields which are (a) statically admissible, and (b) Trefftz fields for various
values of degree p in Table 1.

A spurious kinematic mode {vskm} does zero work with all tractions belonging to the range of
the equilibrium homomorphism e. These tractions are termed “admissible”. Thus for the statically
admissible element:

{Vekm} T {g} = 0 for all g € Gy, i.e. for all {g} satisfying [A]{g} = {0} (18)

This implies that, in matrix terms,
{Vam} = [A]" {k} (19)
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Table 1. Characteristics of triangular primitive elements of degree p

Degree Statically admissible element Trefftz element
P s Thyp Tskm Ns Thhyp | Tskm
0 0 0 3 0 0
I 7 0 2 0 2
2 12 0 3 11 0 4
3 18 0 3 15 0 6
4 25 1 3 19 0 8
P ie+1)(P+6) | ;(0-2)(-3)| 3 |@4p+3)| 0 2p

where the three components of {k} are arbitrary, i.e. the rows of [A] contain a basis for the null-
space of [D]T which excludes the rigid body modes. A spurious kinematic mode is thus associated
with each corner of the triangular element, and taking corner 3 as an example the spurious kinematic

mode is defined [6] by tangential and normal components of displacements, on the side opposite
corner 1:

n=p
5 (6) =~ [2 (2n+1) P, (s)] | dn(§) = — ooty 8,(6) (20)
n=0
and on the side opposite corner 2:
n=p
h(6)=7 [Z (-1 @n+1) P, (é)} L () = oty 6 (6) (21)
n=0

where ¢ is a non-dimensional position parameter for each side, and P, (§) is the Legendre polynomial
of degree n. ¢ has limits +1 and a positive sense agreeing with an anticlockwise traversal of the
boundary of an element.

In particular, for p = 1, the displacements for sides 1 and 2 simplify to:

_J | _ 1] —coty(1l+3) on | _ 1 coty (1 — 3¢)
{6}‘{5t}‘a{ (1+3¢) }a“d {cx}'b{ (1-3¢) } )

respectively, and for p = 2, the displacements for the two sides become:

On 3 [ —coty (=14 2¢ + 5¢2) g On 3 [ coty (—1—2¢ + 5¢2) (23)
= —_— n e —
5 | 2a (=1 + 2¢ + 5¢2) & J 26| (-1-2¢+5¢%)
respectively. These two particular examples of spurious kinematic modes for the statically admissible
element are illustrated in Figure 6.

3. MACRO-ELEMENTS

Macro-elements are considered as assemblies of na > 3 primitive triangular elements of polynomial
degree p sharing a common internal node. An example with na = 5 is illustrated in Figure 7. The
macro-elements can be regarded in the same way as primitives, but the stress fields are now defined
in a piecewise sense. Again the rank[D] has been studied numerically [9], but arguments based
on the macro assembly as a statically indeterminate system have yielded some general algebraic
results for the membrane case. A statical analysis of the macro-element as a system of primitive
elements leads to general conclusions regarding the degree of hyperstaticity and the number of
spurious kinematic modes.
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(@p=1 b)yp=2

Fig. 6. Spurious kinematic modes for: (a) p =1 and (b) p = 2 associated with corner 3

Fig. 7. Notation for a macro-element with na = 5, including a basis for internal biactions
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3.1. Membrane macro-element using statically admissible stress fields
The 2(p+1) independent traction modes on a side of an element can be defined in terms of Legendre

polynomials as illustrated in Figure 8. Then there are 3 basic modes having stress resultants
representing a normal force, a tangential force, and an in plane moment, plus (2p — 1) higher-

n o

Fig. 8. Side modes of traction based on Legendre polynomials

order or self-balancing modes. Leaving aside the question of admissibility for the moment, the

assembly of elements would be statically indeterminate of degree «, where « is given by Equation
(24).

n
a=an+ap, where op=(3+na(2p-1)), and o = (TA(p —2)(p - 3)> . (29)
nA appears in oy, since it is also the number of interfaces between the primitive elements of the
macro-element. The expression for oy, is only valid for p > 3, and comes from the hyperstatic modes
for the primitives which do not involve interaction between the elements. Self-balanced interactions

between the primitive elements can be expressed in terms of o, internal biactions whose values
constitute a vector {b}:

{g} = [B] {b} . (25)

In Equation (25) {g} represents the generalised tractions on all sides of all primitives due to the
biactions. For these tractions to be admissible they should satisfy:

[Al{g} = [A][B]{b} = [C]{b} = {0} , where [C]=[A][B]. (26)

In Equation (26) [A] is now a block diagonal matrix with diagonal submatrices [A¢] as defined
in Section 2.4 for each primitive element e in the macro-element. From the static point of view,
the degree of hyperstaticity of the macro-element is reduced to (o — rank [C]). From the kinematic
point of view, spurious kinematic modes for the set of all primitives are generated by combining
the columns of the submatrices [A¢]" in Equation (27):

{Vokm} = [A]" {k} . (27)
These spurious modes are compatible within the macro-element provided that they satisfy:

BI" {vaim} = [B]" [A]" {k} = [C]" {k} = {0} . (28)
Thus the number of spurious modes for the macro-element is given by (2n — rank [C]) when

p =1, and by (3na — rank [C]) when p > 2. The existence and number of hyperstatic or spurious
kinematic modes depends on rank[C].
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3.1.1. Formation of [C] for a statically admissible macro-element

[C] has dimensions 3na X a,, and it is readily constructed in submatrix format by selecting ap-
propriate bases for the biaction vector {b} and the vector of side tractions {g}. [C] is partitioned
into submatrices [C;;] = [A?] [B;;] where here i and j refer to the number of the primitive element
and the set of biactions respectively. There are 3 basic biactions for the complete macro-element,
these will be referred to as set “0”; and there are (2p — 1) higher order biactions between each pair
of adjacent primitives, these will be referred to as set “;” where j is the number of the interface
(1 <j <na). Thus [C;;] has dimensions 3x 3 or 3x (2p—1). The patterns of submatrices in [B] and
[C] are similar, and are illustrated with reference to Figure 7 in Equation (29) when na = 5.

Cyp| 0 |Cp|Cy| 0
[Cl=| C3| 0 | 0 |Cs3[C34| O (29)
Cwpl| O 0 |Cy|Cys
| C50 | Cs1 | O 0 0 |Css |

Using the bases for {b} and {g} as indicated in Figures 7 and 8 with Legendre polynomials,
typical submatrices are as follows:

[Cio] =
i 6 cot a5 5 (— cos 61; + sin fy; cot ai) 9 (-— cos Bo; + sin fy; cot ai) W
L? L; L;
—6 cot G; 9 (cos 01,i+1 + sinfy ;41 cot ﬁi> s (cos 62,i+1 + sinfy ;11 cot ﬂi>
L}, Lit1 Lita ’

1 1
6 (F = P-) coty;  4f (61i,01,i41,Li, Liy1, cot ;) 4f (023, 02,i41, Li, Liy1, cot ;)

i i+1 i
(30)
where
cosf; cosb;yq ) (sin 0; sinf;y; )
0;,0i11, L, Liz1,cot ;) = — tvi,
f ( i Vi+1, Liy Luit1, CO 71) ( Li Li+1 + Ll Li+1 Ccot 7y;
and
1 1 1 | —cota; —cotq; —cot o
[Cul=| 0 0 0 0 0 0 :
-1 1 +1| coty; —coty =+ cot y;
and
0 0 0 0 0
[Ciit1] = 1 1 cot B;  cot f; cot (3;
e | 41| —coty; cotw; =+ coty;
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3.1.2. Properties of the macro-element deduced from rank[C]

Row operations have been carried out algebraically with the aim of achieving a row echelon form.
This has lead to the following general results as functions of p and na [6].

p=3

Generally rank [C] = 3na and there are no spurious kinematic modes for the assembly of primi-
tives. The macro-element is hyperstatic and nnyp, = a—3na = 3+na (2p — 4)4+0.5n4 (p — 2) (p — 3).
There is one exception when na = 4 and the quadrilateral has a diagonal subdivision. Then
rank [C] = 3np —1 =12 — 1 =11, and the assembly contains 1 spurious mode and 1 extra hyper-
static mode. By inspection of the spurious modes of the primitives associated with the internal node
of the macro-element, it is clear that these modes can be assembled to satisfy compatibility, and
that the spurious mode for the assembly does not involve displacements of the external sides of the
macro-element. Thus all tractions on the external sides remain admissible, and this “exceptional”
case still presents a useful element. The presence of an extra hyperstatic mode may lead to lower
levels of strain energy in a solution, an example is given when p = 2 when a similar situation occurs.

p=2

A general result for na > 4 requires further investigation, but for no = 3 or 4 similar results hold
as when p = 3, i.e. rank [C] = 3na, there are no spurious modes, and npyp = 3+na (2p — 4) = 3. The
exception again occurs for the quadrilateral with diagonal subdivision with similar consequences as
when p > 3. The 4 hyperstatic modes which occur for a square element with diagonal subdivision
are illustrated in Figure 9. It should be noted that if the geometry changes to a non-diagonal
subdivision then mode 1 remains but modes 2 to 4 must be combined to give only two additional

AN N

Fig. 9. Hyperstatic modes for a square macro-element with diagonal subdivision, p = 2: (a) mode 1,
(b) mode 2, (c) mode 3, (d) mode 4
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hyperstatic modes. The effect on the strain energy of a solution is illustrated in Figure 10 where
strain energy is plotted as a function of the position of the internal node along the axis of symmetry.
When the diagonal position D is reached there is a clear singularity in the energy function which

¢ belsd

o8

STRAIN
ENERGY

10°

10"

[~}

-1 0 D +1

Fig. 10. Strain energy variation with position of the internal node, p = 2 and Poisson’s ratio v = 0.3

is attributed to the additional hyperstatic mode. Similar singularities occur with simpler frame
structures, and an example of a 3-pinned portal frame is shown in Figure 11. As the slope 6 of
the rafter is varied, so the strain energy due to a pair of horizontal forces H has a singularity
when 0 = 0. When 6 # 0 the frame is isostatic, the strain energy is due solely to the bending of
the columns, and is independent of . However, when § = 0 the frame becomes hyperstatic and
contains one mechanism due to the alignment of the pin joints. The strain energy reduces to that
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Fig. 11. 3 pinned pitched roof portal frame: (a) loading and bending moment diagrams shown
schematically, (b) strain energy variation with slope of rafters

due mainly to the axial forces in the horizontal rafters. Figure 12 illustrates the spurious kinematic
mode for a macro-element with diagonal subdivision and clearly shows the “benign” character of
this mode since only the internal interfaces can move.

p=1

Without exception rank [C] = (3+na), the number of spurious modes for the assembly is
2na — (3 +na) = (na — 3), and no hyperstatic modes exist. The geometrical arrangement which
leads to the “exceptional” cases when p > 1, does not change the number of spurious modes (in
this case just 1), but it does change the character of the mode to a “benign” one, i.e. it does not
involve displacements of the external sides as illustrated in Figure 13. Hence this geometry again
presents a useful element.

3.1.3. General summary for a membrane macro-element with statically admissible
stress fields

As the degree p of the polynomial fields increases so the problems with spurious kinematic modes
are removed. The properties of macro-elements when viewed as single elements, and when effectively
free of such modes, are summarised in Table 2.

Particular observations are included in Section 3.2 for the Trefftz type of element.
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Fig. 12. Spurious kinematic mode of a quadrilateral macro-element with diagonal subdivision, p = 2.

(a)

Fig. 13. Spurious kinematic modes of a quadrilateral macro-element with (a) non-diagonal and (b) diagonal
subdivision, p = 1.
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Table 2. Summary of the characteristics of macro-elements

Degree p | na (nv = 3) Ns Thyp
1 3 9 9 0
1 4* 13 13 0
2 15 18 3
2 4 21 24 3
2 4* 21 25 4
3 21 30 9
3 29 40 11
3 4%* 29 41 12
p na | 2(p+1)na—3 | 5" +3p+2) na | $(0° —p—2) na +3

* indicates diagonal subdivision of a quadrilateral.

3.2. Membrane macro-element using Trefftz stress fields

A primitive quadrilateral with p = 2 has n, = 11, (ny — 3) = 21, nhyp = 0, and Ngey = 10; this is
confirmed by numerical trials which also indicate that Nskm 10creases by 4 for each unit increase
of p. One way of coping with the spurious modes is to increase the degree of the internal stress
fields relative to the degree of the displacement fields on the sides. However this may incur loss of
equilibrium at element interfaces, and an alternative approach which could maintain equilibrium
would be to formulate a macro-element based on Trefftz fields defined in a piecewise sense. A
quadrilateral macro-element with p = 2 and diagonal subdivision appears to have the following
characteristics when viewed as a single element: ng = 23, (n, — 3).=21, Nhyp = 2, and nggm = 0.
The two hyperstatic modes for a square element coincide with the two shear cases in Figure 9 for
the statically admissible macro-element. The number of stress fields is thereby increased, and there
are no external spurious kinematic modes in this case.

4. CONCLUSIONS

General conclusions regarding membrane hybrid elements can be drawn for triangular and macro-
elements based on polynomial fields:

e as the degree of the statically admissible primitive increases the number of hyperstatic stress
fields tends to increase whilst the number of spurious kinematic modes stabilises at 3,

e the statically admissible macro-element appears to be completely free of spurious kinematic
modes when the degree exceeds one, except for the benign case of a quadrilateral with diagonal
subdivision when the mode is self contained and is not excited by boundary tractions,

e the statically admissible macro-element is hyperstatic for p > 1, and the degree of hyperstaticity
increases by one with diagonal subdivision of a quadrilateral. This raises the question for the
quadrilateral as to whether any advantage is to be gained from such a subdivision,

e the use of Trefftz stress fields implies a better solution in terms of compatibility, but the cost
for this includes either a lack of equilibrium and/or an exaggerated restriction on the space of
approximating functions. The errors and convergence rates of solutions obtained using statically
admissible and Trefftz stress fields should be studied in detail,

e further work is required to establish general properties when Trefftz stress fields are used, and
to extend similar studies to plate bending and solid elements.
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