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Modeling of elastic thin-walled beams, plates and shells as 1D and 2D boundary value problems is valid
in undisturbed subdomains. Disturbances near supports and free edges, in the vicinity of concentrated
loads and at thickness jumps cannot be described by 1D and 2D BVP’s. In these disturbed subdomains
dimensional (d)-adaptivity and possibly model (m)-adaptivity have to be performed and coupled with
mixed h- and/or p-adaptivity by hierarchically expanded test spaces in order to guarantee a reliable and
efficient overall solution. Using residual error estimators coupled with anisotropic error estimation and
mesh refinement, an efficient adaptive calculation is possible. This residual estimator is based on stress
jumps along the internal boundaries and residua of the field equation in L, norms. In this paper, we
introduce an equilibrium method for calculation of the internal tractions on local patches using orthog-
onality conditions. These tractions are equilibrated with respect to the global equilibrium condition of
forces and bending moments. We derive a new error estimation based on jumps between the new tractions
and the tractions calculated with the stresses of the current finite element solution solution. This poste-
rior equilibrium method (PEM) is based on the local calculation of improved stress tractions along the
internal boundaries of element patches with continuity condition in normal directions. The introduction of
new tractions is a method which can be regarded as a stepwise hybrid displacement method or as Trefftz
method for a Neumann problem of element patches. An additional and important advantage is the local
numerical solution and the model error estimation based on the equilibrated tractions.

1. INTRODUCTION

The deformations and stresses of elastic beams, plates in bending and shells, modeled approximately
by 1D and 2D theories via kinematic hypotheses, show considerable deviations from the solutions
of 3D theory in disturbed subdomains, like boundary layers, haunched thicknesses or concentrated
loads. It is possible to establish a coupled adaptive process by hierarchical projections from a rather
general theory, e.g. of 3D elasticity, see [5, 9] and such to improve not only the numerical solution
of an approximated theory by hp-adaptivity and d-adaptivity (d=dimension), e.g. by higher shear
elastic deformation modes instead of the Kirchhoff-Love or Reissner-Mindlin hypotheses, but also
the mathematical model in disturbed subdomains by m-adaptivity (m=model), e.g. extension to
complete 3D elasticity or elastoplasticity. Such one can start with simple 2D elastic theories of
plates and shells, e.g. with Kirchhoff-Love hypothesis, and proceed to the complete Lame equations
(expansion method) or, in a reverse procedure (reduction method), [10, 20, 17, 21, 19]. These new
strategies yield a quality jump of FEM regarding real engineering problems.

A new idea for error estimation is to formulate a local boundary value problem based on improved
stress calculation. It is possible to compute C° continuous stresses in the whole system with an a
posteriori so-called equilibrium method, see [6, 16, 15]. It is also possible to get better stress fields
with solving a subproblem on a patch, see [1]. With these better local element boundary tractions
it is possible to formulate a local variational problem for estimating the model-error with respect
to an hierarchically expanded model, e.g. elasto-plasticity with hardening. This is a main topic of
our current research.
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2. ORGANIZATION OF INTEGRATED HPDM-ADAPTIVE PROCESSES

Adaptivity is organized threefold, see Fig. 1. We start with a 3D master model of highest admitted
complexity, e.g. 3D linear elasticity or elasto-plasticity with hardening and define the hierarchical
submodels and their test spaces.
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Fig. 1. Scheme of the complete hpdm-adaptive process; starting with A: Reduction method; starting with
B: Expansion method

The first task is the projection from the complete solution and test space onto the discrete
approximation and test space. The second task is the definition of a nested sequence of simplified
models called model reductions. Its error analysis is the basis for model adaptivity (m-adaptivity).

Then we project the discrete solution space of the reduced model (e.g. reduced shear force in-
tegration with plane stress condition) onto a reduced space (e.g. with Mindlin hypothesis), named



Equilibrium method for postprocessing and error estimation 647

dimensional reduction. For the a posteriori error analysis of the corresponding discretized problem
we get dimensional adaptivity (d-adaptivity) as an ezpansion strategy, controlled by comparisons
between polynomial expansion (d,-adaptivity) or mesh refining (dp-adaptivity), especially in thick-
ness direction. By checking the discretization error in the current approzimation space of a specific
model we get the well-known h- or p-adaptivity for the solution.

Thus, there are three nested classes of errors, the discretization, the dimensional and the model
error. For model adaptivity it is not useful to check the model error alone (without dimensional
expansion), because coupling influences can lead to locking effects and inconsistencies.

If we want to check the model-error we must testwise enhance the approximation space at the
same time. Such we get two different types of residua, see also [19]. It is evident that expansion
strategies correspond to engineering thinking and working, namely to proceed from lower to higher
complexity, especially for large and complicated structures. Additionally this method yields less
computational effort than the reduction method for stiffened thin-walled structures.

3. CLASSIFICATION OF ERROR ESTIMATORS FOR SOLUTION AND MODELS
WITHIN ELLIPTIC BOUNDARY VALUE PROBLEMS

In this section a classification of different error estimators is given.

(A) Algebraic including error estimation for dimension and model adaptivity, (e.g.: Hackbusch
1989, (7, 8]).
Problems are:

(1) Global solution and model error estimation is necessary;

(2) Special solution techniques are necessary for defect correction.

(B) Residual error estimation on patches for solution and dimension adaptivity (e.g.: Babuska,
Rheinboldt 1978, [3, 4]; Johnson, Hansbo 1992, [10]; Stein, Ohnimus 1992, e.g. [20, 19]).

Solution and model error estimation, including robust and effective calculation of model
residuals is known for hierarchical reduction techniques applied to plates in bending with-
out haunches, [5, 14]. In case of expansion method, residual errors are not useful for model
adaptivity because of strong locking effects for plates and shells.

(C) Error estimation by Posterior Equilibrium Method (PEM) on patches for solution, dimension
and model adaptivity (e.g.: Bufler, Stein 1970 [6], Stein, Ahmad 1973,1977, e.g. [16], Stein
(15], Ladevéze, Leguillon 1983 [11], Ladevéze, Maunder 1996, [12]; Ainsworth, Oden 1992 [1],
Oden, Wu, Ainsworth 1994 [13]).

Problems are that the mathematical analysis is still in progress and the choice of adequate
norms for local error estimation needs further research.

(D) Lg-Projection of oy (smoothing), Zienkiewicz, Zhu 1987, (23], and Superconvergent Patch
Recovery (SPR)-techniques 24, 25].

Problems are that hp-adaptivity is hard to realize, the regularity of the solution has to be
known and that it does not seem to be applicable for model adaptivity.

In the next sections we explain the basic idea of the algebraic defect correction method (A),
the analysis for the anisotropic residual error estimation on patches for solution and dimension
adaptivity (B) and the new error estimation by posterior equilibrium method (PEM) on patches
for solution, dimension and model adaptivity (C).
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4. ALGEBRAIC DEFECT CORRECTION METHOD INCLUDING ERROR ESTIMATION

From the engineering point of view the primar calculation starts with a reduced model in a reduced
dimension. After FE-discretisation of the displacements we get linear algebraic system of equations

Kniy, = Py, u, €V, CV. (1)

The discretization and the dimensional error e of the displacements is defined with respect to an
expanded approximation space as well as in the enlarged dimension.

e=e,+e,, ecV, ey € Vy, et €EVOV,. (2)
For the model adaptivity we introduce a correction-stiffness matriz AK,
Kyp=Kn+AK with [|AK,|g < [Kalle- (3)

K}, is the enhanced stiffness matrix including the model correction with respect to the expanded
model in subdomains. For hierarchically expanded test spaces the error estimation yields

Ky +AK, L; ay + &, - Pn (4)
LY H, e, P+

where L is the coupling matrix between the approximation space Vj, and the higher order ap-
proximation space V.

K, +AK;, L. &y —AKiqy, 5)
LI H )\ & p+ —Lla, )

The model error is associated with the residual —AKiy, and the discretisation and the dimensional
errors are associated with the residuals p; — LTy,

Equation (5) represents a global problem, and the task is to find effective algorithms to use
the information of the undisturbed system for the computation of the defect correction due to
model adaptivity in the subdomains. Further information and ideas to this problem are given by
Hackbusch [7, 8].

5. ANISOTROPIC RESIDUAL ERROR ESTIMATION FOR SECOND ORDER ELLIPTIC
PROBLEMS

The anisotropic residual error estimation is based on two main strategies. The first is the calculation
of the stress jumps (or jumps of traction) J inside the domain, the traction jumps J along the
natural system boundaries and controlling of the equilibrium equation (dive + f = R) within the
elements ;. The second idea is to check these residuals (J and R) in a useful norm, e.g. the energy
norm. For the calculation of the error in the energy norm. We show that the residuals have to be
projected onto the higher order test spaces.

5.1. Galerkin orthogonality and solution spaces

With the basic results from Babuska and Miller [4], Babuska and Schwab [5] and Johnson [10] the
fundamentals of residual error analysis are available. These results are extended to the analysis of
anisotropic error estimators on patches, depending on refinement directions, polynomial expansions
and on the dimension of the test functions. We start with the geometrically linear equations in



Equilibrium method for postprocessing and error estimation 649

vector-analytical notation € : = % [gradu + grad uT] and the linear equilibrium conditions in 3D
linear elasticity
dive(u) + f = 0, u = u(x), vx €Q C R3, (6)

Hooke's generalized elasticity law

o(u) = Adivu I+ 2ue(u), (7)
and mixed boundary conditions

u=0 only, and on=1t only; r,nry={}. (8)

u(x) is the displacement vector in a cartesian frame, €(u) is the linear strain tensor with & :=
H(uij +u;;) € @ e; ; o is the stress tensor with o =0;;€; ® e; and p, A are the Lamé coefficients

B

with A = 010 (1; —o) and p = E-(-l_% The weak form of equilibrium is
/(diva+f)vdV:{J forueV, WevV 9)
Q

with the space V of test functions v(x)
3
vz{ve[Hg(Q)] v=0 onl‘u}, (10)

where v is a test function of the test space V. Integrating Eq. (9) by parts, yields the variational
form

g(u,v)z/r ande—/{ngradvdV—i-/SEfvdV:U, oNN=ruly (11)
and further |

gl ) = /rtde f dv+[fvdv_o (12)

— / ) dV = /r‘ tvdo +/ fvdV (13)

condensed as ‘

a(u,v) = L(v) YveVv (14)
with the bilinear form

alu, v) = /ﬂa(u)s(v) av (15)
and the linear form

L(v):]l; TvdO+ fnfvdv. (16)

The energy norm of the approximated displacement u reads

llullz0) = \/a(u,u). (17)

With the Finite Element Method we introduce an hierarchical projection from the complete solution
space onto a discrete approximation space with the same boundary conditions. The restricted
solution space V — V,, i.e. v — v;, and u — uy, is the approximation space with vy, uy € Vj, C'V
defined as

3
V), = {vh,v € [H& (Q)] } :v=0 onl, and vy =mv, (18)

where 7, is a hierarchical projection operator which projects the complete test space onto the
current approximation space. The FE solution space V, is fully embedded in V.
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5.2. A posteriori error analysis

The main issue is the determination of the error with respect to sequential higher orders of approx-
imation spaces on local subdomains (patches). The error estimation with respect to the complete
solution space is not effective, and it is not possible.

Starting with the variational form, see Eq. (14), the FE approximation reads

a(up, vh) = L(vh); VYvi € Vi up € Vi, (19)
With the split of the displacement error e into two parts
e=u—u,=e,+e;; ecV; e €V, =VaV, (20)

and a corresponding split of the test functions v € V into v; and the enhanced term v, € V, =
Vav,

V=V + Vi =apv+ Ly (21)
with the hierarchical projection operators

Wy : V=TV, VREVpVEV, (22)

wy:ve=mv, v, e€VaAV,vevV, (23)
we get the orthogonality of the error e with respect to the test functions v, in the energy norm

a(e,vy) = a(u,vy) — a(uy, vy), (24)

a(e,vp) = L(vy) — L(vp) =0, Vv €V, (25)

With these results, the weak form is given by the current solution u; € Vj,, by the displacement
error € € V and by the hierarchically projected higher order test functions w,.v € V& V,,. Starting
from Eq. (14) this results in

a(up, mpv) +alup, 74v) + ale,v) = L(vp) + L(wyv) (26)
N,
L(va)

and finally in the main equation of local residual error analysis, by using Eq. (25), see also [4,10,19],

ale,v) = a(e,myv) = L(wyv) —a(mpu,myv); VveV; uecV. (27)
The error 7 in the energy norm is

1° = |lelf ) = ale,e) = L(re) — a(uy, mye), (28)
and the relative error in the energy norm reads

2 _ afee) lell o)
Toa(wu) uffg,

(29)

In case of robust problems, only two additional hierarchical test and trial functions for each coor-

: s h
dinate direction, i.e. py = 1;2 or hy = E,I;- are necessary, see [18].
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5.3. Residual formulation of the local element error

Starting from the main equation of error analysis, Eq. (27), the whole domain is divided into local
FE subdomains Q,; [J", Q, = (Q o~ Q) This yields after partial integration

e=1

a(emwiv) = D {fl t(myv) dO +/ﬂ f(ryov)dV
e=1 te e

—/ o (up) n{xev) d0+/ dive (uy) (x4v) dV}, (30)
an Qe

¢

where 9Q, =Ty, UT',,U I';,, I';, are the interior element boundaries of the domain {2, and further
we get

e
a(emsv) = | { / (f+div o (up)) (wsv) AV
e=1 §e
+ /1“ [t — o (up) 0] (wyv) dO — /1" [o (up) n] (wyv) dO} : (31)
with the residua
R :=f+divo (uy) in Q; J:=t—o(uy)n onTy (32)
and the jumps of projected stresses at interelement boundaries
J:=o(up)n" |+ + o (up)n|p- onT;. (33)
£+ t

Finally we arrive at the variational form described by the residua of the approximated solution uy,

1

ol [ { /ﬂ R (ryv) dV + fr 3y (x4v) dO — % fr I (myv) dO} ,
e=1 € te e

Vv eEV;eeV. (34)

By setting v = e we get the error in the energy norm ||e||E(Q)

Te

1
leliz) = ale,e) = U { 5 R (m.e) dV + /F . Jy (mse) dO— 5 /

e=1

J(mye) dO} : (35)

ie

5.4. Residual error projection from a patch onto a unit patch

The goal is the computation of absolute error estimatorsn realized on element patches. The main
technical idea is the introduction of a bijective invariant energy transformation. The domain Q. of
the current element is extended onto the patch P, with 8 elements in 2D problems and 26 elements
in 3D problems. The residuum R is defined in £, and J on 9,. The error e is defined on P,
with setting e = 0 on the outer boundary I'p, , i.e. Dirichlet boundary conditions for P,, see Fig. 2.
Now this fixed patch P, is mapped onto the parameter space and yields the domain Z with the
fixed boundary I'z. The shape functions are expanded from the parametric element domain 1 C 7 to
patch T regarding the fixed boundary. The stiffness matrix K of this patch T can be easily computed
from such of the interior element domain i by multiplication of the coefficients with factors 1, 2, 4
or 8, see Table 1. K is symmetric and positive definite.
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Table 1. Factors for the coefficients of the local 3D stiffness matrix for element i C T in the unit path 7

factor associated coefficient
inside domain i
on a surface of domain i
at an edge of the domain 1
in a corner of the domain 1

00 = b~

Fig. 2. Isoparametric transformation from a patch P. surrounding (2. into the parametric patch Z with
Dirichlet boundary conditions, surrounding the parameter element 1 C T

Another simplified error estimation consists in restricting the bilinear form to the higher order
approximation space only. This modification of the locally transformed stiffness matrix for element
1 yields a regular and positive definite stiffness matrix, associated with a domain witout boundary
conditions. The regularity of K results from the fact that the higher terms of the approximation
space don’t include rigid body modes. For the linear form a (e,v) we get with Eq. (25)

a(e,u) =a(emiv) ~a(wiemyv) Vvev. (36)
Equation (27), applied to the patch P, yields
a(emiv)p = L(miv) —a(upmiv)p ; YveV (37)

and

V.(e)CV. (v)dV = [ Rm,vdv + f , — (38)
JP. e 9,

The bijective transformation of 2, onto the corresponding cube element i C Z needs the Jacobian
matrix J

J = [Ti] = [g—fj] = Vpx (39)

with the following property for a vector-valued differentiable function f(x) with approximately
constant Jacobian matrix J within €,

V.f(x) = V,Jf(r) = V,V,xf(r) = V,£(r) - (40)

] -
~—
Vx
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Such the bijective transformations of the error e and the test function v from Pe to the energy
invariant error € in Z are

e=Je; v=Jv with €vVveEVp,. (41)
Inserting the mapped fields into Eq. (37) results in

f Vm(Jé]—C-Vx(J\"r)dV=/ R-mJgvdV+ [ J-m,JvdO (42)
Pe Qe 90,
and is transformed into
maxldet T -er(é)-C-Vf(\‘r)dejﬁ-qr+\"rdV+ j.x,9d0 (43)
I T oL

with the bijective transformation of the residua
R=R-J det(J)q,, J=J T det(T)aq.- (44)

For an upper bound of the error estimation we have to set
max(det Jq,) = 1Iéag.zx(det J(x)), (45)
XEdle

such that an energy-invariant formulation of the weak form for the unit patch Z is achieved by

a(e,v)p, = a(e,myv)p, < max(detJq,) a(€,m1V)z

g[fl-ar+irdv+f j.x,¥d0 Vo€V and S€V. (46)
I a1

5.5. Residual error estimation
From the weak form of the unit patch, Eq. (46), the bilinar form is written in matrix notation as
a(8,7V)z = a(&,v)7 = e 'KV, (47)

with the interpolations and the stiffness matrix

(18]

=NE NG and K:/ﬁTcﬁdv, (48)
T

where N(r) is the matrix of shape functions in the coordinates of the parameter space. The first
terms of the linear form reads

f ftowvdV = REgS, (49)
I
with
R=NR and Lg= / NN, dV, (50)
I

where N, is the matrix of hierarchically expanded shape functions. The transformed stress jumps
on I yield the second term of the linear form

3 .x,vd0 = ITL,%, (51)
a7

with

J=NJ and Ly= / NN, dO. (52)
ar
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Note that overroofed letters denote nodal values at finite element nodes. Thus, inserting Eqs. (47)-
(52) into Eq. (46), we get the main equation of error analysis, computed on a unit patch as

max (det Jo,) - 8 TKY = RTLg¥ + JTL, . (53)
The corresponding energy norm of the error 7, is
n? = max (det Jq,) 67Ké = RTLpé + JTL 8. (54)

Herewith it is possible to derive two different error estimators, the first oriented to Johnson’s and
Hansbo’s [10] proposal using an eigenvalue problem, and the second one proposed here, using the
inversion of K.

5.6. Error estimation with a general eigenvalue problem

At first, two base vector systems g r,and g J; are defined which are orthonormal with respect to the
energy norm on patch Z, i.e.

ER,‘TI‘-{éR“ = 51: j é]{Tf{éJ,' = 5‘} (55)
with the conditions for general eigenvalue problems, see Eqgs. (49) and (51)

-

gRiTi‘Réﬁg - C%z‘-éﬂ.-'rf{ém =0,

(56)
s, L8y, — k.8, "Kg,, =0.
The displacement error, Eq. (48), can be represented by these base vectors g r; and g J; as
& =Y én -gr, with ép =& Kgp (57)
and 3
& =S ey -&;, with &;,=8&Kgy, (58)
i

with the coefficients g, and €;,. Then we get the bilinear form for the unit patch element Z in the
parameter space form Eq. (54)

:T 2
max(det Jp,) - Ke = ZER.BR KgﬁJ Ze& Zej,gJ KgJJ . (59)
i

The error norm 7 in the form of Eq. (54) results in

Y 2T < To ?
n? = max(det Jq,) - € Ke=ZR LR-gR‘.-eR,.+ZJ Ly gy €yi- (60)
i e : Yoyt

e e
With the triangle inequality we get the estimation
1/2
2T o zT. 5 12 -~ 12 2T 2 i 33
max(det Jo,)-€¢ Ke < 3 [R LRgR,-] SIS [J LJng] > [Eri ,  (61)
f i i i

Ny s’ |
a(8é,8) a(&,e);

and finally, the improved error estimator computed in the parameter space reads

7 = a(e,e)p, < max(det Jq,) - a(&, €)r

2P g 2
< {Z [R LRgR;
i

aTe ; 7%
+ Z [J LJQ_;,;] } - min(det Jgo,)"". (62)
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R and J are transformed nodal residua from the real patch P, onto the unit patch Z.

Note: For an upper bound estimation it is necessary to define the factor det Jqo as minimum,
because of the division of this term in Eq. (62).

min(det Jq,) = ,5251 (det J(x)). (63)

5.7. Error estimation by inversion of the local stiffness matrix for the unit patch

Starting from Eq. (53), the solution exists for every v if

max(det Jp,) - Ké = LR + LT3 (64)

holds. K is a positive definite matrix (see Table 1) and can be inverted as
& = min(det Jo,) - K~!- {E}Eﬁ + 1"."53} . (65)

We set det Jo = min(det Jq,) in order to get an upper bound. Such the error 7 in the energy
norm finally results in

7?3 = ﬂ‘(ei e)‘pe & ma'x(det Jne) ’ a(és é)I

-

2T Al i ARG =
< {R LR+JLJ}K“1 {L£R+L§J}min(detjg=)'l. (66)

These estimators Eq. (62) and Eq. (66) look similar. The computation effort is nearly the same.
Note that the calculation has only to be performed once. The eigenvalue method admits a fast
approximated estimation of dominating terms whereas the inversion method is a strict upper bound
estimation.

5.8. Anisotropic residuum based error indicators

A classical result of the error analysis for linear elastic problem, see e.g. Babuska and Miller [2] or
Johnston and Hansbo [10], is the following estimation
2

L(8Q) {6?}

Menh = ale, @) = ]|e||?5-(ne) = |lu—up ”ij{ng) = ”CRhR”iQ(Q,) + "%"-‘Jhl’{z-]

with the residual of the interior domain, R = f+div o (u,) and the projected stress jumps at the
boundaries, J. But the Ly— norms in the formulas above have averaging and smoothing properties,
especially for elements with large length to width ratios (anisotropic elements). A suitable error
estimator starts with the equation

1
n2 = a(e,e) = ale, ey) =/ R-e+dx+—f J.eyds (68)
o 2 Jog.

with the unknown updated error ey € V := V &V, of the displacements. The strategy is now
to choose the next higher possible degree of polynomials in the approximation space or a suitable
refinement for every direction z € r,s,t of the parameter coordinates. The approximation space
is adjusted to the anisotropic refinement (directions of the anisotropic coordinates r,s,t) with
N3 (r,s,t) denoting the refined shape functions

e}, =Ni(r,s,t)-&3 €V CV;z=r,st and e°=N?*(rs,t)-&€V. (69)
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This yields an approximated error, which is asum of the error components in the directions 7, s, ¢

— . a® 1 gz 2_ 2
_g{/QER e+dx+2fam.] e+ds} and = Y 7k (70)

z=r,s,£

LR ]

n

In total local estimators are avalaible on a unit patch which test the three directions and, e.g.,

h
pr =1;20r hy = 3T These general results are mapped in an energy-invariant way to the real
patches in order to control h- and p-adaptivity.

5.9. Example of a plate stiffened by a floor beam

This example was investigated in [22] by using different combinations of plate-beam and folded
plate theories without adaptivity. The system data are shown in Fig. 3a.

The selfadaptive process with convergence to the elastic 3D solution is shown in Figs. 3b and
3c-d displaying the relative error in the energy norm, the effectivity index and the convergence
rate of the energy. The calculation with only 2D degenerated plate elements does not converge to
the correct solution. The full 3D h-adaptive method with triquadratic elements converges to the
3D solution but not as efficiently as the h-d-adaptive process. Figure 4a shows the stresses 7., of
the 2D reduced model after 13th step of the 2D h-adaptive process, and Fig. 4b shows the realistic
stresses 7, of the full 3D model after 13th step of the 2D to 3D h-d-adaptive process, especially
in disturbed subdomains.

6. POSTERIOR EQUILIBRIUM METHOD (PEM) FOR ERROR ESTIMATION ON PATCHES

The posterior equilibrium method is based on the local calculation of improved stress tractions
along the internal boundaries with continuity condition in normal directions. This introduction of
new tractions is a method which can be explained as a stepwise hybrid displacement method or
as a Trefftz method for Neumann problems on element patches, see also [6, 16, 12]. We formulate
regularized varational problems on patches which equilibrate these new tractions with the known
nodal forces form the previous finite element solution, using additional regularizations. With these
new equilibrated tractions it is possible to introduce a new error estimator for the discretization
error and also especially for the model error. The unknown locally equilibrated boundary tractions
t; on patches k have to fulfil the weak equilibrium conditions

/ tTvidO = Br(un)¥n  Vva€V; t, €Ly (71)

Qe

with the previous algebraic equation system for uy, yielding the element nodal forces

Pr(up) = Keiy, (72)
and the test and functions (virtual displacements)

vy = Nyvp. (73)
The unknown local locally equilibrated boundary tractions are parametrized as

t, = Nyt (74)
from Eqgs. (71)-(74) we get

i /; NINWO % = B (w)®n Won € Vi, (75)

2

S
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Fig. 3. Example of a plate stiffened by a floor beam; Description: A: h-adaptivity, 2D model; O: h-adaptivity,
3D model; O: h- d-adaptivity, 2D to 3D model; system data: E=30000 MPa, v=0.2; a) system; b) relative
error in the energy norm in %; c¢) effectivity index of the estimated error with respect to the error in the energy
norm for N = 20000 (N=number of equations); d) convergence rate in 10%J (quarter of the system);
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Fig. 4. Example of a plate stiffened by a floor beam; quarter of the system; a) transverse shear stresses 75, in
section A-A, Fig. 3, of the 2D reduced model after 13th steps of the 2D h-adaptive process, near the column:
b) stresses 7. of the full 3D model after 13th step of the 2D to 3D hd-adaptive process, near the column.

which results in
STE, = by (un). (76)

Only C? continuity conditions for tp, in normal direction of element surfaces is necessary, and due
to t, € La(Q) it is possible to describe the equilibrated tractions without C° continuity conditions
in tangential direction of element surfaces. Consequently, a patch-wise calculation is possible, see
Ainsworth (1992) [1].

To avoid coupling effects between neighbouring patches it is necessary to describe the new
tractions with orthogonal shape function N; with respect to the shape function N, of the test
space, see Eqgs. (75), (76), N, and N, are different bases of the same approximation space. The
orthogonality condition reads

[ NiNydo =4, (77)
an

such that N, forms a covariant and N; the corresponding contravariant basis. The equilibrium
conditions, Eq. (75), for a patch k in Fig. 5 are given by

Element 1: fj; — ths = Phy(up),
2 thy — th1 = Prolun),
3. ths — the = Prs(un), (78)
4 ths—tp3 = Pralun),
5 1:jhs = E"M = ﬁhs(uh)

and result in

— R o B
+1 ~-1] thi [ Py (up) |
-1 +1 tho Dho(ug)
-1 +1 ths |=| Pus(un) |, (79)
-1 +1 fm Pra(up)
! -1 +1 | I ths | L Prs(up) |
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1 2
a priori defined
normal vectors at
element sides of
patch k
3
5
4
Fig. 5. Patch k for node k; element boundaries are described by side numbers i = 1,5. A priori defined
normal vectors at element sides ¢ are plotted.
where T can be interpretated as a topology matrix. Equation (79) can be condensed as
T4, =pu(up) ; det(TTT) = 0. (80)
We introduce covariant Lagrangean base functions and their contravariant base functions
Ny(r,s) = Ng(r,s) = Ng(r) @ Ne(s), (81)
_ Ng(r,s) Ng(r) ® Ng(s)
Ni(r,s) = : = ; 82)
t(r,3) det(J(r,s))an,  det(J(r,s))aq, (
or the hierarchical Legendre base functions, respectively
Ny(r,s) = Ny(r,s) = Ny(r) ® Nu(s), (83)
S Ny (r, s) N (r) ® Na(s)
Ny(r, s) = = . (84)
9 = ST tr,)om, — det(T (. o,
The co- and contravariant Lagrange base functions for p = 1,2,3 are
p=1 N}iy=131-r) Vi0 = 1(1-3r)
N} =3(1+47) Vil =1(1+3r)
p=2 N}y=3r(l-r1) N2 = 3(—2—4r +10r?)
N2 =1-12 N2 = 3(3 - 5r2)
N2, =1lr(147) N%2 = %(—2 +4r + 10r?) (85)
p=3 Niy=%(-1+r+9r2-9r%) N =1(-3+15r+ 15r* — 35r°)
N} = L(9—27r —9r2 +27r%) N3 = ;3:(99 — 285r — 135r* + 385r°)
N}y = (9 +27r — 9r? —27r3) N3 = ;1:(99 + 285r — 135r% — 385r°)
Ng«, ﬁ( 1 —7r+9r2 +9rd) Ng3=i-(—3—15r+15r2+35r3),
with
2 +1 o
o= NBL(r) NP(r)dr (86)
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The co- and contravariant hierarchical Legendre base functions for p = 1,2, 3 are
p=1 Njy=3(1-r) N}P=1(1-3r)
1
2

Njy=3(1+r) Ni}=

p=2 Niy=3(1-r) NP =1(-3-6r+15r?
Ny =301 +r) N =21(=3+6r+15?)
Njy = 3(r*—1) NZ=1(-15+45r%) (87)

p=3 Njy=3(1-7r) N} =1(-8+15r+15r2 —35r°)
N}, =3(1+r) N3 =1(-3-15r+15r2 + 35r%)
N, =3(r*—1) N3 = 1(-15+ 4572 — 15¢°)
N3z =1(r*—r) N3} = 1(-105r + 175r°),

with
. +1 sl
i=[ N, () N () (88)

The topology matrix T, see Egs. (74), (80), is not regular and repeated as Eq. (A)
(A) Tt =p,(up); det(TTT)=0. (89)

In 2D problems there are one or more zero eigenvalues of TTT, and in 3D problems there are five
or more zero eigenvalues.

The regularization of the local equation system for patch k is given by two additional condi-
tions. The first additional conditions are posed on Neumann boundaries (with natural boundary
conditions) where equilibrium with FE nodal forces is satisfied explicitly as

(B)  Pu(t)=t, on T (90)

The second additional condition with FE stresses o, (uy) in Q, is gained by postulating that the
boundary tractions from previous finite element solution uj, are approximately equal to the new
tractions in the weak sense.

(C) / (on(ug) -n)T - vpdO ~ / ty-vpdO Vv, €V, (91)
89 0,
f (eh(up) - 0)TN,dO ¥y, ~ & f N' N, dO-%, (92)
Jog. ) a9 -~ =~
bu() NE e
1 a Y Ty
Pa)7a det (T (r, 9))on,
2 T.a 2 1 =T »
~t ————— ! ?
ph(ah] Vi h;al det(J(T,S))BQ, N£N£ det(J(?,S))antdO‘ Vi (93)
3
= Pulon) =th. (94)

This results in a least square approximation

(©)  5(Bulon) —E)? - min. (95)
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Summarizing the calculation of tractions t:

nodal forces Tt — Pu(up) =0 exactly fulfilled
boundary tractions 4 — Pj(t) = 0 conditions (A), (B)

(96)
weakly fulfilled

regularization i (p —£,)? - mi .
gulariz 2(Pn(on) —tr) i conditions (C)

Remark: Further development are necessary to extend condition (C) to the weak form of field
equations. To avoid locking effects the local approxiamtion space for stress calculation has to be
expanded with further internal deformation modes, e.g. bubble modes.

6.1. Solution and model error estimation

After calculation of the equilibrated tractions the discretization error can be calculated by the
difference between the equilibrated tractinos and the previous FE tractions with respect to the
current stress approximation in the Ly— norm. For this, the local data of the current model with
the approximation space V, are:

ay : local nodal displacement for each element in £; up = Ny,

K. - local stiffness matrix for each element in €2,

P, = K., : local nodal forces for each element in €2,

py(oxn) - local nodal boundary tractions, calculated with oyn; o) = o (ug),
th = ﬁtih : local boundary tractions, calculated with PEM,
th : local nodal boundary tractions, calculated with PEM.

Introducing the local discretization error epy € Vi C'V and the test spaces of the expanded
and the current problem with vy € V4 € V. 6V, C Ve CV, see Eq. (27), a local variational
problem is formulated as

a(eny, vi)e = L(v4)an. Vv €EViiept € Vpy (97)
with
Vi o= {vh.,. € H&(Qe); v+ without rigid body modes} (98)

and results in

Liv)on, = [ V(s — on(u)d0 (9)
with t;, is gained from PEM. Equation (97) represents the so-called main equation of error anal-
ysis, Eq. (27), without the residual term. Mechanically, Eq. (97) describe the weak equilibrium of
the traction jumps between the improved the boundary tractions t, and the boundary tractions
on(uy)n, and it yields ep. Such the discretization “equilibrium” error estimator npe in €2, results
in

Mhe = a(€hs €hs). i €ny € Vi (100)

For model error estimation we introduce the local variational form for an hierarchically expanded
model with the corresponding expanded discretized solution G

am (Ghs Vit ), = L(Vat)on. s VVht € Vigilng € Vg (101)
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with
Lvadst, = /a  VEdO. (102)

Equation (101) describes the weak equlibrium of the new boundary tractions t; (of an element
patch k) for the expanded model within element §2.. Then, the “equilibrium” error estimator naz.
in the energy norm within {2, is given by

Mte = oM (Ghy — Up, Thy —Un)a, 5 Tny € Vig 3 up € Vi (103)
To avoid considerable influences of the discretization error onto the model error, the global dis-
cretization error has to be significantly smaller than the global model error, e.g. n3, < 10 - 7.
Remark: for model error estimation conditions of the reduced models and of the master model the
following conditions are necessary:

e Both models have the same dimension for uy_,, and uy,,,
e and the same dimension for &_,, and €,,,,,
e as well as the same dimension for o3 ,, and oy, -

e The boundaries and loadings have to be the same, i.e.

L(¥) = Lyea(v). | (104)

6.2. Different model error estimators

The model error estimator can be gained in different ways. In section 6.1 the model error estimator
was calculated in the energy norm by using the error of the displacements, Eq. (103). This error
leads to strong locking effects due to neglecting of the deformation modes in the reduced model.
In this section we introduce different strategies for model error estimation. The model error of
the reduced model with respect to the hierarchically expanded model is given by the variational
problem Egs. (101), (103) yielding @
We are collecting the following possible model error estimators:
The estimator of the model displacement error derived from Eq. (103), is

Marue = |8t — UalI%,, (0, (105)
Due to the discussed locking effects, this estimator is not reasonable. Next we introduce the model
error estimator in the energy norm but using the stresses of the current and the expanded model.
Herein, the locking phenomena do not appear because the reduced model (e.g. for a thin plate
in bending) is introduced to get fairly accurate stresses without regarding deformation modes in
thickness direction. This estimator reads

~ 2

Mo, = 8n+ — onllE,, @.)- (106)
A relative model error in the Ly—norm, taking into account the neglected deformation modes of
the reduced model is given by

Chrue = 1004 — unll?(q,) (107)
which is useful for the expansion of 2D plate and shell model. For a pure displacement method an
energy oriented estimator

2 ~ 12 2

e = |[8n+Ey .) — 19nllE@.) (108)
can be used, too. But in most investigated cases, this indicator tends to zero which is known from
the good-minded convergence of the energy.
The next two examples show that the model-stress error in the energy norm W?mr. is a useful error
estimator from the engineering point of view.
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6.3. Simple example with one Cl-element

This section illustrates the differences between the presented model error estimators. Two simple
examples are given with one Cl-element (trilinear isoparametric element) for linear elastic and
nearly incompressible plane stress calculation (in r — s—parameter plane), using the reduced 2D
model and for 3D elasticity with the enhanced model.

The first example has the geometry factor length/thickness = 1, see Fig. 6a, and the second one
has the factor length/thickness = 10, see Fig. 6b. From the engineering point of view the relative
model error has to be smaller in the second example.

2)

boundary
tractions
I : <= thickness
e
b) ) d@ g
; r boundary
tractions
| T ___::E
| =5
| :.'flf:
8 ,l% _________________ 5

A

thickness
Fig. 6. Two simple examples for illustration the different model errors, a) short element, b) long element.

As already mentioned the error estimator n%;, is not useful, see Tables 2 and 3. The error
estimator 73,5 yields reasonable results as well as the error estimator (3, in the Ly norm, and
they converge to zero if the element length tends to infinity.

Table 2. Model errors, Egs. (105)-(108) for example 1, Fig. 6a

Error v=00 vr=03 vr=0.499
Nt 0% 12.1% 4160%

Mo 0% 0% 0%
570 0% 8.25% 19.8%
N e 0% 0% 0%

Table 3. Model errors, Egs. (105)-(108) for example 2, Fig. 6b

Error v=00 v¢v=03 v=0.499
Nt 0%  12.11% 4160%
Nte 0% 0% 0%
G 0% 0.09% 0.25%
MuEe 0% 0% 0%
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6.4. Example: clamped thin plate in bending with a large hole

The plate is clamped at the edges and has constant transverse loading, see Fig. 7.

P: concentrated load

F'; uniform loading, £ ~ 4

LSS,
|

I rEM

O 77

TR

ARAMARRRRRRRRRRRERRRRNS

Calculated with FEM for a quarter of the system

Fig. 7. System and system data of a clamped plate with a large hole with [/t = 15 and {/R = 3. In 2D
Q2/P1 Reissner-Mindlin isoparametric elements with selective reduced integration are used, and in 3D C2
isoparametric elements are used.

Figure 8 shows a sequence of automatically adapted meshes for solution, dimension and model
adaptivity within the expansion strategy. The lights regions are calculated with the 2D model and
the dark regions are calculated with the 3D model. The model stress error estimator, Eq. (106),
was used. This example shows that the model error estimator cover regions which are disturbed
with respect to the master model. Near the system boundaries and near the concentrated loads at
the hole boundary the model adaptivity takes place.

7. CONCLUSIONS

A new generation of adaptive numerical methods in structural mechanics was outlined, namely the
full integration of solution, dimensional and model errors into well known h-p-adaptive concepts
for boundary value problems of stiffened plates and shells.

The resulting anisotropic error indicators admit optional k- and p-adaptive processes but more-
over d-adaptivity for plates and shells, i.e. dimensional expansions of the approximation space and
even the update of the mathematical model, i.e of constitutive and geometrical equations. It is
evident from the effectivity index that the expansion method — developing from lower to higher
approximation spaces and also from reasonably simple to more complicated mathematical models
in disturbed subdomains — is more efficient than the reduction method, which starts with the
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Fig. 8. Automatically refined meshes due to solution, dimension and model adaptivity; the light regions are
calculated with the 2D model and the dark regions with the 3D model.

highest model and searches for simpler models in subdomains, e.g. by means of kinematic hypoth-
esis. This holds especially for complicated stiffened thin-walled structures. And last but not least
this expansion method corresponds to the typical engineering way of thinking.

Residual error estimators on patches with enhanced anisotropic test spaces are beneficial for
solution and dimension adaptivity. Residual error estimators are insufficient for model adaptivity
because the residual model error becomes very large (due to wrong stresses in enhanced model).

The Posteriori Equlibrium Method (PEM) yields physically consistent orthogonalized boundary
tractions t;, for the expanded model, and it provides us with solution- and model-error estimators
form local variational problems on patches which can be interpreted as a regularized Trefftz-method
on element patches boundaries.

The mathematical analysis is still in progress, and further developments of PEM and related error
estimators, including more complex material behaviour like plasticity or deformations of reinforced
concrete in state 2 are scheduled.




666 E. Stein and S. Ohnimus

REFERENCES

(1] M. Ainsworth, J.T. Oden. A procedure for a posteriori error estimation for h — p finite element methods.
Comp.Meth. in Appl.Mech. and Eng., 101: 73-96, 1992.

(2] I. Babuska. Some aspects of the h and h — p version of the finite element method. Numerical Methods in
Engineering Theory and Applications, 1987.

[3] I. Babuska, W.C. Rheinholdt. A-posteriori error estimates for the finite element method. Int. Journal for Num.
Meth. in Eng., 12: 1597-1615, 1978.

[4] L. Babuska, W.C. Rheinholdt. Error estimates for adaptive finite element computations. SIAM Journal on Num.
Analysis, 15: 736-754, 1978.

[6] I. Babuska, C. Schwab. A posteriori error estimation for hierarchic models of elliptic boundary value problems on
thin domains. Techn. Report, Technical Note BN 1148, May 1993, Institute for Physical Sciences and Technology,
Univ. of Maryland College Park, MD20740, USA, 1993.

[6] H. Bufler, E. Stein. Zur Plattenberechnung mittels finite Elemente. Ing. Archiv, 39: 248-260, 1970.

[7] W. Hackbusch. Multi-grid method and applications. Springer Series in Computational Mathematics, Springer—
Verlag, Berlin, 4, 1985.

[8] W. Hackbusch. Integralgleichungen, Theorie und Numerik. Teubner Studienbiicher, Mathematik, ISBN 3-519-
02370-9, 1989.

[9] S. Jensen. Adaptive dimensional reduction for scalar boundary value problems. Department of Mathematics,
University of Maryland Baltimore Country, Baltimore, MD 21228-5398 USA, January 7,1991, revised November
8, 1991.

[10] C. Johnson, P. Hansbo. Adaptive finite element methods in computational mechanics. Comp. Meth. in Appl.
Mech. and Eng., 101: 143-181, 1992.

[11] P. Ladevéze, D. Leguillon. Error estimate procedure in the finite element method and applications. STAM Journal
on Num. Analysis, 20: 485-509, 1983.

[12] P. Ladevéze, E.A'W. Maunder. A general methodology for recovering equilibration finite element tractions and
stress fields for plate and solid elements. The First Intern. Workshop on Trefftz Method recent developments and
perspectives, 34-35, Cracow, Poland, May 30 — June 1, 1995.

[13] J.T. Oden, W.Wu, M. Ainsworth. An a posteriori error estimator for finite element, approximation of the Navier-
Stokes equation. Comp. Meth. in Appl. Mech. and Eng., 111: 185-202, 1994,

[14] C. Schwab. A posteriori error estimation for hierarchic plate models. Technical Report, Institute for Supercom-
puting and Applied Mathemathics, University of Maryland, IBM Scientific Centre, Heidelberg.

[15] E. Stein. The practical treatment of stress concentration and singularities within finite element displacement
algorithms. In: P. Grisvard, W. Wendland, J.R. Whiteman, eds., Lecture Notes in Mathematics, Singularities
and Constructive Methods for Their Treatment, 278-299. Proc. Oberwolfach 1983, Springer-Verlag Berlin,
1983.

[16] E. Stein, R. Ahmad. An equlibrium method for stress calculation using finite element displacement models.
Comp. Meth. in Appl. Mech. and Eng., 10: 175-198, 1977.

[17] E. Stein, S. Ohnimus. Concept and realisation of integrated adaptive finite element methods in solid- and
structural-mechanics. Numerical Methods ’92, 163-170. Proc. of the First European Conf. on Num. Meth. in
Eng., 7-11 September 1992. Brussels, Belgium, Elsevier Science Publ. B.V., 1992.

[18] E. Stein, S. Ohnimus. Expansion method for the integrated solution- and model-adaptivity within the FE-
analysis of plates and shells. In: Advances in finite element technology, Ed. N.-E. Wiberg, CINME — Handbooks,
Barcelona, Spain, 1995.

[19] E. Stein, S. Ohnimus. Dimensional adaptivity in linear elasticity with hierarchical test-spaces for h— and
p—refinement processes. Engineering with Computers, 12: 107-119, 1996.

[20] E. Stein, W. Rust, S. Ohnimus. h— and d—adaptive FE element methods for two—dimensional structural problems
including postbuckling of shells. 2nd Reliability Collogium, Cracow,1991, Comp. Meth. in Appl. Mech. and Eng.,
101: 315-354, 1992.

[21] E. Stein, B. Seifert, S. Ohnimus, C. Carstensen. Adaptive finite element analysis of geometrically non-linear
plates and shells, especially buckling. Int. Journal for Num. Meth. in Eng., 37:2631-2655, 1994.

[22] W. Wunderlich, G. Kiener, W. Osterman. Modellierung und Berechnung von Deckenplatten mit Unterziigen.
Bauingenieur 69: 381-390, 1994.

[23] O.C. Zienkiewicz, J.Z. Zhu. A simple error estimator and adaptive procedure for practical engineering analysis.
Int. Journal for Num. Meth. in Eng., 24: 337-357, 1987.

[24] O.C. Zienkiewicz, J.Z. Zhu. The superconvergent patch recovery and a posteriori error estimators, part 1: The
recovery technique. Int. Journal for Num. Meth. in Eng., 33: 1333-1364, 1992,

[25] O.C. Zienkiewicz, J.Z. Zhu. The superconvergent patch recovery and a posteriori error estimators, part 2: Error
estimators and adaptivity. Int. Journal for Num. Meth. in Eng., 33: 13651382, 1992,



