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In this paper the possibility of applying the Trefftz-method to thick and thin shells is discussed. A mixed
variational formulation is used in which the assumed strain and stress functions are derived from the
three-dimensional solution representation for the displacement field. For the construction of the linearly
independent Trefftz trial functions both the Neuber/Papkovich solution representation and a complex
variable approach of the author are considered. The difficulty in constructing the solution functions for
the displacement field consists of two problems: i) How can we choose the functions in order to have a
symmetric structure in the displacement field and not to bias the solution in any direction? ii) How can
we avoid to get linearly dependent terms for displacements, strains and stresses when seeking polynomial
solution terms?

1. INTRODUCTION

For a series of different problems the solutions of the governing differential equations have been
studied in the literature. For an application in the Trefftz-method [1] we are interested in a series of
linearly independent functions satisfying the homogeneous differential equations and in “particular
solutions” of the inhomogeneous differential equations. The linearly independent homogeneous so-
lution functions have free parameters which have to be evaluated in the Trefftz algorithm. On the
other hand the particular solutions usually do not have free parameters. Trefftz trial functions and
their application for Finite Element Methods and Boundary Element procedures have been studied
for example by Herrera [2-4], Jirousek and co-workers [5-14], Kita and Kamiya [15], Melenk [16,
17], Piltner [18-27], Piltner and Taylor [28, 29], Ruoff [30], Stein [31-33], Szybinski [34, 35, 13],
Teixeira de Freitas [36], Tong [37], Wréblewski [38, 39], Zielinski [40-43], and Zienkiewicz [44-46].
Overview articles on the Trefftz method have been presented, for example, by Kita and Kamiya
[15] and Zielinski [40]. More references on the Trefftz-method can be found in the special journal
issue on the “Trefftz Method: 70 Years” [47].

For two dimensional elasticity problems the complex representation of Muskhelishvili [48] and
Kolosov is very useful for the construction of Trefftz-trial functions since the solution is given in
terms of arbitrary complex functions. Since the governing differential equations are satisfied for
any functions of a complex variable we have a tool to construct sets of infinite linearly independent
functions in different coordinates. The concept of Muskhelishvili to express solutions in terms of
arbitrary complex valued functions can be extended to thick plate [21-23] and three-dimensional
elasticity problems [24-26].

For the type of shell element considered in this paper we want to utilize stress functions which
satisfy both the equilibrium and the compatibility equations. Such functions can be derived from
a 3-dimensional solution representation for the displacement field.

The amount of literature on finite shell elements is quite huge. Many finite elements for the
analysis of shells have been proposed. A list of books, monographs, conference proceedings and
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survey papers on shells can be found in references [49, 50]. For this paper the transformation
between the cartesian coordinates z, y, z and the natural coordinates ¢, 7, ¢ as well as the form
of the displacement field u, v, w are chosen as described in references [51, 52]. For the mixed
variational formulation considered in this paper the assumed stresses and strains are derived as
Trefftz functions. In references [51, 52] a modified constitutive relationship is used whereas in the
current approach the three-dimensional constitutive equations are used.

2. VARIATIONAL FORMULATION

For the derivation of a shell element the following modified Hu-Washizu variational formulation
[28] is considered:

I(id, € €, 0) =/

%eTEedV—/ ﬁTf‘dV-—/ﬁTTdS—/ ol Di — &) dv, (1)
1% \4 S 1%

where 4 is a compatible displacement field involving shape functions, nodal displacements and
nodal rotations. €' is the enhanced strain field satisfying the condition that each enhanced strain
term is orthogonal to proper chosen reference stresses. This condition can be written as

/V (66T dV = /V (66)To* dV = 0. )

The original version of the “enhanced strain” method was proposed by Simo and Rifai [53]. One
possibility of deriving enhanced strain terms is to use an appropriate incompatible displacement
field. The use of incompatible displacements for the construction of admissible strains was first
applied successfully for the four node plane strain/stress element by Taylor/Beresford and Wilson
[54] (element QM6). Further discussion on the use of incompatible displacements can be found in
reference [55].

The strain field € = Du is obtained from a three-dimensional displacement field u satisfying the
Navier equations

DTEDu =0, (3)

where D is a differential operator matrix. The assumed stresses o satisfy the equilibrium equations
and can be obtained from the constitutive relationship o = Ee.
Carrying out the variation in (1) the following equations are obtained:

—/aaT[e-Dﬁ—ei] av =0, (@)

1%

/55’1“ [Be — o] dV =0, (5)
1%

/ §(DA)Todv = [ saTEAV + / 5aTT dS, (6)
1% 1% s

/ (66)TordV = 0. (7)
1%

The displacement, strain and stress fields are chosen in the following form:

u = Nq,

e=ApB,

(8)
o =EAB =Pg,

el = Bi).
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where N = N((,7) is the matrix of compatible shape functions and q contains the nodal displace-
ments and rotations of the shell element. The vectors 3, A are strain/stress and enhanced strain
parameters, respectively. For the proposed approach appropriate Trefftz functions are chosen for
the fields € and o. Note that for the current approach a variational formulation with domain inte-
grals is used instead of a formulation with boundary integrals, usually chosen for Trefftz-type finite
elements. Of course also here such a formulation with boundary integrals could be used. However,
for the element under consideration we have six surface portions for the shell element on which
boundary integrals have to be evaluated. It appears to be simpler in this case just to evaluated one
volume integral instead of six surface integrals in order to get the finite element stiffness matrix.

In order to specify the entries of the shape function matrix N we first define the relationship
between the cartesian coordinates x, y, z and the natural coordinates of the shell element denoted
&, n, and . The chosen coordinate transformation involves the unit normal vectors at the element
nodes. For each node we need to specify the components of the normal vector

VZ = [VTLIa Vnya Vnz] . (9)

At each node we construct two vectors

VT = [Viz, Viy, Vi) (10)
and
V3 = [Vag, Vay, Vaz], (11)

which are orthogonal to the given normal vector V,,. This is achieved by evaluating the following
cross products:

exV,

Wy o O 12
1= e x Vil (12)

and
Vo=V, xV;. (13)

The vector e has to be chosen such that e and V,, are not parallel. This can be achieved by using
either

el =0,1,0] (14)
el =[1,0,0] . (15)

With the above procedure we get for each node k the three orthonormal vectors V¥, V& V£,
For the shell element the following relationships between the coordinates are used:

Ne(E o + 563" Nl Vs,

e

@ =
k=1 k=1
y= ;Nk(é,n)yk + %t;Nk(&n)ny, (16)

Nk(&an)zk G %t Z Nk(é,n)vnkz ;

k=1

I
M=

e
Il
-
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Using shape functions N; the compatible displacement field @ for a shell element is assumed in the
following form:

6(6,m,0) = Y Nl mue + 3 3 Ne(om)[-Vison + Vil
k=1

k=1
5Em,0) = Y Nl mve + 3 3 Nele,m—Vibe + VEB, (1)
k=1 k=1

B(Em,0) = Y. Nl + 5 3 Na(6am)[ -V + VA,
k=1 k=1

where
Uk, Vg, W, = nodal displacements,
ak, B = nodal rotations.

The variation of IT with respect to 3, q and A gives us the following system of equations:

“H LL][g 0
LT o0 o q | =] fext | (18)
LT 0 o A 0

where

H=/ ATEAdV=/ PTE-1P4V,
Vv |4

L=/ ATEBdV=/PTBdV,

|4 14 (19)
Li= / ATEBi dV = / PTBidV,

1% 1%

£ =/ NT?dV+/NTTdS,
1% S

where B is the strain matrix obtained from the compatible displacement field @ (i.e. B = DN).
After eliminating the stress parameters 3 at the element level we obtain the following reduced
system of equations:

o]-5)
' Q|| 0
where
K =LTH-L,
r=L"H-L, (21)
Q=L"H L.

The vector A contains only internal element parameters which are not associated to any nodes.
Therefore the enhanced strain parameters A can be eliminated at the element level. A static con-
densation procedure leads to the the following reduced system of equations

kq = fext ) (22)
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where the element stiffness matrix is given by
k=K-rTQ-'r. (23)

In the next sections the systematic construction of Trefftz functions for the strains e and the
associated stresses o is discussed. Since the functions are derived from a displacement field, solution
representations are considered first and then a method of obtaining linearly independent polynomial
terms is discussed.

3. SOLUTION REPRESENTATIONS FOR THREE-DIMENSIONAL DISPLACEMENT FIELDS

Two solution representation are considered: The Neuber-Papkovich solution representation and the
author’s solution representation which is given in terms of six arbitrary complex valued functions.
The Neuber-Papkovich solution representation for the three-dimensional displacement field can be
given in the form

2uu = —F; +4(1 — v)Hy,
2uv = —F, + 4(1 — v)H,, (24)
2uw = —F, +4(1 —v)Hs,

where

2u=E/(1+v) (25)
and

F=Hy+zH; +yHy + zH3. (26)

The four functions Hy(z,y, z), Hi(z,y,2), Ha(z,y, 2), H3(z,y,z) have to satisfy
AH; =0. (27)
In terms of derivatives of the space harmonic functions H; the displacement field can be written as
2uu = —Hog + (3 — 4v)Hy — xHyy — yHoy — 2Hsg,
2uv = ~Hoy + (3 — 4v)Hy — xHyy — yHay — 2Hsy, (28)
2uw = —Hy, + (3 — 4v)H3 — zHy, — yHs, — zH3,.
The according stresses can be calculated as
Oz = Hoyy + Hozy + 2(1 = v)Hig + (Hiyy + Hizz)
+ 2vHyy + y(Hayy + H2;.)
+ 2vHj, + z(Hsyy + Hs,,),

oyy = Hogg + Hoze + 2vH1g + 2(Hize + Hiz)
+ 2(1 — v)Hay + y(Hagq + Hay,)
+ 2vH3, + 2(H3ze + H3z),
02z = Hoge + Hoyy + 2vH1g + o(Hige + Hiyy)
+ 2vHyy + y(Hagy + Hayy) (29)
+ 2(1 = v)Hs, + 2(H3zq + Hsga),
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Toy = —Hogy + (1 — 2v)Hy, — THizy + (1 - 2v)Hy, — yHszzy = 2Hagy,
Toz = —Hog, + (1 - 2V)I:[lz — ¢Hi,, — yHog, + (1 - 2V)H3:1: ' (30)
Tyz = _HOyz i mHlyz T (1 o 2V)H2z o yH2yz T (1 : . 2V)H3y 7 zH3yz-

As an alternative to the real solution representation of Neuber-Papkovich the following complex
solution representation of the author [25-27] can be used:

Qs = / {Im [T — 2iz®) +2 (3 — 4v) 1]

+az Re[— Wy + 2iy®)] + a3 Re [~ U3 + 2iz®4)} dt,
2uv = /{b1 Re[-T; + 2iz®]]

+1Im[Us — 2iy®) + 2(3 — 4v)Py) + b3 Re [- T3 + 2iz®4]} dt,
pw = / {c1Re [T + 2iz®!]

+ca Re[-Wp + 2iy®@)] + Im [U3 — 21283 + 2(3 — 4v) 3]} dt.

The complex functions in this representation depend on the complex variables (1, (2, (3 in the
form (I)k = (I)k((k)a \Pk = \Ijlc(Ck) and k = 1,2,3.
The complex variables are given as

G=iz+b(t)y+c(t)z,
G2 = ao(t)r + iy + c2(t) 2, (32)
(3 = a3(t)z + b3(t)y + iz,

where the parameter functions as(t), as(t), b1(t), bs(t), c1(t), ca(t) have to satisfy the equations
bi(t) +ci(t) =1,
a3(t) +c3(t) =1, (33)
aj(t) + b3(t) = 1.

Important examples for the choice of parameter functions are a3(t) = cost, bs(t) = sint.

For any choice for the six complex functions the resulting real displacements u, v, w automatically
satisfy the governing differential equations. An example for the choice of complex functions for the
3-dimensional case is

N N n
B3(Ga) =Y AnCE+ Y > ( BMCH cosmt + C*(P sinmt) | (34)
n=0 n=1 m=1
where
(3 =1tz —xcost—ysint. (35)

In this case, the upper and lower limits of integration in representation (31) are m and —, respec-
tively. Performing the integration with respect to the parameter variable t we systematically obtain
all possible space harmonic polynomials which can be written in the form

™ M
/ (z +izcost + iysint)" c?s mtdt = MT”P,T(COS 0) €08 me, (36)

-7 sin (n +m)! sin
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where P™ are Legendre functions. Alternatively we could construct the (2n+1) linearly independent
space harmonic polynomials of the order n by using either

7r . s & COos
/ (z +1iycost+izsint)” | mtdt (37)
- sin
or
l . o cos
/ (y +izcost +ixsint)” ~ mtdt. (38)
-7 sin

The result of the integral in equation (36) can also be written in terms of z, y, z for given
values of n and m. For example, using a symbolic manipulation program we can easily compute
the following integrals:

7 3
/ (z + iz cost + iysint)3 cost dt = izﬂ'(422 —y? - 2%z,

. 4

™
/ (z + iz cost + iy sint)® cos 2t dt = gﬂ(y2 — %)z, (39)

-

™
/ (z + iz cost + iy sin t)3 sin2tdt = —3nzyz.
-7

Since there are only (2n + 1) linearly independent space harmonic functions of the order n the
displacement field can have only 3(2n + 1) = 6n + 3 linearly independent terms of the order n.
However, it was found that it is not possible just to set one function to zero in the Neuber—Papkovich
representation or to set three complex functions to zero in representation (31) in order to have three
functions left. Having just three functions left in the real or in the complex solution representation
will lead to linearly dependent polynomial solution terms. We have to use all functions in the
solution representations (28) or (31). In reference [27] a relationship between the real and the
complex solution representation was given. In order to get linearly independent polynomial solution
terms for the displacement field we can choose complex power series for the functions ®; and U,
and establish a relationship between the pairs of functions (®; and ¥;), (®; and ¥5), and (®3 and
U3). Using the real solution representation of Neuber/Papkovich we can decompose the function
Hy into three functions according to

HO(xayaz) = Ao(CL‘,y,Z) + BO(‘Tayvz) + CO(-T)yaz)

= " 4(e,y,2)a; + Y Bi(z,y,2)bj + > Ci(2, 9, 2)¢; (40)
J J J

and impose a relationship between the pairs (H1, Ao), (H2, Bo), and (H3, Cp). Practically this means
we will use the same coefficients for the polynomials in H; and Ay, for example. The construction
of the polynomial solution terms for the displacements will be shown explicitly in the next section.

4. CONSTRUCTION OF POLYNOMIAL SOLUTION TERMS
FOR THE DISPLACEMENT FIELD.

The assumed displacement field can be written in the form
u—“—‘u]ﬂj, v:vjﬁj, wzwjﬁj,

where u;, v;, w; are Trefftz functions and the j3; are coefficients which have to be determined. For
the hybrid element formulation we have to exclude the six rigid body terms from the list of trial
functions. The remaining linear displacement terms and the according strain and stress terms can
be written as:
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u=01-2v)z, wve=(1-2)y, wz = (1 -2v)z,
ug=(1-2v)y, w=(01-wz, ws=(1- )z, (41)
us = (1-2v)z, wveg=(1-2v)z, we = (1 —2v)y.

The constant strain terms are:
1 =1-2 e = 1=
B e v, Yoy = 2(1 = 2v),
gy =1-2v, 5 =2(1-2), (42)

e=1-2v, 5 =21-2).

The constant stress terms are:

2

1 _ o 3

O =1—v, Oip =V, Ogp =V,

1 2 _ 1 _ 3

Oyy =V, Oy =1-v, Oyy =V,

1 _ 2 _ 3

Oy =V, oy, =V, 0y, =1—-v,

5
Tez =1—2v,

'rgz:l—Zu.

All terms uj, vj, w; e, etc. (for j=1,..,6) not listed above are zero. ‘
Using the complex representation of space harmonic functions discussed in the previous section
we can obtain the following second and third order functions

H} = —22% + 4% 4+ 22, H] = 3x(42% — y? — 22),

Hi = a2, HS = 3y(422 — ¢% — z?),

H} =yz, HY = —(3y? — 322)z, ()
H§1=$2—y2, Hi% = 3zyz,

H =gy, H3' = 5(3y* - 27),

HS = (3y? + 32%)z — 223, HY? = y(y? - 322).

In order to get a symmetric structure in the representation of the displacements, strain and stresses
the variables z, y, and 2z are cycled in the functions for HJ. First we take the functions (44) and
change z to z, change y to z, and change z to y. This procedure gives the following set of harmonic
functions:

H} =22 4 22 4 ;2 HJ = 3z(4y? — 2% — 2?),

H? = zy, H =3z(4y? — 22 - 22),

H3 =y, H) = —(32% - 322)y, (45)
Hi =22 —g2, HI% = 3zzy,

HS = 2z, HE = 2(32% — £%),

HY = (32% +32%)y — 23, HI2= z(z? - 32%).

In order to get the function terms for H f we take the functions (44) and do the following: change
z to y, change y to z, and change z to z. This gives the following set of functions:
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H} = —222 4+ 22 + o2, H! = 3y(42? — 22 — ¢?),

H? = yz, H = 32(42% — 22 — 4?),

B =g, H} = —(32% — 3y?)z, 4

H4_ 2 _ 2 H10_3 (6)
i=Yy Z 1 = oYz,

Hlszyza IIl11 :y(322—y2),

HS = (322 +3y%)x — 223, H}2 = 2(2% - 3y?).

The solution representation for the displacements involve the derivatives Hoz, Hoy, and Ho, and the
functions Hy, Hy, and Hs. In order to get the correct polynomial order for the displacement compo-
nents u, v, w we have to choose the terms for the function Hy one order higher than the polynomial
terms in Hy, Hy, and Hs. In order to get a symmetric structure in our solution representation we
decompose the function Hy into three parts according to equation (40).

Because the six function entering the solution representation (i.e. the functions Hy, Ha, Hj, Ay,
By, Cp) can not be completely independent a relationship between pairs of functions is established:
For the polynomials in H; and Ay we use the same coefficients. Accordingly we also use the
same polynomial coefficients for the pairs Hy, By and Hs, Cp. For the function Cy the following
polynomials are obtained from the complex representation of space harmonic functions:

C} = —2(22% — 3y? — 32?),

C? = 3x(42% — y? — 2?),

C3 =3y(42® —y* - 2%),

Cy = —3(y — z)(y + 7)z,

C3 = 3ayz,

C8 = (82* — 24y%2% — 242%2% + 3y* + 62%y? + 3z%) /4,

Cy = z2(42% — 3y* — 32?),

C§ = yz(422 — 3y? — 32?),

C§ = (y — z)(y + 2)(62° — y* — 2%)/2,

C® = —zy(62® — y* — 2?),

Cél = $(3y2 G 12)Za

Cd% = y(y® — 35)z2.

(47)

Now we take the functions (47) and change z to z, change y to z, and change z to y. This procedure
gives the following set of harmonic functions:

B} = —y(2y* — 32* - 32?),

B? = 3z2(4y? — 22 - 2?),

B} = 3a(4y?® — 2?2 — 2%),

Bi = —3(z - 2)(@ + 2)y,

B} = 3zzy,

BS = (8y* — 2422y? — 242%y? + 3z + 6222 + 32%) /4,

B} = zy(4y? — 32% - 32?),

BS = zy(4y? — 3z% - 32%),

BY = (z - 2)(z + 2)(6y% — 2% — 22) /2,

B{® = —zz(6y? — 2% — 2?),

Bl! = 2(32% - 2?)y,

B§? = z(z? — 32%)y.

(48)
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In order to get the function terms for Ag we take the functions (47) and do the following: change
T to y, change y to z, and change z to z. This gives the following set of functions:

A} = —z(222 — 322 — 3y?),

Af =3y(da® — 22 —y?),

A} = 32(422 — 22 — 32,

A5 =-3(z~y)(z+y)z,

A} = 3yzz,

A§ = (8z* — 242222 — 24y%z? + 32% + 63222 + 3y*) /4,

49
Al = yz(4z? — 322 — 3y?) (49)
A} = zz(42? — 322 — 3y?),
Ay = (z = y)(z +y)(62% — 2% — 2) /2,
AR = 4262?22 — ),
A = (322 ~ )z,
A® = 2(22 - 3y?)z.
Using the above defined functions we get the quadratic and cubic displacement terms as:
Uj+6 = (3 - 4V)Hf - a“H{z - A(JJm )
Uj+18 = _yHgg: - B(J)a:7
ujt30 = —zH3, — C},
Uj+6 = _Q:H{y - A%y ; . '
Vj+18 = (3 - 4V)H% - yHgy - Bgy ’ (50)
vj+30 = —zHj, ~ C},,
Wit = —(EH{Z == A‘az 5
Wjr18 = _yng - B(]);ﬂ ‘ .
wj+s0 = (3 —4v)H3 — zH}, — C,,
where j = 1,2,...,12. Using the above displacement terms we can get the associated strain and

stress terms and use these terms in the variational formulation for the assumed fields € and o.

5. CONCLUDING REMARKS

A modified Hu-Washizu variational formulation for the application of the Trefftz method in the
analysis of shells has been proposed. The problem of constructing linearly independent polyno-
mial solution terms in the sense of Trefftz which do not bias a particular direction has been ad-
dressed. The information obtained from the complex solution representation in terms of six complex
functions was useful. After constructing space harmonic functions we have the option to use the
Neuber-Papkovich representation and work with six instead of four real functions. The proper de-
composition of one of the four harmonic functions in the Neuber-Papkovich representation follows
from the complex representation and its relation to the real representation of Neuber-Papkovich.
Linearly dependent functions are omitted by using relationships between three pairs of functions.
The construction of higher order polynomials is straight forward. (Higher order functions have
been derived but are not listed in this paper.) Not discussed in this paper are choices for the en-
hanced strain field which has the general task to make the element more flexible and to produce
better results for displacements and stresses with coarse meshes. However, many possibilities exist
to choose these enhanced strain terms and it not clear yet how to find an optimal set of enhanced
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strains. Currently numerical tests are performed with the aim to get a well suited set of enhanced
strains for a well performing low order shell element. Numerical results will be reported in a future
publication.
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