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Two staggered solution schemes for a minimum volume optimization problem with a critical point con-
straint are considered. Scheme 1 leads to optimization at a critical (maximum) point, while Scheme 2
results in optimization at a maximum load. The reduced optimization problems for each of the schemes
are different, and the derivatives for them must be defined consistently with the step preceding optimiza-
tion. Using an example of a simple nonlinear two-bar truss and performing a rigorous analysis of roots of
the equilibrium equation and of their limits, we show that properties of the derivative of displacements at
the critical load and the derivative of critical displacements are very different.

Then the methods of calculating various design derivatives are described and both solution schemes are
tested on the truss example. Conclusions are related to accuracy and rate of convergence of both schemes,
as well as to their sensitivity to inaccuracies characteristic for large scale numerical implementations.

1. INTRODUCTION

Complexity of equilibrium paths for nonlinear equilibrium equations, which may possess extremum
and bifurcation points, makes optimization a challenging task. Essential for designing is the question
of the stability of the solution, and it is usually formulated as a requirement that the minimum
should be located either on a stable branch, e.g. [11], or, at most, at the first critical point, e.g. 4,
5, 6, 16]. The latter requirement is of interest in the present paper, and it is used for a minimum
volume problem.

The optimization problem is solved using staggered (bordering) solution schemes, which proved
to be useful in many contexts, e.g. [13]. A variety of staggered schemes can be devised, and these
which are used in the present paper may be characterized as follows:

e the problem is split, and solved in several steps, with solution of a reduced optimization problem
being only one of them, '

e the reduced optimization problem is formulated in such a way that the state variable is always
excluded from the minimization,

e steps are repeated until convergence is reached.

Different staggered schemes result in different minimization tasks actually being solved, and we
present and discuss the following schemes:

1. a critical point is found, then, a reduced optimization problem is solved at this point. The idea
of this scheme is given in [4] for the maximum critical load problem, and we extend it to the
minimum volume problem.

2. a solution of the equilibrium equation for the maximum load is found, then, a reduced opti-
mization problem is solved at this load level. This scheme has not yet been described in the
literature.
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These two schemes require different derivatives of the objective function and constraints, which
must be defined consistently with the algorithmic steps actually being performed. Therefore, if we
consider displacements, a clear distinction between the derivative of displacements at the critical
load and the derivative of critical displacements must be made. Using the example of a simple
nonlinear two-bar truss we show that their properties are astonishingly different. Both derivatives
are obtained by performing a rigorous analysis of roots of the equilibrium equation and of properties
of their limits. It must be stressed that only the derivatives which are consistent with the algorithmic
setup yield correct solution of the optimization problem, and therefore they cannot be mistaken.

Subsequently, methods of calculating various design derivatives characteristic for the schemes of
interest are described. Scheme 1 requires a design derivative of the critical load, while Scheme 2
necessitates a design derivative of the determinant of the tangent matrix, and the design derivative
of the displacements.

Using the example of the nonlinear truss we tested both solution schemes, and formulated
conclusions related to:

e accuracy and rate of convergence of both schemes,
e sensitivity of Scheme 1 to inaccuracies in determination of the critical point,
e sensitivity of Scheme 2 to inaccuracies in solution of the equilibrium equation.

These inaccuracies are characteristic for large scale numerical implementations of both schemes.
Finally, we note in passing that calculation of the derivatives with respect to the design variables
is a subject of the design sensitivity analysis, and it has already beeen performed for a wide class
of materially and kinematically nonlinear problems, see the overview given e.g. in [7] and [8]. These
derivatives can be used to modify the structure in order to achieve a required performance. The
present paper indicates that when the design parameters are sought as a solution of an optimization
problem then the question of derivatives is more complicated. They depend on the solution scheme,
and, accordingly, for new solution schemes new types of the design derivatives need to be calculated.

2. DEFINITION OF SOLUTION SCHEMES

In this section we define two staggered solution schemes for the minimum volume problem with a
critical point constraint. But first, we specify the equilibrium equation in the following way

r(b,z,u) = f(b,2) — up = 0 (1)

where b is the design variable (e.g. cross-sectional area, Young modulus, etc.), z is the state variable
(e.g. displacement, rotation, etc.), p is the load factor, and p is the fixed external load. The internal
force is denoted by f. The critical point is defined as a solution of the following set of equation

r(b,z,u) =0 }

(2)
detK(b,z) =0

for a fixed b, and will be denoted as {zr, pcr}- Here K = 0r/0z is the tangent operator.
Let us consider the minimum volume problem formulated as follows:

min V(b) (3)
(b,z,p)

subject to:
r(b,z,u) =0 — equilibrium equation (nonlinear),
detK(b,z) =0  — determinant constraint,

gy = p™ — p =0 — load constraint.
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Here, V is a volume of the structure, and p™3* denotes the prescribed maximum value of the load
factor. The above problem may be solved using the following two-step staggered schemes.

Scheme 1: minimization at the critical point

Step 1. For given b solve

r(b,z,u) =0
(4)
detK(b,z) =0
to find a critical point {Zcr, pcr}- This step implies z¢, = z¢r(b) and per = pier(b).
Step 2. Solve
min V(b) (5)
(b)

subject to g, = p™** — u.(b) = 0 to update b. Note that g, is a nonlinear function of b.

These steps are repeated until convergence is achieved. To provide derivatives of the objective
function and constraints the design sensitivities dV/db and dg,/db = —duc/db must be
calculated at the critical point.

Scheme 2: minimization at the maximum load
Step 1. For given b and p™?* solve
r(b,z,u™*) =0 (6)
to find z®. This step implies z¢7 = z(b, ™).
Step 2. Solve
min V (b) (7
(b)

subject to det K(b,z) = 0 to update b.

These steps are repeated until convergence is achieved. To provide derivatives of the objective
function and constraints the design derivatives dV/db and ddet K/db must be calculated at the
maximum load.

The main advantage of the above defined staggered schemes consists in separating b and z, and
solving the minimization problem in terms of b only.

3. DESIGN DERIVATIVES OF DISPLACEMENT AND CRITICAL DISPLACEMENT

Below we define two design derivatives related to displacements, which correspond with two stag-
gered schemes specified in the previous section, and discuss the differences between them.
Let us define the design derivative of critical displacement, which occurs in Scheme 1, as follows

dzCl‘ s li zCI(b + Ab) - zcr(b)

= 8
db ~ abso Ab &
Besides, let us define the design derivative of displacement for Scheme 2 as
dz _ . z(b+ Ab,u) —z(b,u)

i Ab (9)
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which for yu = u takes the following form

(iz_) s B z(b + Ab, per) — z(b, per)
db/ir  ab-o Ab

(10)

Note that values of z(b, p;) and z(b) are equal but their interpretation is different, as the first
one results from the equilibrium equation (1), while the second from the critical point equations (2).
Therefore, properties of derivatives (8) and (10) are different, and a clear distinction between them
must be made. In sequel we demonstrate for a truss that properties of the two derivatives can be
surprisingly different.

Let us consider a non-symmetrical two-bar truss introduced in [5], see Fig. 1, of hight H, cross-
sectional areas of the bars A; and Aj, spans of the bars L; and Ly, and a Young modulus E.
The truss is loaded by force P, and the vertical displacement of the loaded node is denoted by w.
Throughout this paper the following units are used: [in] for length and displacement, [in?] for area,
[in3] for volume, [Ib] for force, [psi] for modulus of elasticity.

P

Ly Lo

Fig. 1. Unsymmetric two-bar truss

If we use the engineering (right stretch) strain measure € = (I — lg)/lp, where [ and ly is the
actual and initial length of a bar, and assume that (H/L;)? < 1 then the equilibrium equation for
the whole truss can be written as follows

r=0(%z3—%azz+a2z)—P=0, (11)
where
H
C=eBy(y+1)?, e Aids e i=—, a (12)

“Eihy 1L TR I
Comparing the above equation with (1) we identify z as a state variable, A; as a design variable,
and P stands for up.
The critical point, Eq. (2), here defined by r = 0 and dP/dz = 0, is as follows
o)
P =Cg, where g=—x

3v3
wma (-3

where p.r = P.r/(EAs2). It can be verified that in our case the critical point is a maximum (limit)
point.

(13)
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For the data E = 107, L; = 200, L, = 50, H = 2.5, A; = Ay = 0.79975 we obtain P, =
parEAy = 60.12187 and uc, = 2 L) = 1.05662.

To compute the design derivatives we have to establish the dependence z = z(A;) by checking
roots of equilibrium equation (11) for the perturbed design variable A; + AA;. It can be done
for the critical load p., because then roots can be conveniently related to z., and besides we
are particularly interested in the design derivative of displacement at a critical point. A complete
analysis of roots of the perturbed equilibrium equation and properties of their limits for AA; — 0
is presented in [15].

Derivative (dz/db). for truss

The design derivative of displacement at (A;,pcr) is defined according to (10) as follows

(d_z) = P z(A1 + AA1, per) — z(A1, Per)
dA]_ cr - AAl—)O AA]

(14)

where 2(Aj,Per) = Zer, and 2z, is given by Eq. (13). To specify z(A; + AAj1,pcr) we have to choose
roots from the vicinity of zcr, i.e. those 2z* which converge to 2z, for AA; — 0. Equatlon (11) can
be given a canonical form g + 3py +2¢ = 0, with the determinant defined as D = ¢ + p?, see [15]
for details. Selecting the roots we reject roots no. 1 for all values of D, and roots no. 2 and 3 for
D < 0, as they are imaginary. Hence only roots no. 2 and 3 for D < 0 (AA; > 0) are considered,
which are

1
#=a [1 - %(cos Lo +V/3sin %(p)] ,

A (15)
B=a [1 - —\/—i(cos %(p — V/3sin %(p)] ,
where cosp =1 — )\, and A = yAy AA;/(A; + A2vy)(A1 + AA;). For them we have
B3—Za o« (cos %v2)\:l:\/§sin%\/2/\— 1) (16)
Ay /B AA,
Let us split the above expression and consider limits for particular components. Firstly, cos %\/ 22 -1
= —2sin 2), and we may write
s 21
sm2_6_ 22 5 s1n6\/ 2\ sm6 2)\ A0 _l__pi (17)
AA é\/ (1;\/ AA1 18 po
because
k=]
singVv2A  AA;-0 A PAA; AA;=0 D1
—_ — 1 and == ey —, (18)
LV2x AA;  (p2 +p3AA1)AA, P2
_ ___mA4 - LR
where A = ——————. Hence, the limit of the above component is finite. Secondly,
(p2 + p3AA)
1 1
sin 3\/ 4 _ singV2\ 3V2A AAH0 (19)
AA, V2X  AA
because
in 2v/2)
sul1 3\/— AA20
W,
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2p1AA; 2p, A0
AA1 (2 + P3DA)BAE  \ (02 + p3BA DA,

We conclude that at the critical point (dz/dA;)er = —oo for root no. 2, and (dz/dA;)er — +00
for root no. 3 as AA; ~1/2 for AA; = 0. The above conclusion may also be reached in another way
shown in [15].

In Fig. 2 the solution of equilibrium equation, r = 0, and the design derivative of displacement
dz/dA;, are shown. The design derivative of displacement is calculated according to

dz _ o1 Of R .

- K %-°% - =

100 r=0-—+

80 | -

60 - -

20

-20 F

load P or sensitivity

-60 I

- M .

vertical displacement u
Fig. 2. Equilibrium path and design derivatives of displacement for Scheme 2.

The following data was assumed: E = 107, L, = 200, Ly = 50, H = 2.5, A} = Ay = 0.79975. It
is evident from this figure that at extremum points the design derivative of dlsplacement grows
unbounded. For the initial part of the equilibrium curve (loads lower than pc;) [10] also provides
numerical results, which illustrate this unbounded growth.

Derivative dz./db for truss

The design derivative of critical displacement at A; is defined as follows

g_‘_""ﬂ = . B zcr(Al + AAI) - zcr(Al)
dA1 - AA;—0 AAl

(22)
where 2 (A1) = Zcr, and 2 is given by Eq. (13). As 2z, does not depend explicitly on A, i.e.
Zer(A1 + AA) = Zer(Ar) = a1 - 1/\/—3—)1 hence

dzer
dA,

Because 2z, does not depend on A; thus the critical points for different A; lie on the same line,
2z = zer = 1.05662.

=0 (23)
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4. DESIGN DERIVATIVE OF CRITICAL LOAD

Step 1 of Scheme 1 implies that we have pc = p(b). The design derivative of the critical load is
defined analogously as the design derivative of the critical displacement, i.e.

dpter N Ty per(b + Ab) 3 ,Ulcr(b)
db ~ Ab-o Ab
Two methods for calculating du/db, which have been proposed till now, are described below. In

the sequel we omit subscript cr to simplify the notation, but all equations are written at the critical
point.

(24)

Method 1. The residual as well as the determinant of the tangent matrix depend on the design
variable b, i.e. r = r(b,z(b),u(b)), and d = detK(b,z(b)). Thus we may linearize the set of
equations (2) near a design b

£(b 4+ AbY i) + AL =0
‘313 (25)
d(b + Ab) = d(b) + T-Ab =0

At a critical point r(b) = 0 and d(b) = 0, and we may write (dr/db)Ab = 0 and (dd/db) - Ab =
0. These equations are satisfied for all Ab if det(dr/db) = 0 and dd/db = 0. For a case of a
single design variable, i.e. when dim b = 1, which we consider below, these conditions simplify to
dr/db =0 and dd/db = 0. Then,

de _ o ords Ordu_
db ~ b  9zdb ' dudb )
ddet K a 8detK+5‘detKg —_—

as. . - 0 9z db

Note that the derivative dz/db is defined by Eq. (8), not Eq. (10) ! It has been suggested in [4]
that this set of equations can be solved for dz/db and du/db.

Method 2. An alternative approach is based on the critical state condition expressed as vI K =0,
where v is the left eigenvector. (For symmetrical K left and right eigenvectors are identical.) For a
residual r = f(b,z) — up, the first of Eq. (26) can be rewritten as

dr_ O Ofds_du
db b dzdb db '
It has been proposed in [16], and [3] that if we pre-multiply this equation by the eigenvector v then
the term with dz/db vanishes due to the fact that 0f/dz = K and vTK = 0 by definition of the
critical state. Then,
dp _ vl 9f/0b
db  vTp

0 (27)

(28)

Note that this approach fails if dz.;/db grows to infinity faster than vTK decreases to zero.

The above two methods were tested for the truss, what is described in [15] in detail, and they
yielded

dpcr de 9

=—F 1 29

vy Hwr+1) g (29)
where g is defined in (13). Actually, as this is a one-dimensional example, the use of neither of the
two methods was necessary. The formula for dp.;/dA; can be obtained directly from the first of
Eq. (13).
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5. DESIGN DERIVATIVE OF DETERMINANT

Step 1 of Scheme 2 implies that we have z = z(b, x™2*), and a design derivative of the determinant
can be defined as follows

ddetK _ . detK(b+ Ab,z(b + Ab, p™**)) — det K(b, z(b, u™*))
= lim (30)
db Ab-o Ab
where p™2* is fixed. Hence, the derivative can be expressed as
ddetK_6detK+6dethz 31
db b 9z db (8D
where formulas for 9 det K/9z, d det K/db, and dz/db are given below.
Calculation of ddet K/db
Let us define a design derivative of the determinant as follows
0detK .. detK(b+ Ab,z) — det K(b,z)
ob Alllaﬁo Ab (32)

where z is fixed. It can be shown that d det K/0b may be evaluated using the following formula

H b
0ot _adik:vgk o 22E_, {adj K <-B—I§) } (33)

Job db ob

where a colon denotes contraction over two indices, and VK = J0K/0b. The adjunct matrix
adj K for a nonsingular K can be calculated as adj K = det KK™!. At the limit point, where
det K = 0, we must use a definition of adj K as a matrix of cofactors, i.e. adj K = [Di;]T, where
D;j = (=1)"*J d;;. The minor d;; is defined as a determinant of matrix K with the i-th row and
the j-th column removed, i.e. dj; = det K.

Calculation of ddet K/0z

Let us define a derivative of the determinant with respect to the state variable as follows

ddetK . detK(b,z + Az) — det K(b, z)

= 34
0z Alggo Az 34)
where b is fixed. A formula for 8 det K/db is analogous to (33),
ddetK ddetK oK\ T
=adj K : = i K =— 35
5 adj K:VzK  or o2, ir {adJ ( Bzi) } (35)

where VzK = 9K /0z. The gradient of the tangent matrix VzK does not exist only at bifurcation
points, and can be calculated either analytically, or using the finite difference formula Vz K ~
[K(b,z + Az;) — K(b,z)]/Az;. Both require evaluation of adj K : VzK = detK tr(K~! - VzK),
what cannot be done on the element level. Alternatively, 0 det K/9z may be computed using the
finite difference method

ddetK detK(b,z + Az;) — detK(b,z)
8z,- - Azi

(36)

but this method is prohibitively expensive for large systems.
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Calculation of dz/db

Let us recall the definition (9) of the design derivative of the displacement. On differentiation of
the equilibrium equation r(b,z(b)) = 0 for a configuration in equilibrium, we obtain

Or Or dz

b + mdb 0 (37)
from which we calculate dz/db = —K~! (9r/db).

For the truss the design derivative of the determinant can be expressed as follows

ddet K OddetK OJdetK dz

aA, - o4, T o a4 (38)
where
ad;szc.%, | gfz%=3(z_a) _ (39)
dd—;l=-1r<—1 dd—;, dd—;l:dd—;E'r('rH)za

6. NUMERICAL EXAMPLES
Below, the staggered schemes defined in Section 2 are specialized for the two-bar truss example.
Scheme 1: optimization at the critical point

Step 1. Solve

r(A1,z,p) =0 } (40)
det K(A;,2)=0
to find a critical point {zcr, Per},
Step 2. Solve
n}‘iln |4 : (41)
subject to g, = p™** — per(A1) = 0 to update A;.
Scheme 2: optimization at the maximum load
Step 1. Solve
r(A1,2,p) =0 (42)
to find a solution 2°9,
Step 2. Solve
minV (43)

A

subject to det K (A;, 2%7) = 0 to update A;.
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Numerical calculations were performed for E = 107, L; = 200, Ly = 50, H = 2.5. The pa-
rameters are defined as follows, V = [} A; + l3Ay, dV /dA;, = 1, dgu/dA; = —dpe/dA;, where

ly = \/L?+ H?, Iy = (/L% + H2. The cross-section area of bar no. 2 is fixed, and calculated as
Ay = Vy/(ly + 12) = 0.79975. p™2* was assumed to be equal to per = 60.12187, as can be obtained
from Eq. (13) for A; = A,.

For Scheme 1 the critical point is given by Eq. (13), and dpr/dA; is given by Eq. (29). For
Scheme 2 det K = K is given by Eq. (21) and ddet K /dA; by Eq. (39).

The Sequential Quadratic Programming procedure of the ADS optimization program, [14], was
used. Results of calculations are presented in Table 1, and compared with results obtained via
analytical formulas. They are of good accuracy, showing that the formulation is correct. As indicates
the number of function evaluations, gradient evaluations, and iterations Scheme 1 converges faster,
but Scheme 2 also does, despite the infinity of the design derivative of the displacement at the
critical point. Besides, the schemes are analyzed with respect their sensitivity to characteristic
inaccuracies, i.e. for Scheme 1 in determination of the critical point, and for Scheme 2 in solving
the equilibrium equation. Therefore, the critical load or the solution of the equilibrium equation,
were initially perturbed by 5%, and the error was halved in each iteration. The results presented
in Table 1 indicate that the assumed error was never fatal, and convergence was always achieved.
As A, for the +5% error and Scheme 2 is the most inaccurate one thus Scheme 2 seems to be more
prone to inaccuracies than Scheme 1.

Table 1. Solution of the minimum volume problem. Sequential Quadratic Programming

method | error % | Ay | B \" | no.func.eval. ] no.grad.eval. | no.iter.
scheme 1 0 | 0.80085 | 60.18800 | 200.22 34 12 48
scheme 1 +5 | 0.80076 | 60.18268 | 200.20 35 12 49
scheme 1 -5 | 0.80092 | 60.19234 | 200.23 45 13 60
scheme 2 0 | 0.80327 | 60.12187 | 200.70 80 20 102
scheme 2 +5 | 0.83879 | 60.12187 | 207.80 80 20 102
scheme 2 -5 | 0.80474 | 60.12187 | 200.99 79 20 101
| analytical | 0 [ 0.79975 | 60.12187 | 200.00 — | - | — |

SQP: ADS with istrat=8, iopt=4, ioned =7.

7. CONCLUSIONS

a) Two solution schemes for the minimum volume optimization problem with the critical point
constraint were formulated. Scheme 1 leads to optimization at a critical point, while Scheme 2
results in optimization at the maximum load. Scheme 1 is a version of a scheme proposed in
[4] for the maximum critical load problem, while Scheme 2 has not yet been described in the
literature.

It was pointed out that the design derivatives must be specified consistently with the solution
scheme used. This implies specific relations between u, z and b. Therefore, a clear distinction
must be made between the design derivative of critical displacement and the design derivative
of displacement at a critical point, as they can have completely different properties. For the
example of the truss the design derivative of the displacement in the vicinity of a critical point
grows infinitely, like AAl—l/ % as AA; — 0, and it does not exist at the critical point. On the
other hand, the design derivative of critical displacement exists at the critical point and is equal
to zero.

b) The methods of calculations the design derivatives for both schemes were described and tested.
For the example of the truss both schemes worked well and yielded accurate results. As indicates
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the number of function evaluations, gradient evaluations, and iterations Scheme 1 converges
faster, but Scheme 2 also does, despite the infinity of design derivative of displacement at the
critical point. It was also checked that both schemes are rather insensitive to inaccuracies,
Scheme 1 to inaccuracies in determination of the critical load, and Scheme 2 in solution of the
equilibrium equation. The inaccuracies only slowed down the rate of convergence but were not
fatal.
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