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The computational accuracy of three versions of the method of fundamental solutions (MFS) is compared.
The first version of MFS is based on the Laplace transformation of the governing differential equations
and of the boundary conditions. The second version of MFS is based on the fundamental solution of the
governing differential equation and discretization in time. The third method approximates the temperature
time derivative by finite difference scheme. As the test problems the 2D boundary-initial-value problems
(2D_BIVP) in square rectangular region Ω with known exact solutions are considered. Our numerical
experiments show that all discussed methods achieve relatively accurate approximate solution but the
third one offers less computational complexity and better efficiency.
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1. INTRODUCTION

The problem of transient conduction appears in diverse areas of science and technology and has
been extensively treated in the literature. The time duration of the transient part can be important
in the design of machine such as turbines. For the majority, the analytical solutions can not be
found and the numerical solution is preferred. The domain type numerical methods such as finite
difference and finite element methods are not necessarily the best approaches because their mesh
character. Another alternative is application of boundary element method with dual reciprocity
which converts domain integrals onto a series of boundary integral, see e.g. [1]. In this paper,
a much simpler approach based on a method of fundamental solutions (MFS) is presented. The
method discussed here gives the solution anywhere inside the region and on the boundary.

The method of fundamental solutions, as one version of the Trefftz method, has become increas-
ingly popular over the last two decades. The majority of the applications of this method pertain
to the elliptic problems [2]. However, in recent years some different versions of the MFS used for
parabolic heat transfer problems have appeared [3–11]. In paper [3] two version of MFS for 2-D
parabolic problem with zero initial conditions have been proposed: 1) method based on the Laplace
transformation of the governing equation and the boundary condition, 2) method with time de-
pendent fundamental solutions. For the inverse of Laplace transformation the method proposed in
paper [12] has been used. The MFS based on the Laplace transformation for non-zero initial condi-
tion was proposed in paper [4]. The particular solution of non-homogeneous Helmholtz equation was
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obtained by method suggested by Atkinson [13], while for inverse Laplace transformation Stehfest’s
algorithm [14] was used. In paper [5] for transient heat conduction with non-zero initial condition
two versions of MFS have been proposed: 1) method based on Laplace transformation, 2) method
in which finite difference scheme was used for time derivative. In both cases it leads to sequence
of non-homogeneous Helmholtz equations. The particular solution of non-homogeneous Helmholtz
equation was obtained by method proposed in paper [15]. In paper [6] the MFS based on the Laplace
transformation for unsteady heat conduction equation with constant initial conditions have been
discussed. For the inverse of Laplace transformation the method proposed in paper [12] has been
used. Papers [7] and [9] discussed the MFS with time dependent fundamental solution for the non-
zero initial conditions. In paper [10] this version of MFS was applied for diffusion equation with
heat sources. In all the papers discussed so far a 2-D initial value problem was considered, with the
exception of paper [8] in which 3-D diffusion equation was considered. In paper [8] the authors used
a version based on finite difference scheme for time derivative, transforming the original parabolic
equation into a sequence of non-homogeneous modified Helmholtz equations.

As even this short review shows, three different versions of the MFS applied to transient heat
conduction problem are now available. The first one is a version of MFS based on the Laplace
transformation of the governing differential equations and of the boundary conditions. The second
version of MFS is based on the fundamental solution of the governing differential equation and
discretization in time. The third method approximates the temperature time derivative by finite
difference scheme. Some comparison of second and third version of MFS is given in paper [11] but
this author for comparison purpose uses only one exact solutions with three different combinations
of boundary conditions.

The purpose of the present paper is to investigate computational accuracy of these three different
versions of the MFS in application for transient heat conduction. Four examples for 2-D boundary-
initial-value problem with exact solution are presented to demonstrate the efficacy of the proposed
different versions of method. In a sense this paper is a continuation of paper [3] in which two versions
of MFS have been compared with FEM for 2-D heat conduction problem. Main result of that paper
concludes that at the same number of degrees of freedom the MFS is more accurate than FEM.

2. PROBLEM STATEMENT

A two-dimensional homogeneous, isotropic region Ω with boundary ∂Ω is considered. The governing
equation for unsteady Fourier heat conduction in square region without the internal heat sources
(our boundary-initial-value problem) is following

∂T̆

∂t
(x, y, t) = α∇2T̆ (x, y, t) in Ω = [0, 1] × [0, 1], (1)

T̆ (x, y, 0) = g(x, y) in Ω, (2)

ă · T̆ (xB , yB , t) + b̆ · ∂T̆ (xB, yB , t)

∂n
= c̆ on ∂Ω, (3)

where α is the thermal diffusivity of the region (constant), g(x, y) is the specified initial temperature
distribution, xB, yB are coordinates of boundary points, n is outward normal to the boundary, ă,
b̆, c̆ define the boundary conditions.

We introduce the nondimensional variables: T = T̆
Tr

, X = x
l
, Y = y

l
, F = αt

l2
, G = g

Tr
, a = ă,

b = b̆
l
, c = c

Tr
. Then the governing equation and boundary and initial conditions (1–3) can be

written in nondimensional form (see Fig. 1)

∂T

∂F
(X,Y, F ) = ∇2T (X,Y, F ) in Ω = [0, 1] × [0, 1], (4)

T (X,Y, 0) = G(X,Y ) in Ω, (5)
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a · T (XB , YB , F ) + b · ∂T (XB , YB , F )

∂n
= c on ∂Ω, (6)

where T (X,Y, F ) is dimensionless temperature, ∇2(. . .) = ∂2(. . .)/∂X2+∂2(. . .)/∂Y 2 is the Laplace
operator, F is Fourier number, G(X,Y ) is the specified dimensionless initial temperature distribu-
tion, XB , YB are coordinates of boundary points, n – outward normal to the boundary, a, b, c define
the boundary conditions.
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Fig. 1. Square region with dimensionless initial and boundary conditions

Three different methods of fundamental solutions can be used for solving the initial-boundary
volume problem formulated by Eq. (4), the initial condition (5) and the boundary condition (6).

3. NUMERICAL ANALYSIS

3.1. MFS with the Laplace transformation (MFS_L)

The first version of MFS is based on the Laplace transformation of the governing differential equa-
tions and of the boundary conditions [3–6].

Using the Laplace transformation the initial-boundary value problem has been transformed to
inhomogeneous Helmholtz boundary value problem in the Laplace transfer domain (the s-domain)

∇2T̄ (X,Y, s) − sT̄ (X,Y, s) = −G(X,Y ) in Ω, (7)

where T̄ (X,Y, s) is the Laplace transform of T (X,Y, F ) with respect to Fourier number

T̄ (X,Y, s) =

∫ ∞

0
e−sFT (X,Y, F ) dF. (8)

The Laplace transform of the boundary condition in Eq. (3) has the form

a · T̄ (XB , YB , s) + b · ∂T (XB , YB , s)

∂n
= c. (9)

In accordance with the MFS, the general approximate solution of Eq. (7) is a sum T̄ = T̄ (h) + T̄ (p)

of homogeneous solution T̄ (h)

∇2T̄ (h)(X,Y, s) − sT̄ (h)(X,Y, s) = 0, (10)
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and particular solution T̄ (p) of inhomogeneous equation

∇2T̄ (p)(X,Y, s)− sT̄ (p)(X,Y, s) = −G(X,Y ). (11)

The radial basis functions (RBF) and polynomials are used in order to obtain a particular solution
of Eq. (11). The unknown coefficients are determined from the interpolation of the right hand side

−G(X,Y ) =

M
∑

j=1

ajϕ (rj) +

L
∑

k=1

bkpk(X,Y ), (12)

where rj =
√

(X −Xj)
2 + (Y − Yj)2, ϕ (rj) = r2j ln (rj) is one of the radial basis functions known as

thin plate spline, (Xj , Yj), j = 1, . . . ,M are coordinates of equidistant interpolation points which are
located inside the region Ω, pk(X,Y ) are polynomials given in Table 1, M is number of interpolation
points and L = 6 is a number of polynomials.

Table 1. Polynomial functions with their particular solutions

k pk(X,Y ) qk(X,Y )

1 1 −1/s
2 X −X/s
3 Y −Y/s
4 XY −XY/s
5 X2 −X2/s− 2/s2

6 Y 2 −Y 2/s− 2/s2

After determination of the coefficients aj and bk particular solution of Eq. (7) has form

T (p)(X,Y ) =
M
∑

j=1

ajψ (rj) +
L

∑

k=1

bkqk(X,Y ), (13)

where functions ψ (rj) and qk(X,Y ) are solutions of equations

∇2ψ (rj)− sψ (rj) = ϕ (rj) , j = 1, . . . ,M, (14)

∇2qk(X,Y )− sqk(X,Y ) = pk(X,Y ), k = 1, . . . , L. (15)

Functions qk are given in Table 1, whereas function ψ (rj) takes form

ψ (rj) =







− 4
s2

(

K0 (
√
srj) + ln (rj) + 1

)

− r2j ln(rj)

s
for rj > 0,

4
s2

(

γ + ln
(√

s
2

)

− 1
)

for rj = 0,
(16)

where γ ≈ 0, 57722 is Euler’s constant. The approximate homogeneous solution of Eq. (10) is a
superposition of the modified Bessel function of the second kind and zero order with unknown
coefficients Wj

T̄ (X,Y, s) =

NS
∑

j=1

WjK0

(√
s

√

(X −Xj)
2 + (Y − Yj)2

)

, (17)

where (Xj , Yj), j = 1, . . . , NS are coordinates of source points which are located outside the region
Ω at a distance S from the boundary, NS is number of source points. In the MFS approach the
unknown coefficients Wj are designated from the collocation boundary condition (9) for each value
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of s [16]. The known values of the coefficients allow to find the transformed field of temperature,
which may later be inverted to the nondimensional time domain

T̄ (X,Y ) =
NS
∑

j=1

WjK0

[√
s

√

(X −Xj)
2 + (Y − Yj)2

]

+
M
∑

j=1

ajψ (rj) +
L

∑

k=1

bkqk(X,Y ). (18)

Once obtained, the transformed solution in defined N field points with the desired solution must
be inverted back to time domain.

The proper solution in the considered domain is assumed as a function of Fourier number [17]

T (F ) = A+BF +

NS
∑

j=1

Cj exp (−DjF ) . (19)

These unknown coefficients A, B, Cj, Dj are evaluated by taking the Laplace transform of Eq. (19)
and by comparing this equation and the general approximate solution for parameter s

sT̄ (s) = A+
B

s
+

NS
∑

j=1

Cj

1 +
Dj

s

. (20)

This procedure is applied for each N domain point in order to recover the solution at different
values of time. The known values of coefficients A, B, Cj, Dj for each point allow finding the value
of temperature at different time step using Eq. (19).

3.2. MFS with collocation space and time (MFS_C)

The second version of MFS is based on the fundamental solution of the governing differential
equation (4) [3, 7, 8, 10]. The approximate solution Eq. (4) is expressed as linear superposition of
these fundamental solutions and has the form

T (X,Y, F ) =

NS
∑

j=1

Nt−1
∑

l=0

Tj (l∆F )
exp

(

− (X−Xj)
2+(Y−Yj)

2

4(F−l∆F )

)

4π (F − l∆F ) , (21)

where (Xj , Yj) are coordinates of outside source points which are located outside the region Ω at a
distance S from the boundary, ∆F is inclement of Fourier number, F = Nt∆F is Fourier’s number
and Tj(l∆F ) is a value of temperature in previous time step. Equation (21) satisfies governing
equation (4) exactly for all (X,Y, F ).

It can be shown that an initial temperature distribution is equivalent to an infinite number of
infinitesimal internal heat sources, which release momentary blasts of heat at time F = 0 only, and
in amounts sufficient to raise their temperatures to the specified initial conditions. By following
the same reasoning for the MFS, the solution is the sum of contributions from M known internal
sources and from NS unknown external sources

T (X,Y, F ) =
M
∑

k=1

G (Xk, Yk)





exp
(

− (X−Xk)
2+(Y−Yk)

2

4F

)

4πF



∆Ak

+
NS
∑

j=1

Nt−1
∑

l=0

Tj(l∆F )





exp
(

− (X−Xj)
2+(Y−Yj)

2

4(F−l∆F )

)

4π(F − l∆F )



 ,

(22)

where ∆Ak is the region into domain with centered heat inside source point (Xk, Yk), k = 1/ . . . ,M ,
F = Nt∆F , NS is the number of heat sources outside the boundary and M is the number of heat
sources inside the region representing the initial temperature distribution. The unknowns Tj(l∆F )
are determined from collocation of boundary conditions (5) at each time step.
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3.3. MFS with finite difference method (MFS_F)

Now there are many variants of finite difference methods for parabolic equation (4). In the third
method we choose the θ-method. Let τ > 0 be nondimensional time increment (step), and we
define the mesh for time as Fn = nτ , n ≥ 0. For Fn ≤ F ≤ Fn+1, approximations for temperature
T (X,Y, F ), Laplacian of temperature, and time derivatives of temperature are assumed in the form

T (X,Y, F ) ∼= θT (X,Y, Fn+1) + (1− θ)T (X,Y, Fn) , (23)

∇2T (X,Y, F ) ∼= θ∇2T (X,Y, Fn+1) + (1− θ)∇2T (X,Y, Fn) , (24)

∂T (X,Y, F )

∂F
∼= T (X,Y, Fn+1)− T (X,Y, Fn)

τ
. (25)

where 0 ≤ θ ≤ 1. Using (24, 25) in (4) we have

θ∇2T (X,Y, Fn+1) + (1− θ)∇2T (X,Y, Fn) =
T (X,Y, Fn+1)− T (X,Y, Fn)

τ
. (26)

Introducing notation to T (X,Y, Fn) = wn(X,Y ) and after algebraic manipulations, we have

∇2wn+1 −
1

θτ
wn+1 = −

1

θτ
wn −

1− θ
θ
∇2wn. (27)

For θ = 1 we get the backward difference scheme (MFS_F_B) [5, 9]

∇2wn+1 −
1

τ
wn+1 = −

1

τ
wn, (28)

and for θ = 0.5 we get the Crank-Nicolson scheme (MFS_F_CN)

∇2wn+1 −
2

τ
wn+1 = −

2

τ
wn −∇2wn. (29)

Now, one can notice that Eq. (27) is a sequence of inhomogeneous modified Helmholtz equations

∇2wn+1 − λ2wn+1 = fn(X,Y ), (30)

where λ2 = 1/(θτ), and at each time step Fn+1 function fn(X,Y ) = f
(

wn,∇2wn

)

is known from
previous time step. For the first time step, we have w0(X,Y ) = G(X,Y ) from the initial condition.

The solution of Eq. (26) wn+1 = w
(h)
n+1 + w

(p)
n+1 is sum of the homogeneous solution w

(h)
n+1

∇2w
(h)
n+1 − λ2w

(h)
n+1 = 0, (31)

and the particular solution w
(p)
n+1

∇2w
(p)
n+1 − λ2w

(p)
n+1 = fn(X,Y ). (32)

The solution of the homogeneous equations (31) is a linear combination of fundamental solutions of
the homogeneous modified Helmholtz equation with the coefficients determined from the collocation
of boundary conditions at each time step

w
(h)
n+1(X,Y ) =

NS
∑

j=1

WjK0

[

λ

√

(X −Xj)
2 + (Y − Yj)2

]

=

NS
∑

j=1

WjK0 [λrj ] , (33)

where (Xj , Yj) are coordinates of source points which are located outside the region Ω.
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For the solution of the inhomogeneous equations (32) the right hand side function fn(X,Y ) must
be interpolated by RBF and polynomials with unknown coefficients.

fn(X,Y ) =

M
∑

j=1

ajϕ (rj) +

L
∑

k=1

bkpk(X,Y ). (34)

After determination of the coefficients aj and bk (see part MFS_L), the particular solution of
Eq. (26) has a form of a linear combination of particular solution for RBF and polynomials

w
(p)
n+1(X,Y ) =

M
∑

j=1

ajψ(rj) +

L
∑

k=1

bkqk(X,Y ). (35)

At each time step the field of temperature is calculated by formula

T (X,Y, F ) =

NS
∑

j=1

WF
j K0 [λrj] +

M
∑

j=1

aFj ψ(rj) +

L
∑

k=1

bFk qk(X,Y ). (36)

4. NUMERICAL RESULTS FOR SOME EXAMPLES OF 2D_BIVP

In this section four examples of 2D_BIVP are numerically analyzed by three different versions of
the MFS. In order to validate the discussed numerical methods, the four 2D examples chosen from
literature with known exact solutions, are carried out. With the available values of the exact solution
and the approximate solution from the numerical experiment for some control points (NN = 400)
in the domain, the maximal relative error and the root mean squared relative error can be evaluated
by

δMAX =

max
1≤i≤NN

{|Ti, ana. − Ti, num.|}

max
1≤i≤NN

{|Ti, ana.|}
100%, (37)

δRMSE =

√

∑

i=1,...,NN

(Ti, ana. − Ti,num.)
2

√

∑

i=1,...,NN

T 2
i, ana.

100%. (38)

In all the cases the considered domain is unit square Ω = [0, 1] × [0, 1] and boundary and initial

source points

interpolation

points  

boundary 

points 

S 

Fig. 2. Boundary (•), source (△), and interpolation (×) points
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conditions are derived from the exact solution

∂T

∂F
(X,Y, F ) = ∇2T (X,Y, F ) , 0 < X < 1, 0 < Y < 1.

On each unit segment of boundary ten equidistant collocation points are chosen and additional one
point in each corner. The number of source points equals number of collocation points and they
are placed on some contour geometrically similar to the contour of the boundary ∂Ω. The distance
between the contour of the boundary and the contour of sources equals 0.1. The distribution of
collocation points (NC = 44), source points (NS = 44) and interpolation points (M = 100) in each
of the versions of the boundary collocation were the same. These distributions are shown in Fig. 2.

4.1. First example of 2D_BIVP [8]

The analytical solution has form

T (X,Y, F ) =

(

cos

(

πX

2

)

+ cos

(

πY

2

)

+ sin

(

πX

2

)

+ sin

(

πY

2

)

)

exp
(

−π
4
F
)

.

The initial and boundary conditions are calculated from the analytical solution. The results ob-

Fig. 3. Error of temperature field for the first example for MFS_F_B

Fig. 4. Error of temperature field for the first example for MFS_C
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Fig. 5. Error of temperature field for the first example for MFS_L

tained for the first test example for F = 0.3 by means of three different versions of the MFS method,
namely MFS_F_B, MFS_C and MFS_L, are presented in the form of the error of identification
of the temperature field in Figs. 3 to 5, respectively. For the third version of MFS based on the
backward difference scheme (MFS_F_B) the test of the influence the value of distance the source
contour from the boundary contour S was carried out. As shown in Fig. 6 accuracy of the results
does not depend significantly on the value of the parameter S.

Fig. 6. The maximal error of temperature for MFS_C for the first test example and for different value of S

4.2. Second example [3]

The initial and boundary conditions:

T (X,Y, 0) = 0,
∂T

∂X
(0, Y, F ) = 0, T (1, Y, F ) = −1,

∂T

∂Y
(X, 0, F ) = 0, T (X, 1, F ) = −1.
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The exact solution of this problem has the form

T (X,Y, F ) = − 1 +
16

π2

∞
∑

m=1

∞
∑

n=1

(−1)m+n+2 cos
(

(2m− 1)πX
2

)

cos
(

(2n− 1)π Y
2

)

(2m− 1) (2n− 1)

× exp

(

−
(

(2m− 1)2 + (2n − 1)2
)

π2
F

4

)

.

4.3. Third example with exact solution [7]

The initial and boundary conditions:

T (X,Y, 0) = (1−X)(1 − Y ), T (0, Y, F ) = 0, T (X, 0, F ) = 0,

T (X, 1, F ) = X, T (1, Y, F ) = Y.

The exact solution can be obtained by separation of variables

T (X,Y, F ) = XY +

∞
∑

i=1

∞
∑

j=1

Cij sin (iπX) sin (jπY ) exp
(

−π2
(

i2 + j2
)

F
)

,

where Cij =
4

ijπ2

(

1− (−1)i+j
)

.

4.4. The last numerical example [18]

The initial conditions:

T (X,Y, 0) = cos
π

2
(X + Y ) + sin(X − Y ).

The analytical solution:

T (X,Y, F ) = exp

(

−F π
2

2

)

cos
π

2
(X + Y ) + exp

(

−2π2F
)

sin(X − Y ).

In Tables 2 to 5 the comparison of the values of the maximal relative error and the average

Table 2. Values of the maximal and the root mean squared relative error of temperature for the first
example

MFS_L MFS_C MFS_F_B
F

δMAX [%] δRMSE [%] δMAX [%] δRMSE [%] δMAX [%] δRMSE [%]

0.01 4.35E−02 4.34E−02 9.84E+01 7.27E+01 2.91E−02 2.28E−02

0.03 2.37E−02 2.35E−02 8.52E+01 4.91E+01 8.23E−02 5.76E−02

0.05 6.77E−03 6.53E−03 6.20E+01 3.39E+01 1.25E−01 8.29E−02

0.10 2.34E−02 2.39E−02 2.49E+01 1.34E+01 1.92E−01 1.20E−01

0.15 3.83E−02 3.90E−02 9.84E+00 5.29E+00 2.23E−01 1.37E−01

0.20 4.04E−02 4.13E−02 3.86E+00 2.07E+00 2.37E−01 1.45E−01

0.25 3.23E−02 3.34E−02 1.52E+00 8.32E−01 2.43E−01 1.49E−01

0.30 1.63E−02 1.77E−02 6.48E−01 3.94E−01 2.46E−01 1.51E−01

0.40 2.89E−02 2.70E−02 4.30E−01 3.08E−01 2.48E−01 1.52E−01

CPU time [s] 30.94 36.25 44.91
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Table 3. Values of the maximal and the root mean squared relative error of temperature for the second
example

MFS_L MFS_C MFS_F_B
F

δMAX [%] δRMSE [%] δMAX [%] δRMSE [%] δMAX [%] δRMSE [%]

0.01 2.88E+01 3.52E+01 3.65E+00 3.35E+00 1.72E+01 1.59E+01

0.03 6.58E+00 6.48E+00 6.96E+00 4.60E+00 6.79E+00 5.68E+00

0.05 1.02E+01 8.50E+00 8.01E+00 5.26E+00 4.25E+00 3.47E+00

0.1 1.03E+01 8.54E+00 9.56E+00 7.28E+00 2.03E+00 1.59E+00

0.15 5.94E+00 4.63E+00 1.80E+01 1.06E+01 1.19E+00 9.68E−01

0.20 2.12E+00 1.42E+00 2.71E+01 1.38E+01 1.18E+00 8.53E−01

0.25 2.11E+00 1.37E+00 3.42E+01 1.63E+01 1.48E+00 8.19E−01

0.30 3.89E+00 2.49E+00 3.92E+01 1.80E+01 1.51E+00 7.67E−01

0.40 5.05E+00 3.09E+00 4.49E+01 1.98E+01 1.30E+00 6.22E−01

CPU time [s] 128.78 134.79 142.08

Table 4. Values of the maximal and the root mean squared relative error of temperature for the third
example

MFS_L MFS_C MFS_F_B
F

δMAX [%] δRMSE [%] δMAX [%] δRMSE [%] δMAX [%] δRMSE [%]

0.01 2.16E+01 2.99E+01 4.75E+01 6.57E+01 1.57E+01 1.58E+01

0.03 5.66E+00 5.88E+00 2.60E+01 3.69E+01 5.50E+00 7.13E+00

0.05 8.58E+00 1.20E+01 1.62E+01 2.26E+01 3.23E+00 4.33E+00

0.10 6.80E+00 9.58E+00 5.45E+00 7.51E+00 6.88E−01 9.14E−01

0.15 2.94E+00 4.11E+00 1.88E+00 2.65E+00 1.14E−01 1.52E−01

0.20 2.20E−01 2.59E−01 6.97E−01 1.16E+00 1.72E−02 2.28E−02

0.25 1.79E+00 2.50E+00 5.46E−01 8.46E−01 2.46E−03 3.26E−03

0.30 2.80E+00 3.92E+00 5.48E−01 7.87E−01 3.42E−04 4.53E−04

0.40 3.18E+00 4.45E+00 5.07E−01 7.33E−01 6.34E−06 8.41E−06

CPU time [s] 124.53 131.59 137.53

Table 5. Values of the maximal and the root mean squared relative error of temperature for the fourth
example

MFS_L MFS_C MFS_F_B
F

δMAX [%] δRMSE [%] δMAX [%] δRMSE [%] δMAX [%] δRMSE [%]

0.01 1.59E+01 2.09E+01 5.88E+01 5.90E+01 8.42E−01 8.92E−01

0.03 4.83E+00 6.19E+00 2.75E+01 2.65E+01 1.86E+00 1.86E+00

0.05 4.87E+00 6.54E+00 1.25E+01 1.17E+01 2.19E+00 2.13E+00

0.10 1.86E+01 2.36E+01 2.42E+00 1.94E+00 1.70E+00 1.56E+00

0.15 1.85E+01 2.26E+01 1.61E+00 1.24E+00 9.52E−01 8.56E−01

0.20 9.84E+00 1.13E+01 1.33E+00 1.13E+00 5.00E−01 4.58E−01

0.25 4.93E+00 5.43E+00 1.14E+00 1.06E+00 2.99E−01 2.82E−01

0.30 1.86E+01 2.40E+01 9.82E−01 1.01E+00 2.38E−01 2.22E−01

0.40 4.96E+01 6.09E+01 1.10E+00 9.42E−01 2.21E−01 2.01E−01

CPU time [s] 31.51 35.79 44.28
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global relative error in calculation of field temperature for the three versions of MFS tested are
presented. The calculations were carried out for time step equal 0.01. The analysis of the numerical
results allows to state that for the majority of the test examples the MFS with approximation time
derivative of temperature by backward difference scheme is the most exact. However, it should be
noted that while for the first tested example (Table 2) the most exact is the version with the Laplace
transformation, for the last case (Table 5) this method is divergent. As far as the collocation of space
and time is concerned it can be concluded based on the results from Tables 2, 4 and 5 that it takes
approximately about ten time steps for the method to become stable and guarantee correct results.

Table 6. Values of the root mean squared relative error of temperature for the first example

F θ = 0.5 θ = 0.6 θ = 0.7 θ = 0.8 θ = 0.9

0.01 1.05E+00 8.21E−01 6.08E−01 4.05E−01 2.10E−01

0.03 6.92E−01 5.60E−01 4.31E−01 3.04E−01 1.80E−01

0.05 4.87E−01 4.06E−01 3.25E−01 2.44E−01 1.63E−01

0.10 2.05E−01 1.91E−01 1.76E−01 1.59E−01 1.40E−01

0.15 8.68E−02 9.96E−02 1.11E−01 1.21E−01 1.30E−01

0.20 3.75E−02 6.05E−02 8.29E−02 1.05E−01 1.25E−01

0.30 8.36E−03 3.68E−02 6.53E−02 9.39E−02 1.22E−01

0.40 3.67E−03 3.24E−02 6.20E−02 9.18E−02 1.22E−01

CPU time [s] 44.83 44.89 44.79 44.82 44.86

5. TESTING θ-METHOD

It is necessary to evaluate the influence of value parameter θ used in the third version of MFS on the
accuracy of the results. For testing θ-method the parameter θ is chosen from interval 0.5 ≤ θ ≤ 1.
The results for the two first examples in the form of the root mean squared relative error of identi-
fication field of temperature for each time step for different value parameter θ are shown in Table 6
and 7. The results show that the accuracy of numerical solutions is dependent on the value θ.

Table 7. Values of the root mean squared relative error of temperature for the second example

F θ = 0.5 θ = 0.6 θ = 0.7 θ = 0.8 θ = 0.9

0.01 3.44E+01 2.96E+01 2.54E+01 2.18E+01 1.86E+01

0.03 7.01E+00 6.29E+00 5.98E+00 5.80E+00 5.70E+00

0.05 3.65E+00 3.47E+00 3.39E+00 3.36E+00 3.39E+00

0.1 1.52E+00 1.49E+00 1.47E+00 1.48E+00 1.52E+00

0.15 1.04E+00 1.02E+00 9.95E−01 9.77E−01 9.67E−01

0.2 8.24E−01 8.31E−01 8.37E−01 8.42E−01 8.47E−01

0.3 5.52E−01 5.92E−01 6.34E−01 6.78E−01 7.22E−01

0.4 3.76E−01 4.19E−01 4.67E−01 5.18E−01 5.70E−01

CPU time [s] 139.67 139.87 141.33 139.76 139.76

The smallest value of the root mean squared relative error for approximation temperature field in
first time step has been obtained for θ = 1, that is for the backward difference scheme (MFS_F_B).

With the increasing number of time steps the best results have been obtained for the smaller
values of parameter θ. After the 20-th time step the most accurate is the Crank-Nicolson scheme
(MFS_F_CN), where θ = 0.5.
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6. CONCLUSIONS

The paper presents three different versions of the MFS for solving transient heat conduction problem
in 2-D unit domain. The first version is MFS with the Laplace transformation, the second is MFS
with collocation of space and time and the last version uses the backward difference scheme. For all
these methods the temperatures can be computed in a whole domain.

From presented results the following conclusion can be drawn:

• three different versions of the MFS for solving transient heat conduction problem in 2-D unit
square domain were presented,

• for all these methods the temperatures can be computed in a whole domain,

• the numerical results show that all versions give acceptable results with respect to the root mean
squared relative error,

• the worst method with respect to maximal relative error calculated at initial time is the second
method, namely the method with time dependent fundamental solutions,

• the results demonstrate that MFS with backward difference scheme is the simplest and the best
method for calculation of the field temperature.
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