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This paper deals with homogenization of non linear fibre-reinforced composites in the coupled thermo-
mechanical field. For this kind of structures, i.e. inclusions randomly dispersed in a matrix, the self
consistent methods are particularly suitable to describe the problem. Usually, in the framework of the
self consistent scheme the homogenized material behaviour is obtained with a symbolic approach. For
the non linear case, that method may become tedious. This paper presents a different, fully numerical
procedure. The effective properties are determined by minimizing a functional expressing the difference
(in some chosen norm) between the solution of the heterogeneous problem and the equivalent homogenous
one. The heterogeneous problem is solved with the Finite Element method, while the second one has its
analytical solution. The two solutions are written as a function of the (unknown) effective parameters,
so that the final global solution is found by iterating between the two single solutions. Further, it is
shown that the considered homogenization scheme can be seen as an inverse problem and Artificial Neural
Networks are used to solve it.

Keywords: Generalized Self-Consistent-Like method, non-linear homogenization, Artificial Neural Net-
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1. INTRODUCTION

Composite materials are commonly applied in engineering practice. They allow to take advantage of
the different properties of the component materials, of the geometric structure and of the interaction
between the constituents to obtain a tailored behaviour as a final result.

Composite materials are usually multiscale in nature, i.e. the scale of the constituents is of lower
order than the scale of the resulting material and structure. To fix the ideas, we speak of macroscopic
scale as the particular scale in which we are interested in (e.g. at structural level) while the lower
scales are referred to as microscopic scales (sometimes an intermediate scale is called mesoscopic
scale). We exclude here scales at atomic level, which would require a separate study.

For most of the analyses of composite structures effective or homogenized material properties
are used, instead of taking into account the individual component properties and their geometrical
arrangements. A lot of effort went into the development of mathematical and numerical models
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to derive homogenized material properties directly from those of the constituents and from their
microstructure. Many engineering problems are solved at macroscopic scale with such homogenized
properties. However, in many instances such analyses are not accurate enough.

In principle it would be possible to refer directly to the microscopic scale, but such microscopic
models are often far too complex to handle for the analysis of a large structure. Further, the obtained
data would be often redundant and complicated procedures would be required to extract information
of interest.

A way out is what is now commonly known as multiscale modelling, where macroscopic and
microscopic models are coupled to take advantage of the efficiency of macroscopic models and the
accuracy of the microscopic ones. The scope of such multiscale modelling is to design combined
macroscopic-microscopic computational methods that are more efficient than solving the full micro-
scopic model and at the same time give the information that we need to the desired accuracy [1].

In the case of material and structural multiscale modelling and in homogenization in general,
one usually proceeds from the lower scales upward in order to obtain equivalent material properties.
However, it is also important to be able to step down through the scales until the desired scale
of the real, not homogenized, material is reached. This technique is often known as unsmearing,
localization or recovering method. Usually in a global analysis both aspects need to be pursued, think
for instance of a damage or fracture analysis. The procedure may be either of a serial coupling, which
represents some sort of data passing up and down the scales, or concurrent coupling where both
microscale and macroscale models are strongly interwoven and have to be addressed continuously
as the computation goes on. This last case is particularly the case in non linear situations.

In this paper both linear and non-linear material behaviours are considered. The case of non
linear composites with random microstructure is dealt with in detail. In Section 2 a brief distinction
for linear and non linear cases is outlined and in Section 3 we describe our recent developments of the
self-consistent methods for elastic-plastic and brittle materials in the coupled thermo-mechanical
field. In Section 4 numerical examples of this method are reported. Concluding remarks close the
paper in Section 5.

2. LINEAR AND NON-LINEAR BEHAVIOUR

Over the last decades a large body of literature was developed, which deals with the micromechanical
modelling techniques for heterogeneous materials. As far as the effective properties are concerned,
the various approaches may be divided into two main categories, depending upon the microstructure
characteristics.

In case of composites with linear constitutive behaviour, if the microstructure is sufficiently reg-
ular to be considered periodic, the effective properties may be determined in terms of unit cell
problems with appropriate boundary conditions [2, 3]. If the microstructure is not regular the ef-
fective properties cannot be determined exactly. Thus the goal consists instead in the definition of
the range of the possible effective behaviour in terms of bounds, which depend on some parameters
characterizing the microstructure, such as for instance the volume ratio of the inclusions in a matrix.
To this purpose many homogenisation methods have been developed. We mention the pioneering
studies by Voigt [4] and Reuss [5], who formulated rigorous bounds for the effective moduli of com-
posites with prescribed volume fraction. One can interpret the Voigt and Reuss fields as providing
two microfields extremes, since the Voigt stress field is one where the tractions at the phase bound-
aries cannot be in equilibrium, that is, statically inadmissible, while the implied Reuss strains are
such that the heterogeneities and the matrix could not be perfectly bonded, that is, kinematically
inadmissible.

Some decades later Hashin and Shtrikman [6–8] presented an extension of the method, based
on variational formulations. If the microstructure is composed of a matrix and sferic or spheroidal
inclusions, the effective behaviour of composite can be obtained by means of the self-consistent
method [9–13].
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If the composite materials have non linear constitutive behaviour, for periodic microstructure the
effective properties can still be obtained in terms of unit cell problems with appropriate boundary
conditions [14–19]. For composites with random microstructures the first bounds are obtained by
Bishop and Hill [20, 21] for rigid perfectly plastic polycrystals.

In the framework of non linear bounds we mention also the work by Willis [22] and Talbot [23],
which provides extensions of the Hashin-Shtrikman variational principles for non linear composites.
Their work is followed by the introduction of several new variational principles making use of
appropriately chosen “linear comparison composites”, which allow the determination of Hashin-
Shtrikman and more general bounds and estimates, directly from corresponding estimates for linear
composites. These include the variational principles of Ponte Castañeda [24, 25] and Talbot and
Willis [26] for general classes of nonlinear composites, of Suquet [27] for power-law composites and
Olson [28] for perfectly plastic composites.

3. THE SELF-CONSISTENT METHOD AND ITS DEVELOPMENT

3.1. A brief historical overview

Considering a composite made of particles dispersed in a matrix, one can assume that there is
no particle interaction, so that the problem is transformed into the analysis of a single inclusion
immersed in an infinite domain made of the matrix material [29]. However, the assumption of non-
interacting particles can lead to unreliable results, especially for randomly dispersed particulate
microstructure.

An improvement of this approach is given by the Self-Consistent (SC) method [10, 12]. The
main idea is still to replace the problem of the interaction among many particles by the problem of
interaction of one particle and an infinite matrix: but now the unbounded domain is made of the
effective medium. Unfortunately, the self-consistent method can produce negative effective bulk and
shear responses, for voids, for volume fractions of 50% and higher. For rigid inclusions, it produces
infinite effective bulk responses for any volume fraction and infinite effective shear responses above
40% [30, 31].

To avoid this problem, the Generalized Self-Consistent (GSC) methods encase the particle in
a shell of matrix material, surrounded by the effective medium (see e.g. [32]). However, such methods
also exhibit problems, which are discussed in Hashin [33].

Some extensions of the self-consistent methods for the non-linear case can be found in Hill [34],
Hutchinson [35] and Berveiller and Zaoui [36].

3.2. The Generalized Self-Consistent-Like method

Usually, GSC method results with closed type formulae for the effective mechanical characteristics,
obtained via some symbolic manipulations. However, in the case of thermo-elastic-plastic behaviour
of components that method may become tedious. Recently we have developed a different, fully nu-
merical approach which is suitable for homogenization of non-linear composites formed by a matrix
and long fibrous inclusions: the Generalized Self-Consistent-Like (GSCL) method [37–39]. We take
into account a continuum phase and a set of isolated long inclusions randomly distributed inside
the matrix, but having the longitudinal direction parallel one to another or twisted with relatively
long twist pitches. The matrix can be non linear, and inclusions can be non linear, brittle, and non
homogeneous, i.e. they can have their own microstructure, composed of concentric layers of different
materials. With respect to GSC method, three main points have to be evidenced:

• in the GSCL method we are not limited by the necessity of considering only a matrix where
homogeneous inclusions are embedded. In our formulation an “unlimited” number of concentric
cylinders can be taken into consideration, so that heterogeneous inclusions can be modelled. In
the following the formulation is developed for I materials,
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• this method is formulated for the coupled thermo-mechanical field,

• all material characteristics can be non linear and dependent on a certain field (e.g. temperature).

In this paper only material non linearity expressed by elastic-plastic constitutive law is taken
into consideration, but we think that this approach could be easily generalized to other kinds of
material non linearity.

Concerning fibre breakage, it is assumed to appear at a certain step of the loading path, without
taking into account the critical energy or other critical values causing the appearance of the cracks.
This method aims at identifying the effective material properties of the already damaged material,
rather than giving a realistic cracking model. On the other hand, the simplest and widely used
method of including the damage into a model of the thermo-mechanical behaviour of solids is based
on a so called damage parameter [40–42]. This parameter is usually a scalar multiplier affecting
the material stiffness tensor. It is rarely measured [43], usually it results from some theoretical
reasoning or a priori assumptions on the constitutive behaviour. We propose a significantly different
method, where we compute the effective material parameters of the damaged composite, so that
a full constitutive stiffness matrix is obtained at various stages of the loading path.

GSCL homogenization inherits the most important conceptual principles from the self-consistent
scheme. The heterogeneous medium is replaced by concentric cylinders made of the components
of the composite. These cylinders preserve the volume fractions of the initial materials. They are
immersed in the external, infinite homogeneous body endowed with the effective parameters to be
identified. The solution of the heterogeneous problem surrounded by the infinite elastic body and
subject to some loads is compared with the one, obtained for a homogeneous infinite body, made
of the homogenized material. The effective parameters are present directly in the second solution
and indirectly in the first one (as a measure of compliance of the boundary conditions). They are
identified from this comparison.

3.3. Formulation of the problem

To define the GSCL method we formulate three different problems, called P1, P2 and P3.
The first one (P1) is a thermo-elastic-plastic problem defined on a composite domain (Ωself in

Fig. 1), taking into account temperature-dependent material characteristics. The domain is com-
posed of I − 1 concentric cylinders made of different homogeneous isotropic materials (materials
from 1 to I − 2 correspond to the heterogeneous fibrous inclusions, material I − 1 is the matrix)
embedded in the outer infinite effective material numbered I (Fig. 2). The number of cylinders is
arbitrary, but generally in a real problem it is a small value, usually there are at most three or four
different starting materials.

The second one (P2) is a “thermo-elastic like” problem, formulated over an infinite, homogeneous
domain (Ωhom in Fig. 1). We do not make any a priori assumption on the behaviour of the effective
material. P2 solution is easily found, but it has to be updated step by step, i.e. it is “path dependent”
as described later.

The last problem (P3) is a minimization problem: it minimizes a suitable functional expressed
as a function of the difference between the solutions of P1 and P2. In this way the homogenized
material parameters are found.

Given the geometrical layout we are taking into consideration (axial symmetry), we will refer
to a cylindrical coordinate system (radial coordinate r, angular coordinate Θ, and longitudinal
coordinate z). Concerning the effective constitutive law, because of the symmetry we can suppose
that the homogenized material is isotropic in the plane (r,Θ) while the mechanical and thermal
properties may result different along the longitudinal direction z.

We also suppose that the cross section (in the plane (r,Θ)) remains plane. We impose the
condition of continuity of displacements and stresses on each interface and the vanishing of the
stress field for infinite r.
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Fig. 1. Composite material made of a matrix and heterogeneous inclusions (Ωtrue in upper image), schemati-
zation for the GSCL formulation (Ωself in bottom left image) and the equivalent homogenized domain (Ωhom

in bottom right image). The radii of Ωself are computed taking into consideration the phase volume ratio
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Fig. 2. Cross-section of the domain Ωself in the plane (r, z) and scheme of the FE discretization

In this work we take into consideration a thermal load, to better evaluate the coupling between
the thermal and mechanical field.

Problem P1

The above considerations allow us to write the following constitutive relations for any homogeneous
cylinder i and for the external infinite effective medium I ((1a) and (1b), respectively):
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where the superscript i is related to the given initial i-th material of the composite domain (Fig. 1)
and the material properties without superscript are related to the fictitious, homogenized body



166 D. P. Boso, M. Lefik, B. A. Schrefler

(material I), E is the Young modulus, ν is the Poisson’s coefficient and β is the thermal expansion
coefficient. Superscript el stands for elastic. The other symbols have the usual meaning: εj is the
j-th component of strain, σj is the j-th component of stress and T is temperature. We point out that
in Eqs. (1a) all material characteristics are known, while in equations Eqs. (1b) they are unknown
(they will be identified by the minimization process of problem P3). As mentioned, the effective
material behaviour may be non-linear and non-elastic (see below), the behaviour (1b) is identified
as a global behaviour calculated step by step, so that the dependence on the load path is taken into
consideration “automatically” because of the solution process adopted.

The displacement field u is related to the strain field by the usual equations (small displacements
and small strains are assumed):

εir =
∂uir(r)

∂r
, εiθ =

uir(r)

r
, εiz =

∂uiz(z)

∂z
, i ∈ (1, . . . , I) . (2)

In each sub-domain the equilibrium equations written in cylindrical coordinates are:

∂σi
r

∂r
+

σi
r − σi

θ

r
= 0,

∂σi
z

∂z
= 0, i ∈ (1, . . . , I) . (3)

Finally, the conditions of continuity of stress and displacements at the interfaces can be written as:
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If the initial materials are elastic-plastic, the set of Eqs. (1) to (4) is completed by the formulation
of the plastic behaviour.

We consider here classical rate-independent plasticity within the context of the three dimensional
infinitesimal theory. We assume the additive decomposition of total strain tensor εi = εel i+εpl i+εT i,
where εT i = βi∆T is the thermal strain) and postulate the usual elastic stress-strain relation
σi = Ci

(

εi − εpl i − εT i
)

, where Ci is the tensor of elastic moduli for i-th material. The admissible
states in stress space are defined by:

f i(σi, qi) ≤ 0, (5)

where qi is a suitable set of internal variables for i-th material. The flow rule and hardening law
can be written as (associative plasticity):

ε̇pl i = λi ∂f
i

∂σi
, (6)

q̇pl i = −λiD
∂f i

∂qi
, (7)

where D stands for the matrix of generalized plastic moduli of the i-th sub-domain and λi is the
consistency parameter, which is assumed to obey the Kuhn-Tucker complementarity conditions:

λi ≥ 0, f i(σ, q) ≤ 0, λif i(σ, q) = 0. (8)

In addition to conditions (8), λi satisfies the consistency requirement λiḟ i(σ, q) = 0 .
At each step we have to check if the stress tensor lies inside the yield surface. If the stress

tensor violates condition (5), the well know return-mapping procedure [44, 45] is used to calculate
the correct strain field. In this paper the Huber-Hencky-von Mises yield surface with isotropic
hardening has been used, but any other yield surface can be applied in this numerical approach.

The problem P1 is composed of the set of Eqs. (1) to (7) and can be formulated as follows:
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Find a triplet {σ, ε,u} formed by two tensor fields and a vector field defined over the domain
Ωself (Fig. 1), such that for each given, uniform and monotonic increment ∆T of temperature
T they satisfy Eqs. (1) to (7) and:

λi ≥ 0, f i(σ, q) ≤ 0, λif i(σ, q) = 0.

In the following the solution of the problem P1 is called {σP1, εP1,uP1}. The analytical solution
of P1 exists in the thermo-elastic case [46], while for the non linear case it is not so easy to find
a closed form solution. In this paper we prefer to replace the exact solution of P1 by its finite element
approximation. This allows for a more general approach, we can take into consideration material
characteristics depending upon temperature in a simple way, and cycling loads can be applied. The
FE model required is really small and easy (Fig. 2), so that the numerical solutions is obtained
rapidly.

Problem P2

Let us define the usual set of partial differential equations of thermo-elasticity defined over a homo-
geneous infinite domain (Ωhom in Fig. 1) having the same (unknown) material properties like the
outer, infinite sub-domain of problem 1. The constitutive equations inside the infinite domain are
given by:
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The consistency and equilibrium equations are given by
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The problem P2 can be formulated as:

Find a triplet {σ, ε,u} formed by two tensor fields and a vector field defined over the domain
Ωhom (Fig. 1) such that for each given, uniform and monotonic increment ∆T of temperature
T they satisfy Eqs. (9) to (11) and:

σr(ur)
∣

∣

r→∞
= 0.

The solution of the problem P2 is easily obtained in closed form. The displacement and stress
field are given by:

ur = r ((β + νzβz)∆T − νzεz) , (12)

σr = σθ = 0, σz = (εz − βz∆T )Ez (13)

and this solution is called {σP2, εP2,uP2} in the following. Intentionally we do not take into consid-
eration a possible yielding of the effective material, because it would be less clear, first of all from
a conceptual point of view but also from a computational one. Instead, we will work with many
elastic P2 problems, with different elastic parameters at each step of the solution and at each level
of load.
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Problem P3

In the two previous problems it is clear that both {σP1, εP1,uP1} and {σP2, εP2,uP2} are param-
eterised by the set {E, ν,Ez , νz, β, βz}: the first one because of the presence of the outer region I,
the second one directly.

We can define now the essential problem of the GSCL homogenization:

Find an ordered set of parameters {E, ν,Ez , νz, β, βz} defined over the infinite domain Ωhom

(Fig. 1) such that for each given, uniform and monotonic increment ∆T of temperature T a
given norm of the distance between the solutions of problems P1 and P2:

F12 = ‖f ((σP1 − σP2), (εP1 − εP2), (uP1 − uP2))‖ .

attains its minimum.

The values of the material characteristics minimising the given norm F12 according to the GSCL
approach are called Eh = {Eh, νh, Eh

z , ν
h
z , β

h, βh
z } (effective or homogenised properties):
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attains its minimum, the Hill postulate is verified. Therefore in the present paper we take the norm
F as the suitably rewritten, commonly accepted Hill’s postulate.

The minimization of the norm F12H is done numerically. In the classical formulation of the self
consistent method, generally the solution of the problem P1 (formulated for the mechanical field, not
the thermo-mechanical one) and the results of the minimization problem P3 are found symbolically.
In the GSCL method, the (thermo-mechanical) solution of P1 and P3 are found by means of
numerical procedures resulting e.g. by the finite element approximation of {σP1, εP1,uP1} and a set
of approximated values Eh. In detail, the minimum of F12H will be searched numerically among the
FE solutions of the problem 1, having at hand the corresponding solution of the problem P2.

3.4. Numerical solution of the problem P1

We take into consideration a FE discretization consisting of a mesh of a certain number of elements
suitable to exploit the axial symmetry of our problem. As usual by means of the shape functions,
displacements are calculated in nodal position, while strain and stress fields in Gauss points. The
sub-domains are discretized as follows: the inner cylinder and nearby ones (till the last but one)
are modelled by a fine mesh composed of axial symmetric elements with rectangular cross section
(r-z plane), with six nodes (three nodes along the edge parallel to the r direction and two nodes
along the longitudinal direction z (axis of symmetry)) and two degrees of freedom per node. The
infinite region of the outer cylinder is discretized with axial symmetric finite elements as before and
an outer infinite element (see [47] for the description of this kind of element). In Fig. 2 a sketch of
the discretization is illustrated.

Concerning the boundary conditions, along the line CC ′D (Fig. 2), in all nodes the displacement
along z direction is set to zero. Radial displacement is set to zero along line AC. Along the edge
AA′B vertical displacements at each node are given and equal (plane section on (r,Θ)).

In the cracked situation, for example by supposing that the inner fibre breaks, we release the
longitudinal degree of freedom of line CC ′, which therefore is no more set to zero. All the other
boundary conditions remain the same.
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3.5. Numerical solution of the problem P3

It is clear that the dependence of the norm F12H upon the set of unknown effective material parame-
ters {E, ν,Ez , νz, β, βz} is non linear. Given the geometrical characteristics of our problem, it could
be possible to compute the effective material parameters along the longitudinal direction (Ez and
βz) as the solution of a set of springs in parallel. However, this is strictly valid only in the elastic
range. When a material starts to yield, an additional cylinder inside the previously elastic material
is formed, the radius of which cannot be determined a priori. A more difficult situation arises if
cracks occur. As a consequence in our computations we treat all the effective material parameters
as unknowns, having at most an estimated (or real) initial value. The chosen initial values have an
important influence on the velocity and even the convergence of the numerical procedure used.

To simplify the notation, the ordered set of material parameters will be denoted in the following
by a single symbol p with an index varying from 1 to 6:

F12H = F12H (E, ν,Ez , νz, β, βz) = F12H(pi), i = 1, . . . , 6. (16)

3.6. Steepest descent algorithm

We apply a gradient descent algorithm, and the initial gradient of the norm F12H of the distance
between the solutions of P1 and P2 is computed numerically as the initial central finite difference.

Gj(p̃i) ∼=
1

2dpj
(F12H(p̃k, p̃j + dpj)− F12H(p̃k, p̃j − dpj)) . (17)

It is relatively easy to determine a convenient increment of pj . For all effective material parameters
the true value is certainly in between the corresponding maximum and minimum value of the
components.

dpj =

(

max
k=(1,...,I)

pj − min
k=(1,...,I)

pj

)

/N, (18)

where k refers to the k-th material and N is an arbitrary large number. In our computations N = 100
was sufficient.

The simplest starting point of the algorithm is:

p0j =

(

max
k=(1,...,I)

pj + min
k=(1,...,I)

pj

)

/2. (19)

As an alternative, taking the initial values for the effective Young modulus and Poisson ratio by
considering Gibiansky’s bounds [48] is also a good choice.

The iterative procedure of the steepest descent is defined by the following formula:

pt+1
i = pti − ηGi(p

t
j), (20)

where t is the current step and starts from zero. The parameter η, which controls the rate of
convergence, is estimated as the mean value of all small increments used for the numerical calculation
of the gradient. To apply this scheme, it is convenient that the unit measures of the material
parameters are chosen so that their numerical value have the same order of magnitude, for example
they are all around 1.0.

The iteration (20) can be regarded as a kind of post processing of many FE solutions of the
corresponding problem formulated for various values of {E, ν,Ez , νz, β, βz}. Initial values of the
parameters are given by Eq. (19), the values of F12H are computed as a postprocessing of the FE
computations for current values of parameters modified according to (17). For a complete gradient
vector the FE code must be run 12 times, since we have six parameters.

The computational algorithm is presented in Table 1.
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Table 1. Algorithm to solve minimization problem P3 with the steepest descent scheme

1. Initialize effective properties peff = {E, ν,Ez, νz, β, βz} according to Eq. (19).

2. Define increments (18).

3. Compute solution of problem P2 with the current material parameter values.

4. LOOP over all elements of the effective material properties set:

Create backward and forward point in the vicinity of the current elements of
the trial effective material property set.

Write automatically an input file for FEM with the current effective material
properties.

Solve the problem P1 using FEM and compute the norm F12H in the vicinity
of the given trial parameters peff .

END of LOOP.

5. Compute gradient.

6. IF the norm of the computed gradient is less than tolerance store these values as
final effective properties and stop iteration.

END of JOB.

7. ELSE: compute next approximation to the effective properties peff .

8. IF the new effective properties are close enough to the former one store these values
as final effective properties and stop iteration.

END of JOB.

9. ELSE: with the new effective properties peff go to 3.

3.7. The inverse problem

As an alternative, the values of the effective parameters can be sought as the solution of an inverse
problem which is solved by means of an artificial neural network (ANN). The network is trained
to approximate the dependence of the gradient of the quality measure F12H upon the set of trial
effective material parameters. The corresponding direct relation consists in the dependence of the
gradient of F12H evaluated on the set of real effective parameters. Obviously, this direct relationship
is also unknown, but its identification in some discrete points in the space of the possible effective
parameters is easy to obtain by using the FE method.

The inverse problem associated with the GSCL method can be described as follows:

Find an ordered set of parameters {E, ν,Ez , νz, β, βz} defined over the outer infinite cylinder
of Ωself such that for each given, uniform and monotonic increment ∆T of temperature T the
functional:

Fself =







∫

Ωself

εP1 dΩself






:







∫

Ωself

σP1 dΩself






(21)

is equal to the value of the internal energy of the infinite, homogeneous domain at tempera-
ture T and for the same given, uniform and monotonic increment ∆T of temperature T :

Fhom =

∫

Ωhom

εP2 : σP2 dΩhom. (22)
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It is easy to note that the equation:

Fself = Fhom (23)

is equivalent to the well-known Hill condition, required to hold for the representative volume of the
composite. Therefore the inverse problem associated with the GSCL scheme can be reformulated as
follows:

Find an ordered set of parameters {E, ν,Ez , νz, β, βz} defined over the outer infinite cylinder
of Ωself such that for each given, uniform and monotonic increment ∆T of temperature T the
gradient of the functional:

F12H ≡ (Fhom − Fself)
2 (24)

is equal to zero:

G ≡
∂F12H

∂Eh
= 0. (25)

We underline that the inverse problem we have formulated above is not fully classical because
the right hand side of the problem depends on the unknown set of material characteristics. This is
a source of additional complications and further reformulations.

A soft computing approach is used to solve this minimisation problem. In this context, the most
important problem consists in direct learning of the inverse relation between material characteris-
tics and the gradient of the error measure F12H. ANNs can be applied to both formulations, i.e.,
Fself = Fhom and G = 0. We will focus our attention on the second one and for this case we will adopt
the ANN based procedure that we have used in a different context for parametric identification [48].

By solving the direct problem with the FE method, we can compose numerically a suitable set
of gradients of F12H and their corresponding effective parameters. This database is used to train
the neural network, which provides the required inverse relationship when used in recall mode.
Namely, an ANN is trained with the gradients of F12H presented at input, and the related values of
effective parameters at output. Unfortunately this relation may suffer from an usual disadvantage of
inverse relations: the function can result non-bijective. A special procedure is created for this case,
consisting in splitting the set of training data into subsets, on which each function which has to be
approximated by the ANN is a bijection. This is performed using two different kinds of ANN:

• a poor one, that gives the hyperplane over the domain of the approximated function,

• an over-fitted one, that passes almost exactly through all data points.

We are able to split the training data base by looking at the sign of the difference between the two
approximations. This simple procedure can result tedious for functions with many zeros. Fortunately,
in the case of the GSCL method the problem is usually not so complex, even if non-uniqueness cannot
be excluded a priori. A brief a posteriori analysis is necessary to choose the best effective properties
in the case that more than one solution is found.

The algorithm is summarized in Table 2.
Below we illustrate the described procedure for a 1D and 2D illustrative examples. In Fig. 3 a 1D

function (gradient of a third order polynomial f(x) = (1 − x)(−0.5 − x)(−1 − x) is presented: the
green line with circles is obtained by the poor approximation ANN used in recall mode. We compute
the difference between the two results and on the basis of its sign we are able to split the values of
the function into an “upper” and a “lower” subset. These subsets are analysed independently and
two zeros are found, as shown in Fig. 4. In Table 3 the process of computations (training of various
ANNs) is reported.

A similar illustrative example is shown in Fig. 5 and reported in Table 4. The details of the
examples are described in the captions.
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Table 2. Use of ANNs to look for a zero point of the gradient

Current set of input patterns equal to the whole set of input patterns.

1. For the current set of input patterns:

a. Approximation of the gradient with an ANN, suitably chosen correctly to be
able to approximate the function.

IF the approximation is good enough

b. Execute ANN in recall mode with 0 at input.

c. Check if for the recall mode output value X0 the gradient of F is indeed 0.

IF yes

d. Record the output value X0 as a coordinate of the extreme of the function.

e. Compute the extreme value of the function at this point (X0), using FE
model.

f. Add the value of the extreme to the set of extreme values.

ELSE

g. Eliminate the current set of input patterns from the set of input patterns.

ELSE

h. Approximate the gradient with a very poor ANN.

i. Check the quality of the approximation in recall mode.

j. Compute signs of error.

k. Split the set of input patterns into separate subsets, according to the sign
of the error.

2. LOOP over these subsets:

l. Take the subset of input patterns as a current set of patterns.

m. Go to l.

END of LOOP over subsets

3. Choose an absolute minimum within the set of recorded minima.

Fig. 3. Separation of the input patterns by a poor ANN approximation for the 1D example described in
Table 3
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Fig. 4. Two separated subsets of the input patterns for the 1D example described in Table 3

Fig. 5. Iso-lines of the function used as an illustrating example described in Table 4
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Table 3. 1D case: find the minimum of the 3-rd order polynomial f(x) = (1− x)(−0.5− x)(−1− x)

Algorithm Comments Description Connections Learning Correlation Correlation

step of the patterns/ on the on the

(Table 2) ANN test learning test set

patterns set

1a Correct approximation {2,8,8,1} 88 100/0 0.7466 —

was impossible

1h Then recall mode {2,2,1} 6 100/0 0.4432 —

and splitting into

two subsets of

input patterns

1a For the “Upper_set” {2,3,2,1} 14 38/10 0.9991 0.9989

correct approximation

achieved immediately

1a For the “Lower_set” {2,3,2,1} 14 42/10 0.9987 0.9978

correct approximation

achieved immediately

1b For the “Upper_set” {2,3,2,1} 14 48 — 0.9871

it gives x1 = 43E− 2

(against the exact

value 0.43425)

1b For the “Lower_set” {2,3,2,1} 14 52 — 0.9910

it gives x2 = −76E− 2

(against the exact

value -0.7676)

3 The minimum is at x2

Table 4. 2D case: find the minimum of the function: f(x, y) = cosx cos y defined over the domain
(−1.65 < x < 1.65, −1.65 < y < 1.65)

Algorithm Comments Description Connections Learning Correlation Correlation

step of the patterns/ on the on the

(Table 2) ANN test learning test set

patterns set

1a Correct approximation {2,8,8,1} 88 100/0 0.7466 —

was possible

immediately

1a Better approximation {3,3,2,2} 24 75/25 0.9988 0.9971

again was defined {3,3,2,2} 24 75/25 0.9988 0.9971

1b Recall mode, x = 0.0 {3,3,2,2} 24 100 — 0.9932

3 There is a single

extremum (maximum)
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We point out that the training process of the artificial neural networks needed to solve the
problem is quicker than the corresponding necessary FE solutions for one case of loading: from
three to ten times. From the presented examples and the tests performed, we can conclude that
these operations are surprisingly fast.

On the other hand, as already mentioned, usually the finite element discretization required is
very simple. The simplicity of the geometry helps us to construct a very fast FE code, with a fixed,
optimized mesh. For this reason, if one wants to solve the minimization problem without making
use of artificial intelligence techniques, we can say that in this framework also the steepest descent
algorithm works well.

4. NUMERICAL EXAMPLES

We take into consideration a real case of a superconducting strand, relevant for the international
thermonuclear experimental reactor (ITER), which is now under construction.

Most of ITER coils will be made of Nb3Sn based strands. This intermetallic compound exhibits
a dependence of its superconducting properties on the strain state. Therefore the computation
of the strain field is a crucial point for a good prediction of the operational conditions of the
conductor [49–51]. Generally, Nb3Sn is formed in fine filaments, which are gathered into groups
and embedded in a normal metal matrix (usually bronze). A very low resistivity material, typically
oxygen-free electronic (OFE) copper, usually surrounds the area of filaments, and is separated from
them by a barrier (Fig. 6).

Fig. 6. EAS (European Advanced Superconductors) strand: bronze route type with filaments collected in 55
groups of 85 filaments embedded in a bronze matrix. A tantalum thick barrier divides the bronze from the
outside OFE copper matrix. A detail of the SC filament group is shown on the left hand side (images: courtesy
of P. Lee, University of Wisconsin – Madison Applied Superconductivity Center)

Because of its brittleness, Nb3Sn compound cannot be extruded and drawn (as for example
NbTi), but requires special manufacturing processes: a billet including uncompounded precursors
of Nb3Sn is assembled and processed until the desired wire size is obtained. The wire is then heated
up to the reaction temperature (923K for EAS strand) to allow Sn atoms to diffuse and react with
Nb atoms to form Nb3Sn precipitates. The strand is kept for several hours at high temperature
because the progression rate of the reaction is rather slow. At the end it is cooled down to room
temperature and then to its operating conditions (about 4.2 K).

In this work we apply the GSCL method to obtain the thermal and mechanical effective properties
of the inner zone (bronze matrix and Nb3Sn filaments) as a function of temperature, taking into
account the elasto-plastic behaviour of bronze and possible filament breakage (Fig. 7). The validity
of the method is tested in [37].

Two initial materials are considered: a fibrous inclusion of Nb3Sn and a bronze matrix. We assume
that the strand components are in equilibrium at 923K without stresses and strains (the fields due
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Fig. 7. SEM picture showing fracture morphology. Cracked groups of Nb3Sn filaments are well visible
(courtesy of M. Jewell)

Fig. 8. FE discretization used to solve problem 1

to the heating are relaxed since the strands remains for several hours at high temperature and at
that temperature the SC compound is formed). Material characteristics are not easy to find over
the whole temperature range needed, most of the data used are taken from [52].

We take into consideration a FE discretization consisting of a mesh of a certain number elements
suitable to exploit the axial symmetry of our problem. In this case there are three sub-domains:
Nb3Sn, bronze and effective material (from inside to outside). The FE discretization is illustrated
in Fig. 8.

In detail, three examples are shown:

• Example A: Elastic-plastic matrix and elastic inclusions, minimization problem solved as in
Section 3.6,

• Example B: Elastic-plastic matrix and brittle inclusions, minimization problem solved as in
Section 3.6,

• Example C: Elastic-plastic matrix and brittle inclusions, minimization problem solved as in
Section 3.7.

4.1. Example A

The effective properties {E, ν, β} as a function of temperature, obtained with the GSCL method
are presented in Figs. 9 to 11.
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Fig. 9. Nb3Sn,bronze and effective thermal expansion coefficient as a function of temperature

Fig. 10. Nb3Sn, bronze and effective Young modulus as a function of temperature

Fig. 11. Nb3Sn, bronze and effective Poisson ratio as a function of temperature
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4.2. Example B

The tests are performed for a mean distance between cracks (perpendicular to the fibres) of 50µm.
This corresponds to the line AC in Fig. 2. This value is taken arbitrarily (it is one of the values
occurring in Fig. 7) However, the effective material properties depend on the distance between cracks
in the assumed cracking pattern. It is worth to remind that these computations are done to test the
proposed method rather than to identify the real cracking phenomena. The main scope of this paper
is to identify the effective material properties of the already damaged material. Namely, it is assumed
that cracking occurs at 800K first and at 600K for a second case of analysis i.e. a simulation of
a second cool down. No propagation of cracks is simulated: we consider the undamaged state and
the cracked situation. On the contrary, the evolution of material yielding is taken into account: at
each new temperature the new different yielded zone in the domain of bronze is calculated.

The evolution of thermal expansion coefficient and Young modulus as a function of temperature
is illustrated in Figs. 12 to 14, together with the results of example A for comparison purposes.

Fig. 12. Nb3Sn, bronze and effective thermal expansion coefficient as a function of temperature. The
cracking is considered once at 800 K, in a second example at 600 K

Fig. 13. Evolution of Young moduli as a function of temperature. Cracking is considered at 800 K
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Fig. 14. Evolution of Young moduli as a function of temperature. Cracking is considered at 600 K

4.3. Example C

In this example, we have taken into consideration 11 reference temperatures and 30 training patterns
at each temperature. As before, the computations are performed for a mean distance between cracks
(perpendicular to the fibres) of about 50µm.

The computational approach can be summarized in three main steps:

• FE solution of the direct problem for a number of trial values of Eeff = {E, ν,Ez , νz , β, βz} and
computation of the gradient G,

• training of the ANN using two vectors: gradient Gi computed for trial value of Eeff
i =

{E, ν,Ez , νz, β, βz}i at the input and corresponding trial vector Eeff
i = {E, ν,Ez , νz, β, βz}i at

the output,

• computing the true effective values Eh = {E, ν,Ez , νz, β, βz} as a result of the ANN activity in
recall mode with 0 as input vector.

Fig. 15. Nb3Sn, bronze and effective Young modulus as a function of temperature. The cracking is considered
to take place at 800 K. The presented results are superposed with those obtained with the use of steepest
gradient minimisation (examples A and B)
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Fig. 16. Nb3Sn, bronze and effective Young modulus as a function of temperature. The cracking is considered
to take place at 600 K. The presented results are superposed with those obtained with the use of steepest
gradient minimisation (examples A and B)

Figure 15 illustrates the effective Young modulus as a function of T obtained with the pre-
sented GSCL method and by supposing that superconducting filament breakage occurs at 800K.
As a matter of comparison, in the same image we presented also the effective material characteristics
obtained in the previous examples. Figure 16 presents analogous results in the case that filaments
break at 600K.

5. CONCLUSIONS

The proposed method can be seen as a natural generalization of the generalized self-consistent ap-
proach. Its peculiarities consist of the possibility of taking into consideration the non linear behaviour
of the initial materials, the thermo-mechanical coupling and the dependence of the properties on
temperature in an efficient way.

Since the characteristics of the various phases of the composite, such as Young modulus, Poisson
ratio and thermal expansion coefficient, are functions of temperature, the effective materials is
also temperature dependent. The quality of the approximation of the composite behaviour by the
homogenized medium depends strictly on the number and choice of the time steps and reference
temperatures, but we do not need to formulate any a priori assumption on the effective behaviour.
It is found as an equivalent, path-dependent “elastic” material. For the computation of effective
properties, this procedure takes into account the current state of yielding of the material at the
level of the microstructure and the fracture of the fibres. We have applied it to the real case of
a composite superconducting strand, made of yielding bronze and brittle Nb3Sn filaments.

Usually the self-consistent approach is associated with a symbolic expressions for the effective
material parameters. On the contrary in this work we have found the solution numerically. The fully
numerical approach adopted opens the ways for various experiments: minimisation of different norms
of distance between thermo-mechanical behaviour of heterogeneous inclusion and a homogenized
body.

We have to underline that, while the extension of the proposed algorithm of FE computations
combined with the steepest gradient method seems to be easily adaptable to other kind of non-
linearities (for example large deformation), a detailed formulation of the problem must be entirely
redefined in that case.

We have also proposed an alternative approach for the numerical search of the effective param-
eters, which includes the use of artificial neural networks. It has the advantage that the number of
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necessary repeated FE runs is lower. Furthermore, we observed that the algorithm of solution of
the problem for the non-bijective function was active only a few times during our calculations. It
means that the computational behaviour was surprisingly regular.

For the presented example (which is very difficult because of the jump of the effective properties
when cracks occur), the reduction of the cost of computations was significant: it resulted about 75%
lower with respect to the computations executed according to the steepest descent approach. The
numerical values of the effective parameters are very close in both cases, the relative difference does
not exceed 5%.

The most important disadvantage of the generalized self consistent like method is that it requires
many executions of FE computations for many trial values of effective parameters describing the
homogenized medium (at minimum twelve repetitions of the run of the FE code to define the
gradient of the norm F12H). This number is, fortunately, kept at minimum since the trial values of
effective parameters are not chosen randomly. The problem of a large number of repetitions of the
FE computations is reduced by the fact that the finite element mesh can be very small and quite
standardized. According to our experiments, a model with about ten rectangular six node axial
symmetric elements in the heterogeneous zone is accurate enough to have a good approximation of
effective parameters.

On the other hand, the well known difficulties associated with the method of steepest descent are
present also in the studied problem. The choice of the starting point is fundamental for the efficiency
of the computation. Also the problem of the control of the speed of convergence by adaptation of
the value of η at each stage of approximation is crucial. This problem has not been discussed in the
paper.

In our opinion the presented preliminary results are promising since the numerical cost is rea-
sonable and testing computations confirm the correctness and utility in engineering practice.

The best choice of the starting point, the adaptation of the rate of convergence factor and the
questions related to the uniqueness of the solution are the subject of our current research.
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