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Solving systems of algebraic equations is presented using the Gréobner Basis Package of the computer
algebra system MAPLE V. The Grobner basis computations allow exact conclusions on the solutions of
sets of polynomial equations, such as to decide if the given set is solvable, if the set has (at most) finitely
many solutions, to determine the exact number of solutions in case there are finitely many, and their actual
computation with arbitrary precision. The Grobner basis computations are illustrated by two examples:
computing the global equilibrium paths of a propped cantilever and of a simple arch.

1. INTRODUCTION

In mechanics there are problems which lead to solving systems of polynomial equations of sev-
eral variables. In the computer algebra developed Grobner basis theory is very helpful in solving
such algebraic equations. Moreover, the most modern computer algebra systems (e.g. MAPLE or
MATHEMATICA) include a Grébner Basis Package, which engineers can very easily use to prepare
their algebraic systems for solving.

Consider the problem of solving a system of multivariate polynomial equations

pl(xlv'~'smn)=07 sBs g pk(xl,---,zn)=0- (1)

If you add to this set of equations a further equation pgy1(zi1,...,Z,) = 0, where pg4; is a
linear combination of the polynomials p;(z;,...,z,) = 0,2 = 1,...,k with polynomial coefficients
ai(z1,...,Z,), then you get an equivalent set of equations, i.e. one with all of the original common
solutions. Similarly, you can omit one of the equations if it is a linear combination of the others.

Consequently, every calculation of solutions must take place in the set

k
(Pl---Pk)‘—‘{Zaipi:aiEK[-’El,---,mn]}, (2)

1=1

where K|z1,...,z,] denote the set (ring) of all polynomials in variables z,...,z, over a field K
(e.g. the complex numbers). ;

The set (p; ...px) is called (polynomial) ideal generated by the (finite) set of polynomials. The
set {p1...px} C K|[z1,...,2y,) is said to form a basis for this ideal.

For finding the solutions of the system of algebraic equations (1) you can use the method of
repeated elimination [13]. The basic idea is to try transform the set of polynomials {p; ...px} into
an equivalent set from which the zeros could be more easily obtained.

Example 1. The nonlinear set of equations

{plszf+m§—1=0, p2 = 31129 — 1 = 0} (3)
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may be transformed into the system
{ps =z, +323 — 322 =0, 923 —923+1=0} (4)

(to eliminate z; first compute 3z5p; — z1p2, then 3z2p3 — p2), which is then solved. In general the
elimination may give not only the true solutions, but also some parasitic solutions, that is solutions
of the transformed system which are not solutions of the given system. (This is a consequence of
the fact, that the elimination is not free from omitting equations which are not linear combinations
of the others.)

Example 2. Consider the simple set of equations (taken from [9]):

fpr=@y-Dz+y—-1=0, p2=(y+1)z=0} ()

The solutions are the two points: z = 0,y = 1 and z = —1,y = —1. If you eliminate z from the
second equation, you find the system

{(y—l)z‘+y—1=0, y2_1=0}a (6)

the solutions of which are the point z = —1,y = —1 and the line y = 1 with z undetermined. On
the contrary, if you eliminate z from the first equation, you find the system

{y+1)e=0, y*-1=0} | (7)

the solutions of which are the line y = —1 with z undetermined, and the point z = 0,y = 1. Thus,
one sees that elimination may even give parasitic results, depending on the order of elimination. To
make the elimination correct, you must check that all the solutions satisfy all the given equations.
If the equations are not satisfied, it is still possible that a subset of the solution holds, such as the
subset z = —1,y = —1 of the “solution” y = —1 and z undetermined, which you have found before.

In Example 1 the repeated elimination has been used to transform a set of polynomial equations
into an equivalent set from which the zeros could be more easily obtained. Similarly the nonlinear
system of equations

(B2 +12+22-1=0, 22 +y*—42=0, 3z°-4y+2°=0} (8)
may be transformed into the equivalent system
{322 —4y+ 22 =0, —8y+82>+24z—6=0,
1922* + 11522% + 182422 — 962 — 276 = 0}, (9)

which you can solve easier than the original one.

However, such a transformed system will not always exist; moreover one cannot always tell from
a transformed system whether a given system of equations is solvable or not. On the other hand, it
should be clear that a transformed system for {p;,...px} is simply an alternate (but more useful)
basis for the ideal (p,...pk).

What you would like, however, is an alternate ideal basis, which always ezists and from which
the existence and uniqueness of solutions (as well as the solutions themselves) may easily be de-
termined. In fact, such bases exist and are called Grobner bases. These bases were introduced by
Buchberger [2]. Buchberger presented an algorithm to perform the required transformation in the
context of polynomial ideals. Today, most modern computer algebra systems (e.g. MAPLE [8] or
MATHEMATICA) include a Grobner basis package based on the implementation of variants of
Buchberger’s algorithm.
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2. TERM ORDERINGS AND REDUCTIONS OF POLYNOMIALS

The set of terms in variables zi,...,z, is defined by
T(:zl,...,:z:n) = {.’E?,...,x;" 181y...,0p € N}, (10)

where N is the set of non-negative integers. Note that this mapping assigns a (vector space) basis
for K[z1,...,zy] over the field K (complex coefficients).

Definition 1 An admissible term ordering < for the set T'(zy,...,Z,) is one which satisfies the
following two conditions:

1. 1<tforallteT,

2. s <t implies sv < tv for all s,t,v € T, where 1 = x‘l) ; :l:g
Each of the following is an admissible term ordering on T'.
Definition 2 The (pure) lexicographic term ordering is defined by
szzil,...,z‘i{‘ <Lx{‘,...,z{;"=t (11)
if and only if there exists | such that i) < j; and iy = ji, 1 Lk <l.
Note that specifying the polynomial set as K|[z;,..., %], the precedence
T1>L Ty >L ... > Tn (12)
is implied.
Example 3. The trivariate terms in (z,y, z) are lexicographically ordered

l<pz<p2’<p...<py<pyz<pyz’<g...

LY <LYr<p...<pr<prz<p...<pTY <L ... (13)
Definition 3 The (total) degree term ordering is defined by
s=x§‘,...,xﬁ{‘ <D:z’1",...,:):{;"=t (14)
if and only if
1. deg(s)=i1+...+ip <J1+ ...+ jn = deg(t), or
2. deg(s) = deg(t) and there ezists | such that 4y > j; and ix = ji, | < k < n.

Note that the terms of equal total degree are ordered using an inverse lezicographic ordering,
which is admissible within these graduations. A different term ordering results from using the
regular lexicographic ordering for this purpose. Both types are referred to as “total degree” orderings
in the literature.

Example 4. The trivariate terms in (z,y, z) are degree ordered.

l1<pz<py<pz<p
<D 22 <pyz<pzxzz<p y2 <pzy<p z? <D
<p 2 <pyzt<pz <py’z<pzyz<p ... (15)
Suppose that every (non-zero) polynomial is written in decreasing ordering (according to <) of
its monomials: i cit; with ¢; # 0 and ¢; > t;4; for every i. We call ¢;t; the leading monomial and

i=1
t1 the leading term of the polynomial.
Let G be a finite set of polynomials, and > a fixed term ordering satisfying the two conditions
in Definition 1.
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Definition 4 A polynomial p is reduced with respect to G if no leading term of an element of G
divides the leading term of p.

In other words, no combination p — hg; of p and an element of G can have a leading term less
(for the ordering <) than the leading term of p. If p is not reduced, you can subtract from it a
multiple of an element of G in order to eliminate its leading term (and to get a new leading term
less than the leading term of p). This process is called a reduction of p with respect to G. Note that
a polynomial can have several reductions with respect to G (one for each element of G the leading
term of which divides the leading term of p). For example, let G = {g1 = z — 1,92 = y — 2} and
p = zy. Then there are two possible reductions of p: by gi, which gives p — yg1 = y, and by g,
which gives p — g2 = 2z.

A polynomial p cannot have an infinite chain of reductions: you have to terminate with a reduced
polynomial.

The definition of “reduced” involves the leading term of p, and implies that there is no linear
combination p — hg; which has a leading term less than that of p. It is possible that there are other
terms of p which can be eliminated to make the linear combination “smaller”. For example, suppose
that the variables are z and y, with respect to the lexicographic term ordering y < z, and that
G = {y — 1}. The polynomial z + y2 +y is reduced, for its leading term is z. Nevertheless, you can
eliminate the terms y2 and y with respect to G. This fact leads to the following definition, which
is stronger than that of “reduced”.

Definition 5 A polynomial p is completely reduced with respect to G if no term of p is divisible
by the leading term of an element of G.

3. THE GROBNER BASES AND BUCHBERGER’S ALGORITHM

Definition 6 A basis G of an ideal I is called a Grobner basis (with respect to a fized term ordering
<) if every reduction of a p of I to a reduced polynomial (with respect to G ) always gives zero.

We now state two — and in the next section also two — theorems on Grébner bases. We shall
not prove them; the reader who is interested in the proofs is referred to the papers by Buchberger
[2-7]). We have slightly reformulated the theorems in order to avoid the usage of some concepts
from modern algebra.

Theorem 1 Every ideal has a Grobner basis with respect to any admissible term ordering.

In the following we shall explain the Buchberger’s algorithm for computation of Grobner bases.
Suppose you have chosen once and for all an admissible term ordering.

Definition 7 Let p and g be two non-zero polynomials, with leading monomials p; and g;. Let h
denote the least common multiple of p; and g;. The S-polynomial of p and g, S(p,g), is defined by

h h

S(p,9) Setp = (16)

The least common multiple of two terms or monomials is simply the product of all the variables,
each to a power which is the maximum of its powers in the two monomials. h/g: and h/p, are
monomials, therefore S(p,g) is a linear combination with polynomial coefficients p and g, and
belongs to the ideal generated by p and g. Moreover, the leading monomials of the two components
of S(p, g) are equal to h, and therefore cancel each other. Note, that S(p,p) = 0 and that S(p,g) =
-S(9,p)-

Theorem 2 A basis G is a Grobner basis, if and only if for every pair of polynomials p and g of
G, S(p,g) reduces to zero with respect to G.
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This theorem gives you a criterion for deciding whether a basis is Grobner basis or not. It is
enough to calculate all the S-polynomials and to check that they do reduce to zero. But if you do
not have a Grobner basis, it is precisely because one of these S-polynomials (say S(p, g)) does not
reduce to zero. Then, as its reduction is a linear combination of the elements of G, you can add it
(gx = S(p,g)) to G without changing the ideal generated. After this addition, S(p, g) reduces to
zero (because S(p, g) — gk = 0), but there rise new S-polynomials to be considered. Buchberger also
proved a remarkable fact, that this process always comes to an end (and therefore gives a Grobner
basis of the ideal).

Example 5. Apply the Buchberger’s algorithm to the basis
G={g,92}={z" +y* -1, 3oy -1} (17)

for the ideal from Example 1 and choose the pure lexicographic term ordering z > y. The leading
monomials of g; and g, are 22 and 3zy, respectively, so that the least common multiple of g, and
g2 is 3z%y. Therefore

S(91,92) = 3yg1 — zg2 = = + 3y° — 3y. (18)

This polynomial is non-zero and is reduced with respect to G (the leading monomial of S(91,92),
that is the z is divisible neither by z2 nor by 3zy), and hence G is not a Grébner basis. The
polynomial S(gi,gz) is a linear combination of the elements of G, so you can add it to G without
changing the ideal generated by G. Now G consists of

a1 = $2 + '.U2 i 11
g3 = z + 3y° — 3.

After this enlargement the polynomial S(g1, g2) is not reduced with respect to G = {91, 92,93}
(its leading monomial z is divisible by the leading monomial of g3), but now you easily can reduce
the S(g1,g2) to zero: really, S(g1, g2) —g3 = 0. The new S-polynomials to be considered are: S (91,93)
and S(g2,93). The polynomial

S(g1,93) = 91 — 293 = —3zy° + 3zy +y* — 1 (20)
can be reduced to zero as follows:

S(g91,93) = S(91,93) — (—¥*)g2 = 3zy — 1 > 3zy —1 - g2 =0. (21)

The polynomial

S(92,93) = g2 — 3ygs = —9%y"* +9y° — 1 (22)

is non-zero and reduced with respect to G; hence G is not a Grobner basis. If you add this polynomial
to the polynomials in G then the new basis consists of

g = z2+y -1,

g2 = 3-’17!/— 11 (23)
g5 = T+ 3y -3y,
91 = -9t +9° - 1.

The S-polynomials to be considered are: S(gi,94), S(g2,94) and S(g3,94). The polynomial

S(g1,94) = =99 g1 — 2°g4 = —92%y? + 2% — 9® + 9* (24)
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is not reduced with respect to G (because you can divide its leading monomial —92%y? by the
leading monomials of g;, g2 and g3). The reduction:

S(91,94) = S(91,94) — (-99° + 1)g1 = —9° +18y* — 1052 + 1
— —9y% +18y* —10y® + 1 — (3% — 1)g4 = 0. (25)
The polynomial
S(92,94) = —3y°92 — 794 = =979 + z + 3y° (26)
and its reduction:
S(92,94) — S(92,94) — (-3y)ga =z + 3y° — 3y
-z +3y3 -3y —g3=0. (27)
Similarly
S(g3,94) = —9yg3 — zg4 = —9zy® + T — 27y" + 27y (28)
and its reduction:
S(93,94) = S(93,94) — (—3y)g2 = = — 2Ty’ + 27y° — 3y
—z—27y +27y° — 3y — g3 = —27y" +27y° — 33
— —27y" +27y° — 3y® — 3y3g4 = 0. (29)

You see, that G reduces all these S-polynomials to zero, and hence G is a Grobner basis for the
ideal.

Grobner bases are by no means unique. Fortunately, the problem of non-uniqueness is very easily
avoided if using reduced Grobner bases.

Definition 8 A basis G is said to be a reduced basis if every polynomial g € G is completely
reduced with respect to all the others (i.e. to G — {g}).

In other words, no monomial of a polynomial g € G is divisible by the leading monomial of an
other element of G.

The Grobner basis G = {g1,92,93,94} is not reduced, because g; and g2 contain monomials,
(now it is of no importance that these are also leading monomials), which are divisible by the
leading monomial of g3. The reduction

91— 293 =37y} +3zy +1° — 1= (1 —y*)(3zy - 1) (30)

implies that the generator g; = 2% + 2 — 1 is a linear combination of the generators g, and g3 and
hence you can omit g; and so suppress G.
Similarly from the reduction

92 — 3yg3 = g4 (31)

you can see that the generator g is a linear combination of the generators g3 and g4 thus g also
can be omited from G.

Since the monomials of g3 and g4 are not divisible by the leading monomials of g4 and gs,
respectively, the set

G={z+3y® -3y, —9'+%°-1} (32)

is the reduced Grébner basis for the ideal generated by the set {z2 +y% — 1, 3zy — 1}.
Excellent references on Grébner bases and variants of Buchberger’s algorithm are [1, 9, 10].
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4. SOLUTION OF SYSTEMS OF POLYNOMIAL EQUATIONS
Let G be a Grobner basis for the ideal
(pl""vpk) CK[(IJl,...,.’En]. (33)

Theorem 3 The system of algebraic equations (1) is unsolvable (has no solutions) if and only if
G contains a constant (polynomial).

Theorem 4 Let L be the set of leading terms of polynomials in G. Then the system of equations
(1) has (at most) finitely many solutions if and only if for every variable z;, i = 1,...,n there is a
positive integer m such that z* € L.

In other words, a system of polynomial equations has finitely many solutions over the complex
numbers if and only if each variable z; appears alone (such as zI") in one of the leading terms of
the corresponding Grobner basis.

It must be noted that these powerful results do not depend on the term ordering chosen to
construct the Grobner basis. Neither do they require that the solutions themselves be produced.

If this basis is computed with respect to a lezicographic ordering, you can determine all the
solutions by the following method. (Lexicographic Grobner bases are not always the easiest to
compute, but their use offers more direct insight into the solution of a system of algebraic equations
than the total degree bases.)

Suppose, that the variables are z1,...,z, with z; > ... > z,. The variable z, appears alone
in the leading term of a generator of the Grébner basis. But all the other terms of this generator
are less (in the sense of <) than this term, and therefore can contain only z,, for you are using
the lexicographic ordering. Thus you have a polynomial in z, (and only one, because with two
polynomials, you can always reduce one with respect to the other), which has only a finite number
of roots. z,_, appears by itself (to the power k, for example) in the leading term of a generator of
the Grobner basis. But the other terms of this generator are less (in the sense of <) than this term,
and can therefore contain only z,_; (to a power less than k) and, possibly, z,, for you are using
the lexicographic ordering. For every possible value of z, , you have k possible values of z,_;: the
roots of this polynomial in z,_; (with respect to their multiplicity). It is possible that there are
other polynomials in z,_; and z,, and that certain combinations of values of x5 and z, do not
satisfy these polynomials, and must therefore be deleted, but you are certain of having only a finite
number of possibilities for z,—; and z,. You determine z,_3,...,; in the same way.

In fact, there is a much simpler algorithm to find these finite solutions. This algorithm, sug-
gested independently by Gianni [11] and Kalkbrener [12], will be illustrated on the following simple
example.

Example 6. Consider the following Grobner basis:
{:c2+y2—1, xy_an ys_Fyz-y+F}’ (34)

where z = 1, y = z, are variables (indeterminates) and F is a parameter. The Gianni-Kalkbrener
algorithm tells you to take the unique polynomial in z; and to solve it: there are three solutions
y = F and y = 1. For each of these solutions you must solve the other equations.

1. y = F: Here the other equations become z2 + F2 — 1 and 0, and you have two solutions for z:

z=+v1-F2

2. y = +1: Here the other equations become 22 and (F + 1)z and now there is only one solution:
=0

The Gianni-Kalkbrener algorithm states that, for each variable zy, it is both necessary and sufficient
to consider the polynomial of the lowest degree in that variable, such that its leading coefficient
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does not vanish for the values of zx41,...,z, being considered. In our example, when y = F' the
leading coefficient of (y — F)z vanishes, and you have to take z2 + y2 — 1, whereas when y = +1,
the leadmg coefficient does not vanish, and it is sufficient to take this polynomla,l and to ignore
22 +y% - 1.

Example 7. Stability of a propped cantilever [14]. Consider the propped cantilever of Fig. 1,
comprising a rigid link of length [ = 1 m, pinned to a rigid foundation and supported by a linear
extensible spring of stiffness ¢ = 1 N/m. The spring is assumed to be capable of resisting both
tension and compression and retains its horizontal orientation as the system deflects. Assume that
the system is perfect in the sense that the spring is unstrained when the link is vertical. What are
the equilibrium paths of the structure loaded by a dead vertical force of magnitude F?

Fig. 1. Layout of the propped cantilever.

The equilibrium equation (moments around the origin) Sy = Fz, with spring force S = cz, and
the geometrical equation 22 + y? = 1 imply a set of algebraic equations, which corresponds to an
ideal generated by the basis

{zy — Fz, z* +y*>—1}. ‘ (35)
To compute the reduced Grobner basis of this set of polynomials, you can apply e.g. the command
grobner[gbasis)({z * y — F * z,2> + y* — 1}, [z,y, F), plex); (36)

in the Grobner Basis Package of the symbolic system MAPLE V, where [z,y, F] is the list of
indeterminates (not including parameters) which induces the ordering z > y > F, and pler means
that the pure lexicographic term ordering is used.

The resulting reduced Grobner basis is

2?2 +4® -1, zy— Fz, v* — Fy?> —y + F). (37)

First of all you see that the Grobner basis does not contain a constant (polynomial) and hence
(by Theorem 3) the corresponding set of algebraic equations is solvable.

If F is considered to be a parameter, (only z and y are indeterminates) then z? and y® are the
leading terms of the Grobner basis (with respect not only to plez, but to any admissible term or-
dering) which contain the variables z and y alone. Consequently (by Theorem 4) the corresponding
system of polynomial equations has a finite number of solutions, i.e. for any prescribed load there
are finitely many equilibrium positions. For solving, see Example 6.
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If F is considered to be indeterminate too, then the variable F' does not appear alone in one of
the leading terms of the corresponding Grobner basis and hence (by Theorem 4) there are infinitely
many solutions.

To prepare the given system of algebraic equations for solving, it is more advantageous to use
the following command in the Grobner Basis Package:

grobner(gsolve)({z * y — F * z,2? + y* — 1}, [z,y, F)). (38)

The result is the following list of reduced subsystems whose roots are those of the original system,
but whose variables have been successively eliminated and separated as far as possible:

%+ v* -1,y — F), [z,y — 1], [z,y + 1]]. (39)

Fig. 2 illustrates the solutions (in the interval —2 < F' < 2) and its bifurcations.

Fig. 2. Equilibrium paths of the propped cantilever.

Example 8. Model of a Simple Arch [14]. Consider the structural system shown in Fig. 3
consisting of two elastic bars with equal initial length ! = 5 and equal stiffness k = 1, pinned to
each other and to rigid supports by ideal hinges. The distance between the abutments is taken as

[»\ a=6

Fig. 3. Model of the simple arch.
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a = 6. We want to find all the possible positions of the central hinge subjected to a vertical dead
load of arbitrary magnitude F. Denote the horizontal position of the hinge by z and the vertical
position by .

Denoting the new lengths of the beams after loading by L; and L9, the geometrical equations
are

e +y’ =13, (a—go)*+y’ =L} (40)
the material equations are
K(Ly-10)=81, k(Lz-1)=85,, (41)

(where S; and Sy are the inner forces of the bars, and Hooke’s law is assumed to hold for arbitrarily
large deflections); and the equilibrium equations are

FLiLy = (S1L2 + S2L1)y, L2S1z = L1S2(a — ). (42)

To prepare this system of six algebraic equations of six unknowns for solving, you can use the
command gsolve of the Grobner Basis Package as in the previous example:

grobner[gsolve] ({z*+y% — L12, (a — z)? + y* — L2?,
k+(L2—1) - 82, k+ (L1 —1) - S1,
FxL1%L2—(S1xL2+ S2xLl)x*y,
L2% S1l*xxz—L1%S2x%(a—z)},
[z,y,51,852, L1, L2)]). (43)

This command computes the following collection of reduced (lexicographic) Grébner basis corre-
sponding to the set of polynomials in (43):

[[2z — a, 4y + a?, S1 + kI, Sa + ki, Ly, Ly,
[22 — a, —4k2L3 + 2kiFy + (K% + F?) Ly + 4K*IL3 — K*a™,
Sy — kLy + ki, Sp — kLy + ki, =L + L1,
—8Kk%L3 + 4k2 L + 2k%a®lL, + (—k2a2 + 4k%12 - F2) L2 — k2%,
K W STk 4 B Sk IR = 0%, Ea )
[z, y, S1+kl, Sy + kl — ka, Ly, Ly — a],
[z, y, S1+kl, Sy + kl + ka, Ly, Ly + a],
[ (40Kk%a® + 4ak*1F?) Ly + (2Ka* + 4F2K%a? + 2F*) o —
k*a® — 2F?%k%a3 — 4a31%k* — aF*,
(2k5a4 + 4k3a2F? + 2kF4) y — kYt F + 4k*a?FI2 — 2F3k%a® — F5,
(K?a® + F?) 81 + (K*a® + kF?) Ly — k*a® + KLF?, S — kL + K,
(K?a? + F2) Ly + (k%a® + F?) L, — 2k%a%,
—8a’Lolk* + (4194(12 + 4k2F2) L2 — k'a* + 40%%k* — 2F%K%a® - F*)). (44)

The set of equations defined by these subsystems can be solved easily. The results, for which L;
and Lo are real and positive, are illustrated in Fig 4; we note that real negative solutions arise
because radicals were excluded from the starting set of equations. The simplest equilibrium path
corresponds to the symmetric shape of the loaded simple arch, when the central hinge remains on
the z = 3 line during the loading process. The other two curves correspond to more complicated
cases: the curves with z < 0 or 6 < z correspond to other possible shapes of the loaded simple
arch, when the originally central hinge moves sideways far away from its starting position.
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Fig. 4. Equilibrium paths of a simple arch.
5. CONCLUDING REMARKS

The Grobner basis calculations (Buchberger’s algorithm) can be used as a method for determining
all the solutions of systems of multivariate polynomial equations.

For the case of linear sets of algebraic equations the Buchberger’s algorithm corresponds to the
Gaussian elimination. For general systems there is another method, the repeated elimination [13],
which is quite similar to calculating the lexicographic Grobner bases. However, Buchberger’s algo-
rithm is a more advantageous method because it allows to obtain ezact conclusions on the existence
and the number of solutions of sets of algebraic equations.

The fact that we have an algorithm does not mean that every problem can be solved easily.
Although Buchberger has proved that his algorithm terminates, he has not given any limit for the
calculating time or for the number of polynomials in the Grobner basis.

The application of the Grobner basis method to nonlinear mechanical systems has confirmed the
known fact of computer algebra, that calculating a Grobner basis requires, in general, memory space
exponential in the number of variables. Some examples has been solved very easily by this method,
but there are problems which use several megabytes of memory without reaching the solution.

Taking into account such special properties of the problems arising in mechanics as the symmetry
and sparsity of coefficients of equations, in the further research we shall try to make the Grobner
basis method useful for solving such sets of algebraic equations in more variables.
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