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Application of the boundary element method for approximate solution of non-steady and nonlinear thermal
diffusion problems is not possible in a direct way. The fundamental solutions (being a basis of the BEM
algorithm) are known only for linear problems — in particular the linear form of the Fourier equation is
required. On the other hand, the numerous advantages of the boundary element method are a sufficient
justification for the examinations concerning the adaptation of the method in this direction. In the paper,
the numerical procedures “linearizing” the typical mathematical model of heat conduction process will
be discussed. Combining the basic BEM algorithm for linear Fourier equation with procedures correcting
the temporary solutions for successive values of time, we obtain a simple tool which allows us to solve
a large class of the practical problems concerning the heat conduction processes. In this paper we will
discuss in turn the algorithms called the temperature field correction method (TFCM), the alternating
phase truncation method (APTM) and the artificial heat source method (AHSM). In the final part of the
paper, some examples of numerical solutions will be presented.

1. INTRODUCTION

The nonlinear thermal diffusion problems can be divided into three groups [8], namely such that:

e the process is described by a linear differential equation, but the boundary conditions are non-
linear;

e the differential equation considered is nonlinear, but the boundary conditions are linear;
e both the differential equation as well the boundary conditions are nonlinear.

The models close to the real physical problems belong, as a rule, to the third group. Thermo-
physical parameters (specific heat, mass density, thermal conductivity) of typical materials are the
functions of temperature, whereas the heat transfer coefficients appearing in the “natural” Robin
boundary conditions determining the continuity of heat flux on the outer surface of the system are
temperature-dependent, too.

It should be pointed out that from a numerical point of view, the nonlinear boundary conditions
do not cause any essential difficulties connected with the construction of relatively exact and simple
algorithms. In a case of non-steady heat conduction, the transition from time ¢ to t+ At is analyzed.
The coefficients in the suitable boundary conditions (natural convection and radiation are typical
examples of such problems) can be determined for time ¢ — in this way we consider the conditions
for which the heat transfer coefficients (or thermal resistances) are known [18]. If necessary, in order
to estimate the values of coefficients for time ¢ + At, a certain iterative process can be applied [1].

More complex problems are connected with nonlinearities in the differential equation describing
the heat conduction process in the domain considered. Temperature-dependent thermophysical
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parameters can be, in a simple manner taken into account only in the case of application of the
method of finite differences. On the other hand, however, the FDM is not the most effective and
accurate method — particularly for the geometrically complex objects. The real shape of the
boundary and the differential grid do not fit together. So, the approximation of boundary conditions
is decidedly worse than in the case of FEM or BEM.

The basic algorithm of the finite element method can be adapted for numerical solution of non-
linear thermal diffusion problems, because the thermophysical parameters of the material can be
in a certain way averaged in sub-domains of successive finite elements. Such type of the FEM algo-
rithm was presented by the authors of this paper in [10, 12, 15]. The thermal diffussivity in domain
of the finite element considered has been defined as an integral mean for the corresponding inter-
val of temperature. The method was sufficiently accurate for moderate changes of thermophysical
parameters, but e.g. in the case of modelling of the solidification process (a thermal diffussivity of
the so-called mushy zone essentially differs from this parameter for solid and liquid sub-domains),
certain additional correcting procedures should be introduced.

The boundary element method in its “natural” form can be used only for numerical simulation of
heat conduction problems described by the linear differential equations [3, 21]. So, in order to apply
the method for approximate solution of nonlinear problems, the suitable “linearizing” procedures
must be worked out, and this will be the subject of the present paper. In particular, the methods
called the temperature field correction method (TFCM), the alternating phase truncation method
(APTM) and the artificial heat source method (AHSM) will be discussed (Secs. 3, 4 and 5). In
Sec. 6 the 1st scheme of the BEM will be presented, while in Sec. 7 the examples of numerical
simulations will be shown. The examples concern a strongly nonlinear problem, namely the phase
transition process (treated as a so-called “fixed domain problem” [6, 23]) will be analyzed.

2. GOVERNING EQUATIONS

The equation describing non-steady state temperature field in a certain isobaric and isotropic
domain € in which the heat is transported by conduction, is of the form

aT (X, 1)
ot

where ¢(T), A(T) are the thermophysical parameters (specific heat related to a unit of volume and
thermal conductivity), gy is the capacity of internal heat sources, T', X, ¢ — denote temperature,
spatial co-ordinate and time. In this paper we will consider the solenoidal temperature fields, and
then qy = 0.

Equation (1) is supplemented by boundary conditions in the general form

XeQ: T = div[MT) grad T(X, t)] + qv (X, t), (1)

Xel: @T(X,t),n- gradT(X,t)] =0, (2)
and the initial coﬁdition
t=0r T(X;0)=T(X). (3)

The symbol n-grad T' used in Eq. (2) denotes a normal derivative at the boundary point considered.
Typical forms of the boundary condition (2) are the following:

e the first type of boundary condition
Xel: T(X,t)=TgX,t), (4)

where T} is a given boundary temperature;
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e the second type of boundary condition
Xeln: _)‘(T)n : gra'd T(Xv t) = Qn(Xa t) ) (5)

where ¢, is a given boundary heat flux;

e the third type of boundary condition
Xelm: —-AT)n-gradT(X,t) = a[T(X,t) — T, (6)

where « is the heat transfer coefficient at the boundary point X, while T'*° is ambient temper-
ature.

The basic mathematical model of the heat conduction process can be rebuilt by introducing to the
considerations the physical enthalpy (related to a unit of volume), defined as follows:

2D = [ cwap, @

where 7} denotes a certain reference level.
The energy equation written in the enthalpy convention takes the form

OH (X, 1)

XeN: 5

= div[a(T) grad H(X, )], (8)
where a = A\/c.

The structure of Eq. (8) is the same as the form of a typical Fourier equation. So, the numer-
ical aspects of approximate solutions of the problems in which the enthalpy convention has been
introduced are close to the problems appearing in the case of a classical approach.

It is easy to verify that the normal heat flux is equal to ¢, = —an-grad H(X,t), and the typical
boundary conditions written in enthalpy convention are of the form

Xelr + H(X,t)=Hg(X,1), (9)
Xely : —an-grad H(X,t) = ¢gu(X, 1), (10)
Xelm: —-an-gradH(X,t) =aT(H)-T>]. (11)

The boundary condition of the 3rd type is, to a certain degree, the “Achilles’ heel” of the enthalpy
convention. If the specific heat c is a constant value, then

(o o]

T T
H—H°°=/ cdu—/ cdp = ¢(T —T™) (12)
r Tr
and we have T — T = (H — H®)/c, i.e. .

—an-grad H(X,t) = ag(H — H®), (13)

where ay = a/c. In this case we obtain the formula analogous to Eq. (6). On the other hand, if
the specific heat c is variable then the problem is more complicated. From Eq. (12) it results that

i
H—H°°=/T o(u) dp = (T - T®), (14)

and at the same time c* is the integral mean of the specific heat in the interval (7°°,T). In the
corresponding condition

—an-grad H(X,t) = %(H — H®) (15)
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additional nonlinearity appears, which in case of numerical analysis should be taken into account.
The last element of the discussed approach is the determination of the function describing the
dependence between temperature and physical enthalpy of the material considered, because as a
rule we want to obtain the results of computations in the form of time-dependent temperature
fields. The details of this problem are presented in [17].
The other approach to the heat conduction problem consists in introducing to the considerations
the function called the Kirchhoff transformation defined in the following way:

'y

um= | A(p) dps . (16)
From this definition it follows that A(T) = dU(T)/dT and it is easy to check that the right-hand
side of the energy equation can be written in the form

X eQ: div[]\T)grad T(X,t)] = div[grad U(X,1)]. (17)

So, introduction of the function U(T) linearizes the operator div(Agrad7') and the equation de-
scribing the steady-state temperature field in domain € becomes linear. Because of this, Kirchhoff’s
transformation is very useful for computations connected with such problems. The function can be
also used for mathematical description of nonsteady-state processes [12], as well as in the range of
thermal theory of foundry [13].

The first step of the present considerations consists in the following reconstruction of the Fourier
equation. The left-hand side of this equation will be written according to the enthalpy convention,
while the right-hand side — in Kirchhoff’s convention

aﬂg’—t) £ aiv AT D], (18)
Because H = H(T) and U = U(T) are functions of temperature and are monotonic, it is possible
to find the relationship H = ¥(U).

It can be seen that

O0H(X,t) O0H(U)OU(X,t) _ _, oU(X,t)
o . U o v U= (19)
this means that a new form of energy equation is as follows
w2258 _ ) T — v fgrad 01, 1), (20)

The analytical determination of 1(U) and of its derivative is generally impossible. The specific
heats and others thermophysical parameters of the materials are generally given in the form of
tables, and the functions H(T) and U(T) must be found on the basis of numerical integration (e.g.
the Simpson method). In this way we can find the discrete set of H(T) and U(T') values (Fig. 1).
Next, for the specific values of T; we obtain pairs of numbers (Uj, H;) which determine (in discrete
form) the course of %(U). Its derivative can be found by means of numerical differentiation.

The construction of a mathematical model requires the suitable reconstruction of the boundary
and initial conditions, and namely:

e The first type of conditions can be transformed immediately
X elr: U(X,t) =UgX,t); (21)

e In the case of the second type of boundary conditions, one can notice that the expression
—An - gradT(X,t) can be written as —n - grad U(X, t), and finally

Xeln: —-n-gradU(X,t) = qn(X,1); (22)
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e The third type condition is of the form

Xelm: -n-gradU(X,t) =a(T -T%). (23)

¥ A Ui H A

Fig. 1. Construction of (U)

Let us repeat the considerations which have been exposed previously. We have
T
U—U> = / AMu) dp = X*(T - T). (24)
Too

For A = const, A* = A, whereas for A = A(T"), A\* is the integral mean of the thermal conductivity
for the interval (T°°,T'). The boundary condition (23) can be rewritten in the form

—n-gradU(X,t) = au(U — U*), (25)

where a,, = a/A*. As can be seen, the difficulties connected with a correct approximation of this
condition are the same as in the case of application of the enthalpy convention.

Now we pass to the problems connected with construction of numerical algorithms “linearizing”
the mathematical models of heat conduction problems.

3. THE TEMPERATURE FIELD CORRECTION METHOD (TFCM)

The temperature field correction method consists in the reconstruction of successive temporal
solutions (for ¢t = t!,#2 ... etc.) corresponding to a certain linear problem, in order to take into
account that in reality the nonlinear problem is analyzed.

The philosophy of approach to the problem of reconstructing the pseudo-initial condition for
successive levels of time was presented by Szargut and Mochnacki [22], and next extended by Hong,
Umeda and Kimura [4, 5], whereas the algorithm presented here was discussed by E.Majchrzak in
(9].

The essence of the procedure of temperature field correction results from the following reasoning.
Consider now two identical regions € and . The thermophysical parameters of ) are equal to
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¢, A, whereas for Qo we have C; A At the same time it is assumed that A = A. The boundary
conditions given on the contours 'y and I'y are the same, i.e. (cf. Fig. 2)

XeTly: &T,n-gradT)=0, Xely: &[T, n-gradT]=0. (26)
yvA 1) yA f)
QO @Xo QO @)?o
0 >X 0 >)(

Fig. 2. The regions ¢ and Qo

The temperature fields in ©y and Qg are determined by the following equations

STED 5 iy [erad (X
ot (21)
é% = Adiv [grad T'(X, t)] .

of. gPd oT
A new variable is introduced, 7 = gt. Since == = 2T — 2—, therefore the equation for the

) ) G ot or dt ¢éor
second domain can be written in the form

68T(X’T)

gt iy [grad T'(X, 7)] . (28)

It should be pointed out that equations describing the heat transfer processes in 2y and Qo are
identical although the time in 2y and Qo “runs” in different way.

In Fig. 3 the curves of cooling at a selected point Xy € ¢ and at the corresponding point
Xy & Qo are shown.

0 A 2A 3A 4A T

Fig. 3. The curves of cooling at points Xo and X

The slopes of the straight lines in Fig. 3 are the same:

AT i AT o BAT

M Bl B A (29)
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So,
¢AT = éAT . (30)

Equation (30) can be written in the form

o(tf -T*) =¢(Tf -Tf*), (31)
and
Pl ol g (T -+ . (32)

The same procedure can be applied on the basis of energy balances in the region of point X, [14].

The temperature field correction method allows us to perform the calculations in a homogenous
region, and then, to correct the successive pseudo-initial conditions on the basis of equations of the
(32) type.

Let us consider a material for which thermal capacity ¢(7T') is approximated by a certain step
function, this means ¢(T') = ¢, for By, < T' < Bp41. So, the interval extending from the initial
to ambient temperature is divided into the segments corresponding to successive values of ¢, (cf.
Fig. 4).

Fig. 4. Division

The time grid defined as follows
felctte. KW ¢, ¥ < (33)

is introduced, and the specific point X of control volume V} is taken into account.

Let us assume that the cooling process is analyzed and the temperature at point X has decreased
from Tof to T({ 1. at the same time the computations have been executed for ¢(T) = ¢p. The
algorithm of temperature correction at the point considered is the following.
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L Bm+2
/ Bm+3

Fig. 5. The transition f = f +1

Let (cf. Fig. 5)
Am = cm(T{ = Bmt1),

Apy1 = Ay + Cm+1 (Bm+1 = Bm+2) )

== phase m

phase m+1

phase m+2

(34)

Amyr = Amg1 + Cm+2(Bm+2 - Bm+3) )
where B, Bm+1, Bm42, ... are the “interface” temperatures limiting the successive “phases” of
the material considered.

If

RER it e A (35)
then the formula (32) takes a form

T =1 - 2 (1 -7f") . (36)

Cm

For the case

Am < co (Tf - TH') < A (37)
the value of corrected temperature results from the equation

Co (T({ — T(')f+1) = CmAm + Cm+1 (Bm+1 = T(')f+1) (38)
and we obtain

. c ¢

T = Byt + —2 By — — (Tof "TOHI) : (39)

Cm+1 Cm+1

If

Ampr < oo (T = T{™") < Ay, (40)
then

Co (Tof = ()f+1> = cmlAm + Cm+1(Am+1 - Am) + Cm+2 (Bm+2 - Aof+1) (41)
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and

A()f+l = Bm42 +

Cm

c ¢
Loy, — L (Amt1 — Ap) = . (T({ = Tof+1> . (42)
Cm+2 Cm+2 Cm+-2

Similar formulas can be obtained for other possible transitions, but in practice these transitions do
not appear (because of the small differences between T({ and T({ T8
The algorithm presented above concerns the cooling processes and their reconstruction in the

case of heating or a more general heat transfer problem is quite simple.

4. THE ALTERNATING PHASE TRUNCATION METHOD (APTM)

The basic algorithm of alternating phase truncation method was presented by Rogers, Berger and
Ciment in [19, 20] and was used for numerical simulation of the Stefan problem (solidification at
a constant temperature). The generalization of the APTM was presented in paper [7], while the
approach which allows to adapt the method for a large class of nonlinear heat conduction problems
was discussed in [11]. The APTM consists in conventional reduction of the considered domain € to
a homogenous domain. So, the philosophy of APTM is close to the previously presented method of
temperature field correction, but in numerical realization the APTM essentially differs in principles
from the TFCM.

The method discussed requires the formulation of an adequate mathematical model using the
enthalpy convention. If we assume that the thermal diffussivity a(H) can be approximated by a
certain step function (in the same way as a specific heat in Section 3), then the nonlinear problem
considered can be replaced with a problem concerning a certain “multi-phase” domain being a
composition of sub-domains Q¢ (), Q1 (%), ..., Qar(t) with moving boundaries I'y (), T'a(t), ..., Tar(t)
(cf. Fig. 6).

Fig. 6. “Multi-phase” domain and enthalpy-temperature diagram

The mathematical description of heat transfer processes in domain 2 (assuming that thermo-
physical parameters of sub-domains €2,,,(¢) are constant) is

X € Qn(t) -65!%(;(—’” gl v v (X, 4)]
—amn - grad Hp, (X, t) = —amy1n - grad Hypq (X, 1),
X &lm(t)
Hp(X,t) = Hpia (Xa t) = Am, ¢ (43)
X-€T . ®[H(X,t),n - grad H(X,t)] =0,
B O EEX ) = Heg(X) . )

Let us consider two separate levels of time ¢/ and t/*1. The enthalpy distribution in region (2 at
time ¢/ is known.
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The first stage of computation concerns the hottest phase. The enthalpy distribution in the
domain Q at time t/ is transformed in this way

Xo€Q :  Vo(Xo,t!) = max[A4;, H(X,,t)]. (44)

This new pseudo-initial condition corresponds to a structural reduction of the whole area € to
the “hottest phase” domain. Next, on the basis of numerical methods, the transition ¢/ — ¢/ is
calculated. The solution for time ¢/*! : Vi (Xo,t/*1) is corrected according to the formula

Vo(Xo, t/11) = Vi (Xo,t/ 1) + H(Xo, t7) — Vo(Xo, /) (45)

and the first stage of computations comes to an end.

If we consider an arbitrary stage m (m = 1,2,..,M — 1) then the enthalpy distribution
Vin—1(Xo,t/*1) is known. Reduction of domain Q2 to €, corresponds to acceptance of the following
pseudo- initial condition

Vin(Xo, tf) = min { A, max [Apm 1, Vin—1 (Xo,t/T1)]} . (46)

If V;%(Xo,t/*1) denotes the enthalpy field calculated in this stage, then the final effect of its real-
ization follows from the formula

Vi (X0, t71) = Vi (Xo, /1) + Vio1(Xo, /1) — Vi (Xo, ). (47)
At the last stage (m = M), the following pseudo-initial condition is assumed

Vivr-1(Xo,t!) = min [Apr, Var—1(Xo, /1)) . (48)
After the computation of V¥ (Xo,t/*!) one obtains

H(Xo, /1) = Vip(Xo, t7) + Vi1 (Xo, /1) — Vi (Xo, t7) . (49)

The solution H(Xo,t/*1) found in this stage corresponds to the enthalpy field at time ¢ = ¢/+1.

The transition t/ — #/*1 requires the solution of M+1 linear diffusion problems in structurally
homogenous domains, but in this way the well-known difficulties associated with numerical simu-
lation of non-steady and nonlinear thermal diffusion problems can be avoided.

At this point, a very essential problem should be explained. Each step of time in the APTM
algorithm is done M +1 times. This means, that it is necessary to select the boundary conditions
carefully, because they should act only during one interval At. Thus for M stages the boundary I'
should be insulated (the adiabatic condition). The “real” boundary condition “acts” only for this
phase which corresponds to the current boundary temperature.

5. THE ARTIFICIAL HEAT SOURCE METHOD (AHSM)

In this section a certain algorithm will be discussed, which can be called the artificial heat source
method (AHSM). A proposed approach can be useful in the case of nonlinear and non-steady heat
conduction problems, as well as in numerical modelling of the solidification process. The method
has been presented by B. Mochnacki and E. Majchrzak in [16]. The AHSM can be a very effective
supplementary algorithm, first of all in the case of the BEM application to solution of the nonlinear
problems.

Let us consider the boundary-initial problem described by energy equation (20), boundary condi-
tions (21), (22), (23) and the initial condition t = 0 : U(X,0) = Up(X). The method of construction
of 4(U) was presented in Sec. 2, while Fig. 7 presents the course of derivative 1)(U) for the carbon
steel: C = 0.08, Mn = 0.31, Si = 0.08, Cr = 0.045, Ni = 0.07, Mo = 0.02, S = 0.05, Cr = 0.045
(the range of function W'(U) corresponds to the interval of temperatures [0, 700 °C]).
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Fig. 7. The course of function ¥'(U)

Consider now a function ¥ (U) which is conventionally expressed as a sum of two components,
this means a constant part 1)y and a certain increment Az,

P(U) =vo + Ay(U). (50)
The energy equation (20) can be written in the form
902250 _ iy lgrad (X, 1)] - Ag(m)2LY (51)
ot ot
or
1”’“% =div[grad U(X,t)] + qv(X, 1), (52)

where qy(X,t) is a source function (capacity of internal heat sources). The essential feature of
equation (52) consists in the fact, that by disregarding the last term we obtain the linear form
of energy equation. Taking into account the possible application of the boundary element method
in the range of non-steady problems modelling, this is a very convenient form of basic differential
equation (nonlinearity appears only in the component determining the internal heat sources, and
the function describing the fundamental solution for the problem considered is well-known). The
calculation of a source function requires, of course, the introduction of a certain iterative procedure.
It should be pointed out that if |A| < 19, then the corresponding iterative algorithm is convergent.
The iterative process of determining the source function is the following.

1. Transition from t° = 0 to t! = 0 + At:
e It is assumed that gy (X;,t°) = 0,-while X; denote the central points of internal control
volumes V; selected in domain Q;
e Under this assumption the distribution of function U in the whole domain is calculated;
Local cooling rates [U(X;,t!) — U(X;,t°)]/At are estimated;

e Local values of source function qy(X;,t°) are corrected;

e Iterative process is stopped if the required accuracy is obtained.
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2. Transition from ¢/ to t/*!, f =1,2, .., F—1:

e It is assumed that gy (X;,¢/) is equal to the last value of qy found during the previous
iterative process (at the point considered);

For this assumption the Kirchhoff’s temperature field for whole domain is calculated;
e Local cooling rates [U(X;,t/*!) — U(X;,tf)]/ At are estimated;

e Local values of source function gy (X;,t/) are corrected;

Iterative process is stopped if the required accuracy is obtained.

As it was mentioned, the test computations show (and it can be proved analytically) that the
iterative process is convergent if |Ay| < 1.

6. THE BOUNDARY ELEMENT METHOD FOR LINEAR PARABOLIC EQUATIONS

In this chapter we shall discuss the problem of the BEM application for the case of a domain Q
which is characterized by constant thermophysical parameters (a linear problem). The object is
placed in a rectangular coordinate system. The boundary-initial problem considered is described
by the equation (cf. equation (1))

AT(X,t) qv(X,t)

Xeq: = aV3T(X,t) + : (53)
ot c
boundary conditions (2) and initial condition (3).
Initially, we formulate the weighted residual criterion for the problem analyzed
t* t X,t
/ / [aV2T(X, £}~ Ty 1) _avls, )] T* (¢, X, 1) dQdt, (54)
0 Jo ot c
where T is a fundamental solution of the form
1 r?
-39 §7Xa tht i €xp [_—] ) (55)
( ) [Ama(tF — t)]“/? 4a(tF —t)

where ¢ denotes the point in which the concentrated heat source is applied, while r is the distance
from the considered point X to the point £, w is the problem dimension. The normal heat flux of
fundamental solution should be found from the formula

A

Sl (56)

e XXty =

If we consider the 2D problem (X = (z1,z2), £ = (£1,&2)), then we obtain the following expres-
sion

= <8T* cosay + i cos ) = = e = 4 (57)
T =72\ 02, M T B2, %) T G2 (i — 1) O | Taa(tF — )|
where
d=(z1 —¢&1)cosaq + (zg — &) cos as (58)

while cos a1, cos ap are the directional cosines of the normal boundary vector (Fig. 8).
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Fig. 8. Domain (2

The weighted residual criterion (54) can be written in the form

tF tF
/ / aVAT(X, 8)T" (¢, X, tF, 1) dQ dt — / / OTX) (e x4, 1) dQ dt
0 JQ t0 Ja ot

-_/ qv (X, )T (&, X, tF,t)dQdt = 0. (59)

In order to construct the integral equation corresponding to the problem considered, we apply the
2nd Green’s formula for the first component of equation (59) [3]

tf tf 1 rtf
/ /a(VZT) T det:/ /a(v2T*)Tdet——/ /(T*q—Tq*)dI‘dt. (60)
0 Ja 0 Jo cJio Jr
The second component of the equation (59) is integrated by parts
t=tF aT*
/ / T a0 dt = [ / TT* dsz] / —TdQdt (61)
t0 t=t0 t0

and the equation (59) takes the form

tF oT™* t=tF
/ / (aVQT*Jr . )Tdet— [/ T dQ]
0 Ja ot Q t=t0

1 tF 1 rtf
——/ /(T*q—Tq*)dI‘dt—~—/ qvT* dQdt = 0. (62)
c Jio Jr Cc Jto JQ

Using the properties of the fundamental solution [3, 9] we finally obtain the following integral
equation

tF

766"+ [ [ 76 X4, 00(X, T s
Cc Jt T

0

/ (6, X, ¢ )T(X,t)dI‘dt+/QT*(§,X,tF,t°)T(X,tO)dQ
t0

¥ 1pef
g/to /QCIV(X»t)T*(f,X,tF,t)det. 63)

For { — I' the last equation is transformed to the boundary integral equation, which is of the
form [3, 9]
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tF

C(e)T(&,tF) + l/t FT*({,X,tF,t)q(X,t) drdt

C 0

_l F * FO 0
_c/t/ (¢ Xt (Xt)d]."dt+/T£Xt ,0)T(X,t7)dQ

tF

1
42 / av (X, 0T (€, X, ¢F 1) dQ t, (64)
Cc Jto JQ

where C(¢) € (0,1). The value of coefficient C () results from the position of the boundary point £
considered; for example, for the smooth fragment of the boundary C(§) = 0.5. It should be pointed
out that for £ € Q: C(¢) =

The numerical approximation of integral equation (64) consists in discretization of the considered
interval of time [t°,¢'], and the boundary of the region Q. In the case of nonsteady-state problems
the interior of domain  must be also discretized.

So, the time grid is introduced (cf. equation (33)), while the boundary I' is divided into /N bound-
ary elements I'j, j = 1,2,..., N. Here we can assume a different approximation for the boundary
values of individual elements. For example, we can consider a constant value of temperature and
heat flux along the boundary element, or a linear distribution of T' and ¢ — Fig. 9. We can also
introduce the boundary elements of higher order (e.g. parabolic elements).

e e — o

Fig. 9. Constant and linear boundary elements (2D problem)

The interior of € is divided into L internal cells €;,1 = 1,2, ..., L. Just as in the case of boundary
elements, we can consider constant, linear and higher-order internal cells.

Here two approaches can be taken into account, i.e. the 1st or the 2nd scheme of the BEM.
The idea of the 1st scheme consists in treatment of the transition from ¢/ to t/*! as a certain
separate problem with suitable pseudo-initial condition. In the case of the 2nd scheme of the BEM,
the integration process starts from ¢ = t° and then the knowledge of successive pseudo-initial
conditions is needless, but consecutive values of boundary temperatures and heat fluxes for ¢ = t°,
t =t ..., t =t/ must be “registered”.

In this paper the 1st scheme of the BEM has been applied, because this algorithm allows us to
combine the BEM with the procedures “linearizing” the nonlinear and non-steady heat conduction
problems. In this case the numerical approximation of equation (64) is of the form
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cT/ tm dt | dr;
+- Z " ]qJ J
1 N tf+1 f
== T;dt) dT'; + / R dQ
C;/Fj<tfq” ) Z l'Lll l
L

1

tf+1
—Z/ qw( f T{;dt) A0, i=12.. . .N, (65)
t

where T = T*(&,X7,t/+1,1), ¢ = ¢* (€&, X9,¢/,8), Ty = T(X%,1), ¢; = q(X7,1), T/ =

T(Xlatf)’ Q\f/l = QV(Xlatf)'
If we assume the constant boundary elements and internal cells, then equation (65) can be
written in the form

N N L L
Y Gijglt =Y HyTI T+ Y PT 4+ Y Zugly, i=1,2,...,N, (66)
j= j=1 =1 =1
where
1 ti+l
S Z/p. ( T dt) dr;, (67)
J
1 tf+1
o x4t | dr; k.
p /Tj </tf qz] ) Vi) (3 # o
Hz] = ) (68)
1 tf+1
- rdt| dri—C;, i=j
¢ /Fj (/tf qz] ) 7 1 7
Py = /Q T} Ay, (69)
1

1 tf+1
Zy = — / (
CcJy tf

It should be pointed out that the integration with respect to time can be done analytically [9],
while the integration over the boundary and internal elements must be performed numerically (e.g.
by the Gauss quadratures).

The resolving system (66) corresponding to transition from #/ to t/*! can be written in the
matrix form

Il

o dt) dQ, . (70)

After determination of the unknown boundary temperatures and heat fluxes, the equation (65) can
be applied in order to find the temperatures at an optional set of points from the interior of 2
Lo % BATE gt Aty

N N L L
T/ =N BT - N Guydl M + S RT + Y Zudl,. (72)
J=1 7j=1 =1 =1

To sum up, if we solve the nonlinear problem using the temperature field correction method or
the alternating phase truncation method, then we consider the linear parabolic equation for which

gv = 0, and in this case the resolving system (71) contains only the matrices G, H and P.

Application of the artificial heat source method leads to the non-zero component q{, and the final

form of the resolving system is more complex.
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7. THE EXAMPLES OF NUMERICAL COMPUTATION

The examples presented below have been chosen so as to assure the possibility of comparison of
the results. As a basis, the FDM solution was taken into account, because the simple shape of the
object, regular square grid, high order of approximation of the boundary conditions and application
of the algorithm (verified by the authors) for nonlinear heat conduction problems [18], allows us to
treat this solution as a sufficiently exact one.

In particular, the cooling processes in the domain of steel ingot during its heat treatment were
analyzed. The 2D problem has been considered. Boundary conditions of the 3rd type have been
assumed:

Xel': =AT)n-gradT =a(T —T). (73)

The heat transfer coefficient: o = 250 W/m? K, while the cooling water temperature was equal to
T = 20°C. The initial temperature of the domain Q: T'(X,0) = 800°C.
The physical conditions were the following:

4.680 - 10° J/m’K , T > 750 [°C],
C(T)=1{ 9.550-10%, 700 < T < 750,
4.125 - 108, T < 700.

It should be pointed out that the problem discussed is strongly nonlinear and it constitutes a
“drastic” test of correctness and effectiveness of the algorithms presented in this paper. The thermal
conductivity of the ingot domain was assumed to be constant, \; = Ay = A3 = 35 W/mK. On the
basis of the above data functions H = H(T), H = H(U) and the other parameters appearing in
Secs. 4 and 5 have been determined.

Consider a quarter of the lateral section of a steel ingot 0.2x0.6 m — cf. Fig. 10.

4x
i5

<A

Fig. 10. Lateral cross-section

The temperature fields corresponding to times 2, 5, 10 and 15 mins. are shown in Fig. 11.

The curves of cooling shown in Figures 12 (TFCM), 13 (APTM) and 14 (AHSM) were found
for points located along the axis of geometrical symmetry (as in Fig. 10). Solid lines correspond to
“exact” solution, while the small squares and triangles denote the solutions obtained by means of
the methods presented in the paper.

One can see that the obtained results are practically the same and they do not differ from the
“exact” solution. The very good agreement of all numerical solutions was also surprising for the
authors, because the philosophy of each algorithm was quite different. So, we should discuss the
question which of the methods is recommendable.

From the numerical point of view, the first method (TFCM) is the simplest. The procedure
correcting the values of temperature acts very quickly and leads to an additional loop placed
directly after the main loop realizing the transition ¢ — ¢+ At for a linear task. On the other hand,
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Fig. 11. Temperature fields for times 2, 5, 10 and 15 mins.
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however, the method is entirely correct only in the case of constant value of thermal conductivity,
and it can be used unconditionally only under this assumption.

The APTM requires an initial approximation of the real course of thermal diffussivity by a
certain step function, because for successive “phases” the necessary energy equations must be
linear. It seems that such approximation does not cause any essential troubles. The main loop of
the computations connected with transition ¢ — ¢+ At is used repeatedly (for successive “phases”),
and at the same time it must be supplemented by the procedure “rebuilding” the pseudo-initial
conditions (formulae (44), (46) and (48)), the procedure “controlling” the addition of boundary
conditions on the outer surface of the system (adiabatic or real ones), and the procedure realizing
the correction of the obtained enthalpy fields (formulae (45), (47) and (49)). So, the computer
program is rather complicated and the run time is considerably longer than in the case of TFCM.
The last method (AHSM) does not require any initial preparations of the input data, because
the derivative ¥(U) can be an arbitrary function. It is the essential advantage of the method.
Unfortunately, in the case of large values of Ay(U), the iterative process is slowly convergent —
it was shown during the computations concerning the discussed example (Fig. 14). On the other
hand, the problem considered was extremely inconvenient from the point of view of the method
discussed.
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Summing up, it should be pointed out that the methods presented in this paper enable the
effective application of a typical BEM algorithm to the solution of the linear Fourier equation for
numerical modelling of a large class of nonlinear heat conduction problems.
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