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A generalized, space-time version of the R-function method has been presented. The general structure
of the solution for the space-time problem and the algorithm for the determination of the unknown
parameters of the structure have been given. The considerations are illustrated by two numerical examples:
the first one concerns the cooling of a square plate, while in the second one more complex shape of domain
is considered. The numerical solution of the first problem is compared with the solution obtained on the
basis of FDM.

1. INTRODUCTION

The R-function method (RFM) is an analytical-numerical method, well described in the mono-
graphs of Rvachev [6, 7] and others. Its application in the solutions of the problems of heat transfer
has been discussed in e.g., [2, 3, 5, 8, 9]. The general structure of the solution (GSS) derived in the
analytical part, is a class of functions satisfying (accurately) all the boundary conditions on the
assigned parts of the boundary. The shape of the boundary (arbitrarily complex) is also taken into
account in the computations. An additional advantage of RFM is the possibility of formulating the
problem in the rectangular Cartesian system of coordinates, irrespective of the shape of the domain
studied.

In the recent studies, for the problems of non-stationary heat transfer, the Laplace transforma-
tion (see [6, 7]) has been used, or the time derivative has been replaced by a suitable differential
quotient (see 3, 5, 8]). In the present paper, the application of the R-function for the description
of the space-time domain has been suggested. The derived general structure of the solution takes
into consideration, apart from the boundary conditions, also the initial condition. The unknown
parameters have been determined on the basis of Galerkin’s method.

2. PROBLEM STATEMENT

Let the considered object occupy in space the domain Q C R? (or R? or R!), and let its boundary
02 be composed of n disjoint parts 9€2; (¢ = 1,2,...,n), on which various boundary conditions —
of the 1st, 2nd or 3rd type — will be assigned. We assume the thermophysical parameters A, ¢, p to
be constant (a linear problem). The non-stationary temperature field T'(x,t) in the domain Q(x)
is described by the Fourier equation in the form

OT(x,t) A < 9*T(x,1)
ot _;—91:1W’ x = (1, 2, 23) €, t € (0,00), (1)
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to which suitable boundary and initial conditions must be added. Over k < n parts of the boundary
09;, the temperature is known

T(x’t)|394 =Top=:fi, 4=1,...,k (X,t) € 39,’@(0, OO) (2)

)

Over the remaining parts 0Q;(k < j < n) the 3rd type of boundary conditions are prescribed

T
(_8_+th) =fi, i=k+1,...,n, (xt) €N (0,00), (3)

g lan

where: f; = a; T/ /A hj = /X T7° are the heat transfer coefficient and the ambient tempera-
ture. If it is assumed that h; = 0 and f; = ¢;/X (¢; — heat flux), then the conditions of the 2nd type
are obtained. In formula (3) the operator 9(.)/0v denotes the derivative in the direction normal
to the boundary of the domain €. The right-hand sides in the above conditions f;, 1 =1,2,...,n —
can, of course, be the functions of time.

Finally, we assume that the function describing the temperature at the initial moment is known,
ie.,

Tix; t)l =To(x) = fo, x€N. (4)

The Cartesian product Q* = Q ® (0,0) can be treated as a finite cylinder *; its base is the
geometrical domain €2, and its height — the duration 8 of the analyzed process. The boundary of
the space-time domain Q* is composed of the following parts (see Fig. 1):

Q;
0K,
I
oQ, - b
{eny 0T o A N
i o)
<

Fig. 1. Domain § and space-time domain Q"
a) two bases being the geometrical domains at the moments ¢ = 0 and ¢ = 0, respectively, i.e.
07 LaneN” =9

b) lateral surfaces composed of n parts which are Cartesian products Q" = 90 ® (0,0) = QfU...U
Q. while Q = 0Q; ® (0,0) —i=1,2,...,n.
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Applying Rvachev’s operators
$1/\0$2 =11+ 29 — V112 + 352,
.'El\/ol'g =1z, + 2o + V212 + 252, (5)
=z
the analytical form of the space-time domain 2* defined above may be described as
w* = w* = [w(x,1)] A\, [(6 - )t/6]. (6)

The function w* has the following properties: for the points not belonging to the domain Q* it
is negative, for the boundary points — equal to zero, and finally, for the points belonging to the
interior of * — positive,

<0, (x,t)¢Q*,
wi(x,t)¢ =0, (x,t) €0Q", (7)
>0, (xt) €.

Now the boundary conditions (2)-(3) and initial condition (4) will be presented as follows:

lQ'.’Zfi, 1=0,...,k, (8)

iy

(?9 +hT) =fi, i=k+1,..,n. (9)
QY

In Eq. (9), the operator d(.)/dv is a derivative in the direction normal to the boundary of the
space-time domain Q*. Since these conditions are given on the lateral surface of the cylinder, then

o(.) _9(.)

o |qy COV o,

j=1,...,n. (10)

The initial condition (4) is now a condition of the 1st type assigned to the boundary €, or it is
included in formula (8) for 7 = 0.

A properly stated problem requires the definition of the boundary condition on the boundary
0*(x,0) = Q”,. This condition may be the solution of a steady-state problem with an assumption
that time 6 is large (see Crank [1]). Another, less accurate condition is the assumption that in the
final stage of the analyzed process, the rate of the changes in the temperature field 07'/0t, or

oT
et = w(x 11

is small and, in particular, equal to zero. The solution of the problem with assumption (11) can be
treated as the first step of an iterative algorithm in which the function w = w(x) is corrected.

The general structure of the solution of a space-time problem, determined in the domain Q*, is
of the form

T(X, t) = Fo - le(Fo) + wF1 + @FQ o le((I)Fz) oy w<I>H1 y (12)
where
i fi 3 f 51 s
FO_I_O l? FIZJZ+11 ) F2=]fl+1 ) HI:]:C1+11 . (13)
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In Eq. (12) D, is the differential operator of the form
Z ow O(. Bw a(.)

. B 6:1:1 T o o (14)
satisfying the following conditions
Difw )|BQ* =i
dw () _9() (15)

|Q” Zaml 8:101 ov '’

It means that the boundary of area Q* is normalized, and this operator on lateral surface of the
cylinder passes into a derivative normal to the boundary. At the same time, function ® = ®(x,t)
occurring in GSS can have the form

f) = Z aijcp,-j(x, t) s (16)

where a;; are the unknown parameters, and ¢;; are the given base functions (see [3, 5, 8, 9]).
We shall now demonstrate that GSS determined by Eq. (12) actually meets all the conditions

(8)-(9).
Since w = 0 for (x,t) € 9Q*, then only the first and third components of the structure are
different from zero on the boundary, or

T(x’t)lan* =F +®F. (17)
Hence we obtain the following relationships
T(x,t)‘m = Ti,, t=0,L,....%,
i
T(x,t)b” =0, F=k+l,.y0

J

(18)

The operator D;(.) applied to function (12) on the boundary of the domain %, satisfies the
following conditions

Di()),,, = F1— ®H1, (19)
or

Dl(t)I ———fj—(bhj, j=k+1,...,0 (20)

Q!
J
and this shows that all the boundary conditions are satisfied.
Taking into consideration Eq. (16), GSS can be presented as

T(z,y) = Xo+ Y aui X (21)
where we have introduced
Xo = Fy — w(w,aFo,a + Fl) 3

(22)
X =0 [Fo— w(H) +waFan)] — Prija(wewFs).

In the latter equation, Einstein’s convention of repeated indices o and a simplified notation of
differentiation have been introduced.
It is easy to check that

Xo=fi N Xp=0, (xt)e€Qf i=0,1,...,k,

(23)
Xo=0 A X #0, (x,t)EQ;’ j=k+1,...,n
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3. SOLUTION OF THE PROBLEM

To solve the problem described by Egs. (1)-(3), the unknown coefficients a;; should be determined.
This can be done by demanding that GSS — (12) — should fulfill Eq. (1), or using Galerkin’s
method

o
e 0TdQ* =0. 24
/ [ ot cp iz ] 2y
Variation 07" must satlsfy the following conditions
k
ST =0 A 6T, #0 for (x,t)€e|])QY,
i=1
6T #0 for (x,t) € Q*U U Qf (25)
j=k+1
n
6T, #0 for (x,0)e |J 9.
j=k+1

Since function T is determined by Eq. (21), then
(5T = ZX,-jJaij ) (ST’a = Z X,-j,aéaij y (26)
ij ij
and due to the properties (23), the conditions (25) are fulfilled.
Now we shall derive the algebraic system of equations of the problem resulting from integral

(24). The integral over the domain Q* can be treated as a superposition of an integral over the
geometrical domain  and time ¢ in the interval (0,6), or

T . )
/ [m cpz ]5“9 =/Q* (T = K*T00) 6T A" =

/ T 6T dQ* — k2 / ( / T,aadeQ> dT . (27)

Making use of Green’s theorem about the transformation of a surface 1ntegral into a curvilinear
one, the second of the integrals in Eq. (27) will take the form

—/ T 6T o dO* +/ T, 6T dO* = / TodT o d + 3 / — hT)6TdQ". (28)
ar o I=k+1

In the last transformation it was taken into account that variation of the function T is equal to zero
on those parts of the boundary at which temperature is assigned, or for i = 0,2, ..., k. Since the
variations da;; (i, = 1,2,...,N) are arbitrary and independent, then assuming successively that
only one of them is different from zero, we shall obtain a system of equations of the form

Saij / (T Xii = &°T XW) d0* — k2 }: / (fi = T)Xi;dOY b = 0. (29)
& I=k+1
Using the formula (21), we obtain an algebraic system of equations with the unknowns a;;
Y Cijuan =By, (30)
kl
where
Cijki =/ (th 1 Xij — &2 Xk 0 Xij, a) dQ* + k2 z / (fi — i X)) X5 A,
- l=k+1 (31)

Bij-_-/n (XOthj—'H X ija) dQ* + &2 Z / (fi — i Xo)Xi; A .
I=k+1
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4. NUMERICAL EXAMPLES

4.1. Square plate

We present here a solution in which the curves of cooling were determined in selected points of a
square plate of the dimensions 0.6 x 0.6 m with the following physical parameters: A = 30 W/mK,
p = 7000 kg/m3, ¢ = 700 J/kgK. The 3rd type of condition was assumed with the coefficient
a = 100 W/m2K and ambient temperature 7% = 30 °C. The duration of the process analyzed is
6 = 15000 s. Figure 2 shows the differences between the reduced temperatures (curves of cooling
in the selected points of the plate) obtained by the RFM i FDM methods, with the least accurate
condition on the boundary ©”,, namely w = 0. The maximum difference does not exceed 7%.

REDUCED TEMPERATURE
: NOTATIONS

POINT GP
POINT DL
POINT DP
POINT DL
POINT DP
POINT GL
POINT GP
POINT GL

[ T v - - >

2 4 6 8 10 12
TIME * 10*3 [S]

Fig. 2. Cooling curves for selected points

Tables 1-2 present the reduced temperature distributions at the beginning and at the end of the
process.

Table 1. Distribution of reduced temperature at the moment ¢ = 13500 s

a) R-Function Method

0.210 0.210 0.209 0.207 0.204 0.203 0.202 0.201 0.195 0.190
0.217 0.218 0.218 0.218 0.216 0.213 0.207 0.201 0.199 0.195
0.234 0.234 0.234 0.232 0.229 0.223 0.216 0.207 0.201 0.201
0.252 0.251 0.250 0.248 0.243 0.236 0.226 0.216 0.207 0.202
0.268 0.267 0.265 0.262 0.256 0.248 0.236 0.223 0.213 0.203
0.280 0.279 0.277 0.273 0.266 0.256 0.243 0.229 0.216 0.204
0.289 0.288 0.285 0.281 0.273 0.262 0.248 0.232 0.218 0.207
0.295 0.293 0.291 0.285 0.277 0.265 0.250 0.234 0.218 0.209
0.298 0.297 0.293 0.288 0.279 0.267 0.251 0.234 0.218 0.210
0.299 0.298 0.295 0.289 0.280 0.268 0.252 0.234 0.217 0.210

b) Finite Differences Method

0.220 0.218 0.215 0.210 0.204 0.196 0.187 0.176 0.164 0.151
0.239 0.238 0.234 0.229 0.222 0.213 0.203 0.192 0.178 0.164
0.257 0.255 0.251 0.246 0.238 0.229 0.218 0.206 0.192 0.176
0.273 0.271 0.267 0.261 0.253 0.243 0.231 0.218 0.203 0.187
0.286 0.284 0.280 0.274 0.265 0.255 0.243 0.229 0.213 0.196
0.298 0.296 0.291 0.285 0.276 0.265 0.253 0.238 0.222 0.204
0.307 0.305 0.300 0.294 0.285 0.274 0.261 0.246 0.229 0.210
0.314 0.312 0.307 0.300 0.291 0.280 0.267 0.251 0.234 0.215
0.319 0.317 0.312 0.305 0.296 0.284 0.271 0.255 0.238 0.218
0.321 0.319 0.314 0.307 0.298 0.286 0.273 0.257 0.239 0.220




Space-Time Generalization of R-Function Method

323

Table 2. Distribution of reduced temperature at the moment ¢ = 1500 s

a) R-Function Method

0.811
0.862
0.906
0.943
0.972
0.996
1.000
1.005
1.007
1.010

0.806
0.857
0.902
0.938
0.968
0.991
1.000
1.003
1.030
1.007

0.798
0.851
0.896
0.932
0.962
0.985
1.000
1.001
1.003
1.005

0.785
0.838
0.883
0.919
0.949
0.972
0.989
1.000
1.000
1.000

0.768
0.821
0.866
0.902
0.932
0.955
0.972
0.985
0.991
0.996

0.743
0.800
0.845
0.881
0.909
0.932
0.949
0.962
0.968
0.972

0.713
0.770
0.815
0.851
0.881
0.902
0.919
0.932
0.938
0.943

0.679
0.736
0.779
0.815
0.845
0.866
0.883
0.896
0.902
0.906

0.643
0.696
0.736
0.770
0.800
0.821
0.838
0.851
0.857
0.862

0.600
0.643
0.679
0.713
0.743
0.768
0.785
0.798
0.806
0.811

b) Finite Differences Method

0.751
0.811
0.861
0.900
0.929
0.951
0.966
0.975
0.981
0.984

0.749
0.809
0.859
0.898
0.927
0.948
0.963
0.973
0.978
0.981

0.744
0.804
0.854
0.892
0.922
0.943
0.957
0.967
0.973
0.975

0.737
0.796
0.845
0.883
0.912
0.933
0.948
0.957
0.963
0.966

0.725
0.784
0.832
0.870
0.898
0.919
0.933
0.943
0.948
0.951

0.709
0.767
0.813
0.850
0.878
0.898
0.912
0.922
0.927
0.929

0.687
0.742
0.788
0.823
0.850
0.870
0.883
0.892
0.898
0.900

0.657
0.710
0.753
0.788
0.813
0.832
0.845
0.854
0.859
0.861

0.619
0.669
0.710
0.742
0.767
0.784
0.796
0.804
0.809
0.811

0.573
0.619
0.657
0.687
0.709
0.725
0.737
0.744
0.749
0.751

4.2. Heated element

We shall determine the temperature distribution over the section shown in Fig. 3a. On account of
symmetry we shall examine only a part of this domain contained in the first quadrant of the system
of co-ordinates — Fig. 3b. This section is heated by a heat stream of value ¢ = 60000 W/m? on

Fig. 3. Analyzed domain and domain §2

A B
al 4 IO
- Eb\
0 c c
< . S
b)

the surface DE, cooled by air — o = 10 W/m?K and T® = 30 °C — on the surfaces AB and BC,
and cooled by water on the surface of circle o = 100 W/m?K and T* = 30 °C. The geometrical
dimension of the section are respectively (see Fig. 3b) a = 0.6 m, ¢ =0.36 m, R =0.24 m, r = 0.12
m. The initial temperature is Ty = 30 °C, and at the final moment it was assumed that w = 0.
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The analyzed geometrical domain may be described as a common part of the following subre-
gions:

O ={(a—2z)z/a >0}, Q={(a—1y)y/a>0},
Q3 = {(2? +y* - R*)/(2R) > 0}, (32)
Q= {[(z - ¢)* + (y — c)* = r?/(2r) > 0},

or by the equation

w(z,y) = [(a — z)z/a] A, [(a —n)y/8] \,
(2> + 92 = B)/@R)] A\, [((@ = ) + (y — 0)2 = 72) /(2r)]. (33)

The particular parts of the geometrical boundary on which suitable boundary conditions were
assigned are Q) = I'apc, Qs =T'cp UT g4, 0Q3 = I'pg and 024 — circle of the radius 7.

The space-time domain is created analogously to the one described earlier. Equations of parts
of the boundary are of the form

wi =1 [(@)2 A, i, (34

where i = —1, 0, 1, 2, 3, 4, A is a very small constant (equal, e.g., 0.000000001), and
fo1=0-A—-t, fo=t+A,

i =le—Aa-2)] A\ [la—2a-y] A, 6]

f =[(A+m]/\ [(A+y] A, [(e—t)t], (35)
fi =@ +y* - (R+A) A\, [(6-2)

B oamlE-0" +ly—o’ —(r+A)]/\0[(9—t)t]-

The solution obtained will be illustrated by curves of heating of four selected points of the domain
tested (Fig. 6), and a numerical presentation of temperature distributions at three instants of time
(8 = 40000 s): t = 4000, 20000, 36000 s.

— 147 |1 1 127 (117|107 | 98 | 94 94 | 94
‘g Tez (55 [es a8 [ 42 [ 36 [34 [ 36 | 3B P e | v | e
* * * * * * * * * * 0.9
ez (180|141 [130 116|104 53 (88 [ o1 | 94
L 63 |64 |69 |63 |45 |37 |30 [28 | 31 | 36 §2 §0 * * * * * * * *
* * ks * * * * * * * 0.8
-8 ez Ter (161 [136 [ 126 ~J50 | 86 | 54
0.8 g5 170 [64 |67 |80 71~ 24 [ 26 | 34 ol B Al A KK
* * * * y * * * o3
7 ee 1751671 5398
©.7 'gT {81 [ 75 | é8 30 [ 36 AR ?/ \: -
* * * * * * 2.6
Ea 201 15 1 1 107
0.6 97 97 %9 | 81 37 42 * * *B 29\ 24 e
* * * * * * 0.6
=EEA 225 {] 7 1 1 17
8.6 TIE (116107 % S@\ /?Z T ® Spepecs 221190 “5\ 1l
* N __~
. 9-9 71216190 | 168] 160 [136 130|127
2:4 NEEEIREAFIEIE e e S Rk R0 - R R A
\* * * | x| * | * * * - NV
71212 (188 [ 167 [167 [ 147|136
2:3 N [e7 % [7% & |9 [ \<3 212[ea[1enl 15 14
0.2
11179161 |1 14
8.2 697 [ 81 |70 [ 64 [ &2 ol TR RS B B e
* * * * * 0.1
i 7 1 1 1 147
9:4 16197 [ 81 | &9 | 63 [ 61 227 1eg2 100 12 102 114
* * * * * *
e 0.0
. 2.0 0.1 0.2 0.3 0.4 0.6 0.6 0.7 0.8 0.9 1.0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Fig. 4. Temperature fields for ¢ = 4000 and 20000 s
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1.0 182178169169 [ 148|137 128|124 126|127
* * * * * * * * * *
°-% Neg[Te6[176| 163|148 | 134|123 118|121 | 125]
* * * * + * * * * *
9.8 =56 198|186 [170 | 1567 118|118 124
* | % | * * / \\ x | *
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0.6 533240 zzelzas 134137
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Fig. 5. Temperature field for ¢ = 36000 s
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Fig. 6. Heating curves for the selected points
5. FINAL REMARKS

The investigations presented here were mainly of experimental character. Their primary object was
to verify a possibility of treating the time variable in the same way as the spatial ones (in parabolic
equation).

A lot of problems of RFM require wider analysis (see [6]). The space-time approach extends the
area of this study to include, e.g., the following problems:

1) How should we choose the duration 6 of the analyzed process. The numerical experiments show
that agreement of solution reached by ST-RFM and FDM is better for a long period of time.

2) The form of boundary condition over the surface ¢t = 6.
3) What is the best choice of function ® = ®(x,t) — see Eq. (16).

It seems that the generalized R-function method can be useful for problems where the shape of
geometrical domain can change in time, as well as in the range of inverse problems.
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