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Steady flow in a linearly diverging asymmetrical channel
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In this paper the steady flow of a viscous incompressible fluid in a slightly asymmetrical channel is
considered. The flow is considered for channel with a small aspect ratio €. The solution is expanded into a
Taylor series with respect to the Reynolds number. Using the D-T method (Drazin and Tourigny, [7]), a
bifurcation study is performed. Parameter ranges for the Reynolds number, where no, one or two solutions
of the given type exist, are computed.

1. INTRODUCTION

The study of flow through channel of varying width has received much attention owing to their
applications in mathematical modelling of biological and engineering systems. The idea of math-
ematical treatment of this type of problem was first introduced into the literature by Blasius [3].
He perturbed the steady Poiseuille flow between parallel plates to approximate the separated flow
in a slowly varying exponentially diverging plane channel. A similar problem, popularly known as
J-H flow, were investigated by Jeffery [13] and Hamel [11]. They obtained a similarity solution that
describes the steady two-dimensional radial flow between two inclined rigid planes driven by a line
source at the intersection of the planes.

However, for over four decades, workers in statistical mechanics have effectively employed the
technique of extending a regular perturbation series to high order by computer, and then analysing
the coefficients to reveal the structure of the solution, Gaunt and Gutmann, [10]. That procedure
was later adapted to a variety of problems in fluid mechanics, Van Dyke [19]. Most recently, Drazin
and Tourigny [7] presented a novel computational approach to the investigation of bifurcations that
relies on the use of power series in the bifurcation parameter for a particular solution branch. Their
initial motivation was to solve boundary-value problems for nonlinear systems of ordinary and
partial differential equations. The procedure leads to a special type of Hermite-Padé approximant.
Let us suppose that the partial sum

Un()) = i an A" = U(\) + O(AV*1) as A =0, (1)
n=1

is given. We shall make the simplest hypothesis in the context of nonlinear problems by assuming
that U()) is the local representation of an algebraic function u of A. Therefore, we seek a polynomial
Fy = F4(\,u) of degree d > 2,

d m
Fif, u) =0F DT Fnapd™ Fu® (2)
m=1 k=0
such that
95L0,0). . 4. (3)
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and
Fy\Un(A) =00 as A= 0. (4)

Condition (3), which yields fo1 = 1, ensures that the polynomial has only one root which vanishes
at A = 0 and also normalises Fy. There are thus

1+§:(m+1)=%(d2+3d—2), (5)

m=2

undetermined coefficients in the polynomial (2). The requirement (4) reduces the problem to a
system of N linear equations for the unknown coefficients of Fy. The entries of the underlying
matrix depend only on the N given coefficients a,. Henceforth, we shall take

N = %(d2+3d—2), (6)

so that the number of equations equals the number of unknowns. A bifurcation occurs where
the solutions of a nonlinear system change their qualitative character as a parameter changes. In
particular, bifurcation theory is about how the number of steady solutions of a system depends
on a parameter. The bifurcations for Fy(\,u) can then be analysed locally by means of Newton’s
diagram (Vainberg and Trenogin, [20]).

In the present paper the steady flow in a linearly diverging asymmetrical channel is considered.
Our objective is to demonstrate the applicability of the D-T method in solving nonlinear systems
of partial differential equations as well as understanding the bifurcation that takes place in the
flow field as the Reynolds number increases. In Sections 2 and 3, we establish the mathematical
formulation for the problem. Computer extension of the resulting perturbation series solution and
the bifurcation study are examined in Section 4. In Section 5, we discuss the entire findings.

2. MATHEMATICAL FORMULATION

Consider the steady flow of an incompressible viscous fluid through a channel of varying width. It
is assumed that the channel is long enough to neglect both the entrance and the end effects. Take
a Cartesian co-ordinate system (z,y) where y is the distance measured in the normal section of
the channel and z is in the streamwise direction. Let u and v be the velocity components in the
directions of z and y increasing respectively and b(z) is the variation in the channel’s width. Then,

y = b(x)

L ———> X

Fig. 1. Schematic diagram of the problem.
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for two-dimensional flow the Navier-Stokes equations in terms of stream-function 1 and vorticity
w are
O(w, V)

0 =V
d(z,y) vew, (7)

w=-V20, : (8)

where V2 = 92/0x% + 0?/0y? and v the kinematic viscosity of the fluid. The channel’s width
(y = b(z) = aS(z/L)) is assumed to vary slowly with axial distance such that 0 < ¢ = a/L < 1,
where a is the channel’s characteristic width and L is the characteristic length. In the limit € — 0,
the channel is of constant width. The following dimensionless variables are introduced

w = —— T = ’ \Il':— (9)

y_ @ ' _ET yl=2 v
Q) a’ a

where Q is the constant flux across any cross-section of the channel. On the assumption that viscous
forces are dominant or of the order of magnitude of the inertial forces, the dimensionless governing
equations together with the appropriate boundary conditions, (neglecting primes for clarity) can
be written as

0w O(w, ¥)

= Re———, 10
7 =) e
w=-2, (1)

ov

=0, %—0, on y =0, (12)
ov
6—y—0, \I’—ly Ony"Sa (13)

where Re = Q/v is the effective flow Reynolds number and we emphasis that Re > O(1) as ¢ — 0.

3. METHOD OF SOLUTION

Since the nonlinear character of the differential equation (10) precludes its solution exactly, we seek
the solution as an asymptotic power series in terms of the perturbation parameter Re i.e.

o0 . ) .
=3 "Re'¥;, w=) Re'w;. (14)
i=0 i=0

Substituting the above expressions (14) into (10)-(13) and collecting the coefficients of like powers
of Re, we obtained and solved the equations governing ¥ and w up to order forty-four along
with their corresponding boundary conditions. We have written a MAPLE program that calculates
successively the coefficients of the solution series. In outline, it consists of the following segments:

(1) Declare arrays for the solution series coefficients e.g. ¥ = array(0..43), w = array(0..43),
etc.

(2) Input the leading order term and their derivatives i.e. wp, ¥o, etc.

(3) Input the slope i.e. dS/dz = m (where S =1+ mzx)
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(4) Using a MAPLE loop procedure, solve equations (10)—(13) for the higher order terms i.e.
Wi, Vi 0=1,2,3, ..., etc.

(5) Compute the wall shear stress and axial pressure gradient coefficients.

Details of the MAPLE program can be found in the appendix. Some of the solution for stream-
function and vorticity are then given as follows;

3
\Il=-—[2n3—3n2]——113-‘—51?—[2177—7n6+7n5—3n3+n2]+..., (15)
35
- 6 6Re5z 5 4 3
=g -1+ [42n° — 1059* + 70n —n+1]+..., (16)

where S, represents the derivative of S with respect to z and n = y/S. The shear stress at the wall
of the channel is given by

tw = _-(_i_-—l-lb_2) [(ayy T sz)bz + (1 3% bg)axy] on.yr= b(:l:) 2 (17)

where 0y, 04z, 04y are the usual stress components, ie.,

Ogy = P[\I’yy o \IJ:ca:]ayy —Ozz = _4/»"\I’my ) (18)

- and p is the dynamic coefficient of viscosity. The subscripts (z,y) denote partial differentiation
with respect to (z,y), respectively. The dimensionless form of wall shear stress can be written as

a?S? S*
B = '#—Qtw = —(1—+E§S_2) [(\I/yy — 62\1111)(1 — 6252) — 46‘25,;‘1’,,;3,] . : (19)
z

and we obtain

65; Re
35

B=6- aaids 0naY=S (20)

From axial component of the Navier-Stokes equation, we can determine the fluid pressure distri-
bution. The solution for the pressure field is taken as

pQ
P==34q, (21a)
where ¢ is given as i.e.,
1
q=EPo+P1+eP2+O(62)+.... (21b)

The fluid pressure gradient in the longitudinal direction is given as

oq 1 1 5485,
—_— = - = — { — 2
p EAP 55’3{ 12 + 35 Re + } , (21a)

and solution for the pressure field is

g= %/Asz. (21b)
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4. COMPUTER EXTENSION AND BIFURCATION STUDY

Here, we examine the flow of a viscous incompressible fluid driven steadily through a slowly varying
linearly diverging asymmetrical channel defines by S = 1 + mz, where 0 < m < 1 is the geometry
slope. The state variables 8 and H (i.e. the wall shear stress and the axial pressure gradient
respectively) are expanded in powers of Rd (Rd = Rem) to obtain

6 79 79 476031
=6- —Rd— ——Rd? — 3 o RAf -
A 35 26950 0 943250 Rg 174271097000 ’ £h
dq 54 156 933 5920197
H=8%— = -12 + —Rd + ——Rd? AP, e b EAVER .
5z t ggd-+ 13475Rd + 2452450R + 135677742500 i
as Rd — 0. (22)

The first 44 coefficients of the above series were obtained. A graphical ratio test together with
Neville’s extrapolation techniques at 1/n = 0 (i.e., n = 0o) reveal the radius of convergence Rd =
21.8324, (Domb and Sykes, [6]). Using D-T method, we compute a turning point Rd. together with
B-1 and H_; on the secondary solution branch as Rd — 0, since 8 ~ f_1/Rd and H ~ H_;/Rd.
From Table 1 below, our results show that Rd. ~ 21.832434744444767, f_; ~ —1139.586 and
H_; ~ 10311.612. We also noticed that 3 — 0 as Rd — 18.849555921538759430, i.e., separation
and reversal of the flow at the wall occur.

Table 1. Computations for bifurcation diagram using the D-T method.

N Rd, 39 HY
4 10.973072956800874 —873.0049438738  —
8  20.802553028665588 -1131.464204610  —
13
19

21.834727876353050 -1118.157759518  8849.093
21.832414257048973 -1139.536465765 10252.652
26 21.832434728390886 -1139.602488871 10310.922
34 21.832434744444767 -1139.586311605 10311.603
43  21.832434744444767 -1139.586282243 10311.612

00~ O Ut W N

5. GRAPHICAL RESULTS AND DISCUSSION

From the equations (21)-(22) and the numerical results in Table 1, one can easily sketch the
bifurcation diagrams as shown in figure 2. The bifurcation diagrams show how the flows evolve and
bifurcate, as the flow Reynolds number increases. From these diagrams, we noticed three important
solution regions, namely; (i) Rd < 0, (ii) 0 < Rd < Rd, (iii) Rd > Rdc. In region (i), the solution
is single valued, this corresponds to the case of negative flux and it represents the flow in a slowly
varying linearly converging asymmetrical channel. The wall shear stress and axial pressure gradient
increase with an increase in flow Reynolds number in this region. In region (ii), dual solution exists,
namely; I (i.e. primary branch) and II (i.e. secondary branch). The two solution branches (I and 1)
show an increase or decrease in wall shear stress and axial pressure gradient as the flow Reynolds
number increases. In the secondary branch of the solution, we estimated the asymptotic behaviour
of wall shear stress parameter () and axial pressure gradient (H) as Rd — 0. A turning point
exists at Rd. (Rd. = mRe.). We also noticed that 8 — 0 as Rd — 18.849, i.e., separation and
reversal of the flow at the wall occur. Fraenkel [9] used the Jacobian elliptic functions to classify
the solutions of J-H flow (i.e. the symmetrical case of the present problem), as types I, II,, IlIn,
IV, or V,, for n = 1,2,.... He showed that plane Poiseuille flow arises for solutions of types I and
III; as a — 0, (c is the semi-angle between the plane walls), for a fixed Re and obtained the turning
points, one of which is Re, = 5.461/a. Here, we observe that our result at the turning point is four
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:

Fig. 2. A sketch of bifurcation diagram for the problem; (a) wall shear stress, and (b) axial pressure
gradient with respect to Rd.
times the result obtained by Fraenkel [9] at the turning point (i.e. 4-5.461 = 21.84). This implies
that the results obtained for flow in asymmetrical channel can be easily transformed to that in a
symmetrical channel. In region (iii) no real solution of the assumed form is found. Figure 3 shows
the Domb-Sykes plot for the coefficients of (3). The radius of convergence that corresponds to the

nearest singularity lies on the positive real axis of Rd and is given as Rd = 21.8324.

In general, we emphasize that the D-T method is, in essence, a numerical form of analytic
continuation and, as such, can only be expected to reveal those branches that are analytic continu-
ations of the original power series. Furthermore, it is noteworthy that the applicability of the D-T
method as well as other series summation and improvement techniques depend on the availability

n-l|

Fig. 3. Domb-Sykes plot for coefficients of (Radius of convergence = 21.8324).
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of partial sums of the solution series for the problem under consideration. In many situations, it is
possible to obtain the Taylor coefficients exactly (for instance by perturbation methods). Reliance
upon the exactness of the Taylor coefficients may, however, limit the usefulness of the procedure
to a rather small portion of the global bifurcation diagram. Hence, one may compute the approxi-
mate Taylor coefficients using the standard numerical part-following techniques (Lyness, [14]), thus
greatly enhancing the scope and range of applicability of the D-T method. The D-T method has
a wide range of application and may fail to reveal the bifurcation point for some problems (for in-
stance when the pattern of signs of the coefficients of solution series is irregular or cannot be easily
established), but whenever it works, the error decays faster than exponentially with the number of
terms of the series used as illustrated by our example. Therefore, it is not a panacea for all applied
mathematics problems. Moreover, the D-T method utilised in this paper is obviously amenable to
various types of generalizations. For instance, it is quite straightforward to devise extensions to
cater for problems with more than one bifurcation parameter or with more than one scalar state
variable. Such generalizations may, however, be very demanding of computing time and memory.
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APPENDIX
A1: The table showing the coefficients of wall shear stress (i.e. )

i Clil i Clil

0 -6.00000000000000000000 24 0.395401587489238920613
1 0.171428571428571428571 25 0.170704549876543797104
2 0.002931354359925788497 26 0.738628809286882392960
3 0.000837529817121653856 27 0.320265863097518068460
4 0.273155450441675936658 28 0.139134440782352661493
5 0.950535206939780716154 29 0.605537526578935814141
6 0.344924460276584897823 30 0.263984466116357809944
7 0.129053975416975692812 31 0.115265669219927882979
8 0.494400631643117337441 32 0.504038364033901083137
9 0.192997763894894649590 33 0.220714437618860320244
10 0.765007209450438534208 34 0.967756955575966099962
11 0.307095974103714306801 35 0.424852448547783853064
12 0.124594950761946000334 36 0.186731128659573413171
13  0.510104236879815536088 37 0.821627498659435430599
14 0.210477146970403835081 38 0.361899391047135941476
15 0.874377825418023712963 39 0.159563032630296609025
16 0.365411442884592643568 40 0.704185165367339402582
17 0.153516979843578649754 41 0.311051134813595496108
18 0.647996773394044893598 42 0.137514536360579978899
19 0.274676048523360630675 43 0.608443386752716127668
20 0.116874722018139144606
21 0.499019773243511912939
22 0.213736396475714584380
23 0.918091853313549007244
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A2: The Maple procedure to solve the system of equations (10)—(13) and the values of the coeff
cients of wall shear stress.

#

Declaration of arrays for the solution series coefficients
Digits:=50:

9:=array(0..44): w:=array(0..44): ¢y:=array(0..44):
tx:=srray(0..44): wy:=array(0..44): wx:=array(0..44):
Input the leading order term and their derivatives
[0] :=3*(y/S) "2-2%(y/S) ~3:

w[0] :=12%y/S°3-6/8"2:

Yy [0] :=diff (4[0],y):

¥x [0] :=Sx*diff (4[0],S):

wy[0] :=diff (w[0],y):

wx [0] :=Sx*diff (w([0],S):

Input the slope

Sx:=m:

Solving equations (10)-(13) for the higher order terms
for n from 1 by 1 to 44 do

A:=Rxsum(yry[i]*wx [n-i-I]-¢rx[il*wy[n-i-1],i=0..n-1):
gll:=int(A,y)+K1:

gl:=int(gll,y)+K2:

fl1:=int(-gl,y):

fl:=int(£f11,y):

y:=S:

K1:=solve(f11=0,K1):

K2:=solve(£f1=0,K2):

y:='y’:

¥ [n] :=normal (f1):

w[n] :=normal(gl ):

Yy[n] :=diff (¢[n],y):

¥x[n] :=Sx*diff (¢[n],S):

wy[n] :=diff (wln],y):

wx [n] :=Sx*diff (w[n],S):

K1:=’K1’: K2:="K2’:

Computing the wall shear stress coefficient

print (evalf (sub(y=S,w[n]*S72)));

od:

quit();
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