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The Element-Free Trefftz method can solve the problem only by taking the collocation points on the
boundary when the domain under consideration is governed by the linear and homogeneous differential
equation. Only the coordinates and the boundary-specified values on the boundary collocation points are
required as the input data and therefore, input data generation is much simpler than the other solution
procedures. However, the computational accuracy is strongly dependent on the positions of the collocation
points. For determining the positions with the desired accuracy, this paper presents h-adaptive scheme for
the placement of the collocation points. Global and local error estimators are defined by the residuals of
the boundary conditions. The refinement of the positions is performed so that new collocation points are
placed in the center of the boundary segments with larger local error estimators than the global estimator.
The present scheme is applied to the two-dimensional potential problem in order to confirm its validity.

1. INTRODUCTION

The Trefftz Method was first presented by E. Trefftz [1] in 1926 and since then, many researchers
have been studying it, e.g., [2-7]. In this method, the solution of a problem is approximated by the
superposition of the regular T-complete functions satisfying the governing equation. The unknown
parameters are determined so that the approximate solution satisfies the boundary condition by
means of the collocation, the least square or the Galerkin method. This paper employs the colloca-
tion method. The collocation Trefftz method requires as input data only the coordinates and the
boundary-specified values in the boundary collocation points. Therefore, the input data generation
is very easy. Besides, since the integrals on the boundary elements are not performed to construct
the coefficient matrices, the algorithm is simple and the computational efficiency is very high. So we
shall call it the “Element-Free Trefftz Method”. However, the computational accuracy is strongly
dependent on the positions of the collocation points. For determining the positions with a desired
accuracy, this paper presents the adaptive placement scheme of the collocation points. Similar
schemes were already presented by Xiaoping et al. [8] for the plate bending problem, and by Kita
et al. [9] for the two-dimensional potential problem with the Dirichlet condition. In this paper, a
two-dimensional potential problem with the complex condition is considered as an example. Since,
in this case, the potential or the flux error yields on different part of the boundary, different kinds
of the errors, the potential and flux errors must be compared in the same manner. For this purpose,
this paper presents the error estimation scheme using a weight parameter, which is simple but very
efffective.

In the present method, the global and local error estimators are defined by the residuals of
the boundary conditions. If the global error etimator is small enough, the process is terminated.
If it is not so, the positions of the collocation points are refined. The refinement is performed
so that the new collocation points are placed in the center of the elements on which local error
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estimators are greater than the global error estimator. Finally, the present method is applied to
the two-dimensional potential problem in order to confirm the validity.

2. TREFFTZ FORMULATION
2.1. T-complete function

We shall consider the two-dimensional potential problem. The governing equation and the boundary
conditions are presented in the form

Viu=0 inQ (1)

and

u = U onTIy,

q = g%:(j on [y,

(2)

where 2, T'y and T'y (['y + Ty = I') are the domain under consideration, the potential-specified
and the flux-specified boundaries, respectively. Symbol (~) denotes the value prescribed at the
boundary and n — the unit outward normal vector to the boundary.

The Trefftz method is formulated by introducing the regular T-complete functions. The T-
complete functions of the two-dimensional potential problem in a bounded domain are represented
by [10-12]

u:l:{r"ejna}
={r"cosnb, r"sinnf}, n=1,2,3,..., (3)

where r and 6 are plane polar coordinates and j denotes the imaginary unit.
Besides, the outer normal derivatives of the T-complete functions are given as follows:

the 5 {nr"_lejno(nr +grag)t, n=123, .. (4)

where n, = 0r/dn and ny = 90/9dn. On an arbitrary boundary, the boundary profile is approxi-
mated by such functions as the spline function and Bezier function in order to calculate n, and ny.

2.2. Element-free Trefftz formulation

The potential u is approximated by superposition of the T-complete functions:
u:ﬂ:alu}‘+a2u§+...+a1vu}‘v=aTu*, (5)

where u* and a are vectors of the T-complete functions and the unknown parameters, respectively.
N is the total number of the T-complete functions. Differentiating the above equation in the
direction normal to the boundary, we obtain the approximate equation of the flux:

~ ou * * * *
q:qz%:a1q1+a2q2+...+aNqN:aTq. (6)
Equations (5) and (6) do not satisfy the boundary conditions. Substituting Egs. (5) and (6) into

Eq. (2), we have

R, =i—%=a'u—a #0 only,,
(7)

R, =4-q = alq*—q # 0 onI'.

Q
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In the Element-Free Trefftz method, the residuals R, and R, must vanish at the collocation points
P;. From Eq. (7), we have

R.(P) = aTu*(P) —a(P) =0, i=1,...,.M;, P,€eT,,
Ry(F,) - =rat g (B)—gtB) =0 ;- dmsljuiy, My PLE By;

(8)

where M; and M, are the total numbers of the collocation points placed on I',, and I'y, respectively.
Rearranging the above equations, we obtain

aTu*(Pi) — ’L_I,(Pl) , Pely,

(9)
alq*(P) = §(R), P €Tly,
or
Loudy e ude. . . Uiy ] (@ )
ai
u’h uh is az U
1\;111 1\;112 A;IlN . _y —1 - (10)
a1 Qig. e aJiN : Q1
@1 G - Gy an G2
| G192 - N M,
where u}(F;) = ujj, ¢;(P) = ¢jj, 4(P) = t; and g(P;) = §;, respectively.
Ka=f. (11)

Equation (11) is solved for a, which is substituted into Egs. (5) and (6) in order to calculate the
potential and flux distributions.

2.3. Key-points for accurate analysis
2.3.1. Corner points

The boundary points at which the boundary conditions are not continuous are called corner points.
Placement of the collocation points on the corner points strongly affects the computational accuracy.
In this study, two kinds of placement schemes on the corner points are employed; the coincident
and the near-by placement schemes. In the coincident scheme, two collocation points with different
normal vectors are placed in the same corner point. According to the near-by scheme, two collocation
points are placed on the boundary segments neighboring a corner point. The former scheme is
employed in the cases when

e The type of boundary conditon changes at the corner point, or

e The Neumann conditions are specified on both sides of the corner points and moreover, normal
vectors are not unique at those corner points.

In the other cases, the latter scheme is employed.



350 E. Kita, N. Kamiya and T. Nomura

2.3.2. Condition number of matrices

T-complete functions are the power functions of the distance between the origin and the collocation
point. Therefore, the condition numbers of the matrices become very large when the domains under
consideraton are very small. In order to overcome this difficulty, this paper employs the following
coordinates transformation technique. The same technique has been already presented by Jirousek

[6].

e The domain is moved so that the origin is placed in the centroid.

e The domain is scaled down so that the average distance between the centroid and the collocation
points is equal to unity.

Using this scheme, the coordinates of the collocation point in the original system (zi,y;) are trans-
formed to:
Ti— I . _Yi—y
Ty = : . ) i == J'D—C) (12)
where z. and y. are the coordinates of the centroid in the original system, and D is the scaling
parameter. Morover,
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3. ADAPTIVE PLACEMENT SCHEME OF COLLOCATION POINTS

3.1. Error estimators
3.1.1. Problems with Dirichlet or Neumann condition

Since in the Elemet-Free Trefftz method, the residuals vanish only on the boundary collocation
points, residuals appear on the other boundary points. Therefore, the residual distributions on
the boundary give a good estimation of the errors. In our previous study [9], we have defined the
following error estimators for the Dirichlet problem:

1
m=1 [ Bidr, (13)

2 1 2 1 L3 2
" =E/FRudI‘=ZZLmi, (14)
3=

where 7; is the local error estimator, which estimates the error distribution on the boundary seg-
ment, and 7 is the global error estimator. I'; denotes the boundary segment between the collocation
points P; and Pit1. L and L; denote the lengths of I and T, respectively. Numerical investigations
show that these estimators lead to a good error estimation for the Dirichlet problem.

As the extention of the above estimators, we can define the estimators for the Neumann problem:

1
nf:f/pRng, (15)

9 1 2 14 2
n :Z/qudF:ZZLmi' (16)
=1
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Although the numerical investigations are not performed, one can easily predict, from the results
of the Dirichlet problem, that the above estimators will give good results for the error estimation
of the Neumann problem.

3.1.2. Problem with complex condition

As the extention of the above estimators, we can define the estimators for the problem with the
complex condition:

. /Rﬁdr on Ty,
r;
w= T (17)
/F'Rgdl‘ onT,.

In this case, there exist two errors: the potential and flux errors. Therefore, we must introduce the
weight parameters.
The residuals of the boundary conditions are defined by Eq. (7), i.e.,

R, = atu® — i,
(18)
R, = alq* —g.

The functions are approximated by N terms of the T-complete functions. Therefore, the truncated
terms lead to the residuals and their maximum components are the (N +1)-th terms. We shall
represent the residual by its maximum components:

Ry~ (Ru)max = aN+1'U'7V+1 ) (19)

Rq = (Rq)max = aN+1Q7V+1 : (20)
Taking the square of both sides of the Eq. (19) and substituting Eq. (3), we have

|Ryl? = |GN+1U*1\/+1|2=¢1?\r+1[TNH@(NH)G}2

_ 2 2N+l
=an+1T ki)

and
|Ru| = lan41|r™V 1. (21)

In the same manner, taking the square of both sides of the Eq. (20) and substituting Eq. (4), we
have

|Rq|2 =~ |aN+1q}‘v+1|2=a%v+1[(N + 1)rNeNo(n, + jrng))?

=a%v+1(N -+ 1)2r2N(1 - r2)
and
IRy = lan41|(N + 1)rN /1 + 72, (22)

where n, = dr/dn and ny = 96/0n.
From Eqgs. (21) and (22), we obtain the following relation between R, and R;:

lRu| " T / T

Bl ~“WN+)vize SV ige




352 E. Kita, N. Kamiya and T. Nomura

where o and o' are constants. In the present scheme, since the number of T-complete functions is
constant during the adaptive process, N+1 is included in the constant o’.

Using the above relation, we can define the error estimators for the problem with the complex
condition:

: /\/1+r2|Ru|dF -
T;

(24)
; /r|Rq]d1" onTly,
I

1 M
L =1

3.2. Adaptive process
The flow of the adaptive process is as follows:

(1) Input initial data.

Input the following initial data; the profile and the boundary condition of the domain under con-
sideration, the initial placement of the collocation points and the number of T-complete functions.
(2) Trefftz analysis.

Perform the Trefftz analysis to determine the potential and the flux distributions on the boundary.

(3) Error estimation.

Calculate the global and local error estimators from Egs. (24) and (25).

(4) Convergence judgement.
Estimate the convergency criterion. The criterion is given as
n<e, (26)

where ¢ is a parameter, which must be specified by a user in advance.
If the criterion is satisfied, the process is terminated. If it is not so, the positions of the collocation
points are refined.

(5) Refinement of placement of collocation points.

The refinement of the placement is performed so that the new collocation points are added in the
center of the elements with the larger local error estimators than the global one. This operation is
similar to the h-adaptive schemes of the finite and the boundary element methods. Therefore, we
shall call this scheme the h-adaptive scheme of the Trefftz method.

After the refinement, the process goes to (2).

4. NUMERICAL EXAMPLES

We shall consider two-dimensional potential problem. The performance of the present method is
estimated by the global error estimator n and the average residuals R; and Ry, which are defined
as:

1 1
Ri=— [ |RJdT, Ry=— r,
1= [ 1Rddr, R, Lq/pq'Rq'd

where L, and L, are the lengths of I', and I'y, respectively.



H-adaptive Element-Free Trefftz method 353

The performance of the adaptive scheme is discussed by comparing with the results of uniform
placement of the collocation points. In the following numerical results, the results obtained by means

of the adaptive and the uniform schemes are referred to the labels “Adaptive” and “Uniform”,
respectively.

4.1. Example 1

The region and the boundary conditions of the first example are shown in Fig. 1. The initial
placement is constructed by 12 collocation points: the coincident collocation points at each corner
point, and the other collocation points in the center of each segment. The number of T-complete
functions is 10, which is invariant during the process.
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Fig. 1. Example 1

Figure 2 shows 7, R; and Ry versus the number of the collocation points. 1 decreases with the
increase of the number of the collocation points. Although R; is larger than Ry in the initial place-
ment, R; converges faster than Ry. Figures 3 and 4 indicate the placements of the collocation
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Fig. 2. Global error estimator and average residuals
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Fig. 3. Placement of collocation points Fig. 4. Potential and flux distributions

points and the function distributions at each iteration, respectively. It is seen from Fig. 3, that
when most of the new collocation points are added on the upper segment, their number on the
left-hand segment is invariant during the refinement. Figure 5 shows the convergence curves of the
global error estimators obtained by the adaptive and uniform schemes. This figure indicates that
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the convergence of the adaptive scheme is faster than that of the uniform scheme. Besides, Figure 6
presents the potential and flux distributions estimated by the uniform placement of 132 collocation
points on the whole boundary. Comparing Fig. 6 with the results obtained by the fourth placement
shown in Fig. 4, we notice that both results are very similar, although only 39 collocation points

were employed for computation in the adaptive process.
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Fig. 5. Comparison of adaptive and uniform schemes
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Fig. 6. Potential and flux distributions by fine uniform placement

4.2. Example 2

The second example is shown in Fig. 7. In the initial approach, 19 collocation points are distributed
uniformly on the whole boundary. Besides, the coincident double collocation points are selected at
the corner points. The number of T-complete functions is 10, and it remains invariant during the
adaptive process.

Figure 8 shows 7, Ry and Ry versus the number of the collocation points. n decreases until the
third iteration and then, it begins to increase. This is because the coefficient matrices become ill-
posed according to the increase of the collocation points and the computational errors increase.



356 E. Kita, N. Kamiya and T. Nomura

i
B | 9=0 A
1
M
i u=0
1.0 I
! 0.5
U=t Y i
—— — b —— = —
1.0 | 05
N SR
. i q:
!
|
i
i
c I D
g=0 |
i
Fig. 7. Example 2
-6
0 -5
5 —
-4 o
o
-3 5
s Q
™ —
" 40 — =
o 2 S
X 2
N
c 30 4 g‘
o 10 ®
- -7 “u
= 20— -6 X
_5 )
-4
10 -3

0 50 100 150

Number of collocation points

Fig. 8. Global error estimator and average residuals

Figures 9 and 10 indicate the positions of the collocation points and the function distributions at
each iteration. Figure 11 shows the convergence curves of 7 obtained by the adaptive and uniform
schemes. The adaptive scheme leads to more accurate results than the uniform scheme. Besides,
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Figure 12 indicates the potential and flux distributions by the uniform distribution of 116 collocation
points on the whole boundary. Comparing Fig. 12 with the results due to the third placement shown
in Fig. 10, we notice that both results are very similar, although the results of the adaptive process
are determined by 44 collocation points only.
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5. CONCLUSION

The element-free Trefftz method can solve the problem by selecting the collocation points only on
the boundary when the domains under consideration are governed by linear and homogeneous dif-
ferential equations and therefore, the input data generation is much simpler than the other solution
procedures. However, the computational accuracy is strongly dependent on the placement of the
collocation points. Therefore, this paper has presented the h-adaptive scheme for the element-free
Trefftz method. In this method, the global and local error estimators are defined by the residuals
of the boundary conditions. The refinement of the placement is performed so that the new collo-
cation points are added in the center of the boundary segments whose local estimators are larger
than the global error estimator. The present method was applied to a two-dimensional potential
problem. The numerical results are satisfactory and therefore, we can conclude that the validity of
the present method was confirmed. We are planning to improve the refinement scheme in a further

study.
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