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The paper presents modelling of optimization process of thin-walled structures such as vertical cylindrical
reservoirs subjected to pitting corrosion. The problem is formulated in terms of nonlinear mathematical
programming. The function which is a product of its constituents is accepted as the optimization criterion.
The choice of an optimal thickness of the reservoir shell along the height is determined from the conditions
of its equal reliability.

1. INTRODUCTION

The surfaces of reservoir under pressure of a liquid and those operating in a corrosive medium are
often subjected to pitting corrosion. In this case it is rather important to carry out an estimation
of the strength and reliability of the structure, because the development of at least one corrosion
pit which gives rise to a substantial hole causes the loss of its service capability and leads to serious
emergency consequences. On the other hand, as mentioned in [1], reservoires occupy the leading
place in the volume of construction and in the amount of steel used for it. For this reason the
problems of increasing their strength decreasing the weight of metal and the amount of labour for
their manufacture are urgent. The development of a probability model of failure for thin-walled
structures due to pitting corrosion was presented in [2]; it was supposed that the initial pitting
size distribution along the surface of the structure and the time of appearance of the first hole are
normal variates. Optimal design of type of structures using the criterion of average expected utility
was discussed in [3].

2. FORMULATION OF THE OPERATION PROBLEM

The paper presents the modelling of a comprehensive approach to the design of optimal structures of
this class from the utility point of view and the degree of the relation to its components. The product
of the average expected utility function [4]: U(X) = B(X) — H1(X) — L(X) and characteristic
coefficients of its constituents is accepted as an optimization criterion for the cylindrical shell

F= U(X)M(K’B)“(K’Hl)ﬂ(Ka L), (1)

where X is a vector of variable parameters (from the set of structure states K); B(X) — average
income expected from the service during its design period of life T' with regard to a possible failure
at the moment of time tg,; < T; H;(X) — the initial cost, L(X) — damage due to the failure of
structure u(K, B), u(K, H;) and pu(K, L) are characteristic coefficients or membership functions of
the design (their values vary within the range [0,1]) which define the degree of the compliance of
the structure with the present optimal parameters of the income, initial cost and loss, respectively.
Modelling of this type of membership functions depends on the priority of every constituent factor
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of the utility function. In this case they are equivalent, and the membership functions are accepted
as follows:

0, if B < Buin,
p(K,B) =4 1/2+1/2sin{n[B — (Bopt + Bmin)/2]/(Bopt = Bmin)}, if Bmin < B < Bopi,
1, if B > Bops.
17 if L S Lopta
p(K,L) =4 1/2—1/2sin{w[L — (Lopt + Lmax)/2]/(Lmax — Lopt)}, if Lmax < L < Lmax,
0, if L > Lpax.
11 if Hl S Hopt>
,U,(K, Hl) 8= 1/2 s 1/2 Sin{W[Hl S (Hopt + Hma.x)/z]/(Hma.x s Hopt)}, ifI{opt S Hl S Hmaxy
07 if Hl > HmaXa

where Bmin, Lmax and Hpay are minimum and maximum permissible values, Bopt, Lopt, and Hopg
are suboptimal values of the income, loss and initial cost of the tank adopted by the designer,
respectively.

The purpose of the optimization task is to find the vector of the structure parameters X,p; that
maximizes the function (1) with limitation of the reliability:

[F = UX)u(K, B)u(K, L)|u(K, L)] = max, P(T)2= P, (2)

where P(T') — the reliability, P, — the value of assumed reliability.

The vector of variable parameters X is assumed as follows: X = {z1, z2}T = {n, T}T, where
n — the number of constant thickness belts (sheets) into which the reservoir is divided; T —
designed service life of the reservoir. The reservoir is under the influence of the hydrostatic internal
pressure of a liquid, corrosive medium (such as petroleum products) of density p. The general
reservoir dimensions: radius R and height H are known.

3. CALCULATION METHODS

Let us show the determination of the values included in (2). Income and loss due to the failure of
the structure will be modelled according to [3]:

T
B(X) = /0 BO(#)pran(t) dt, )

where: B(t) = b(1 — e™")/r — income; b — annual income in the case there is no failure; r =
In(1+7'); r' — interest on the capital;

Prail(t) = Prgyt(t) = [1 = P(t)]' (4)

is density of the failure probability of the structure during the period of its service.
The average value of losses (or a loss due to failure) up to the present time is modelled similarly:

T,
L(X) = /0 LO(t)pran(2) dt, (5)

where: LO(t) = Lie™™ — losses; Ly — total damage evaluated before the structure entered into
service.



Optimization of cylindrical shells 363

The initial cost of the structure is determined as [1]:
Hy(X) = C3+ Cn, (6)

where C3 = Com + C;i + Cp, — manufacturing cost; Com = 1.07(3" CrpiknpiGi + 1.5G) — cost
of the materials; Cyp; — wholesale price of sheets for the i-th part of the cost of main structure;
G; = 2nRh;H~y/n — weight of the i-th part; C; = Cop + Cep + Cy = 0.62v/Gn — cost of the
manufacture structure; Cop, Ccp, Cn — cost of machining, erection welding and rolling; C;, — cost
of structure, FOB destination Cp, = 1.1406[(Com + C;)1.0054 +2.66]; Ci, = 0.641v/Gn — cost of
assembling the reservoir.

Now let us determine the function of the shell reliability included in (2). The reliability of the
shell structure is the probability of a random event consisting in the fact that no pitting formation
will exceed the permissible level — in this case, the thickness of the sheet — during the present
period of its operation 0 < ¢ < T'. The equation of corrosion is modelled in the form:

dl;/dt = a + fo;, (7)

where [; — current depth of pitting; o and 8 — constant coefficients; o; — effective stress in the
i-th sheet. The solution of the equation (7) if: t = 0, I; = ly;, is as follows:

li = loi + (a + Boy)t = lg; + bit.

If we take the initial depth of pitting lp; as a random value with a normal density q(ly;) =
exp[—(loi — loi)?/ 20[2()i] ¢ \/ﬂalm and take into account that b; is a constant value, then [; is a fixed
random value. In this case the probability that no pitting will exceed the thickness of the i-th sheet
h; (taken as a constant value) is determined as follows [5]:

h;—b;t _
Pi* = 1/,/27!’0’101. / exp[—-(l()i - lOi)2/20'l20i] dlp; = 0.5 + <1>(a,-),
—00

- a;
where a; = (h; — bit — loi) /01, ®(a;) = 1/\/211'/ e~*'/2dz — Laplace integral.
0

If we denote the total number of pitting formations on the surface of the whole reservoir by N
and assume the thickness along the height of the shell in such a way that the reliability of each
sector is constant (equally reliable), then the reliability of the whole reservoir is determined by the
expression:

P= ().

Assuming the permissible level of reliability P, and the total number of pitting formations, it is
easy to calculate the required values of thickness h; complying with the principle of equal reliability
of the reservoir. In this case: P} = (P,,)l/ N and ¢ = q; = (hi — byt — lo;)/o1,, = const, where a is
found from the condition:

(PN = ®(a).
Taking lo; = c1hs, O1; = C2h;, we get:
a= (h; —crh; — bit)/c2hi, b = o+ Bo;. (8)

As the effective stress in the i-th sheet is 0; = pHiR/nh;, the unknown quantities h; are determined
as follows: h; = K+\/k? +p,i =1,...,n, where k = at/2(1—c; —c2a); p = BHipRt/n(1—c; —ca).

Having determined the function of reliability and having substituted the value pg,j in (3) and
(5), obtained according to (4), we can find the expressions of the income and the damage due to
the failure of the structure:
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B(X) = bN {[0.5 - ®(a)] — e +*4/2(0.5 — @(a — a1)]} /r. 9)

L(X) = LyNe 1 +e1/2[0.5 — &(a — ay)], (10)

where b; = rhi(1 — ¢1)/bi, a1 = reahi/b;. It is necessary to note that a; = const and b; = const at
any value of its results from the Eq. (8).

Having calculated the current value of B(X), H;(X) and L(X), we turn our attention directly
to the reservoir optimization.

In case of complex, multiextremal tasks of nonlinear programming such as (2), it is advisable to
use one of the effective algorithms of the random search method [6]. This algorithm, based on the
global random search, uses the idea of the controllable selection of test points and multiple lowering
to the local extreme. The algorithm and the program differ from a similar kind of algorithms by
the method of modelling the prospective direction of the search. The process of the random search
realized in the program is described in the form:

s, it F(XED) <r (X)),
XD _x® L5y 52] ¢
el s L nS, it F(XE) > p ().

Here 3 — is a single random uniformly distributed vector; y; > 1;v2 < 1;791y2 > 1 — constants of
tension (contraction) of the search hypercube S;p = {1,2, ..., L,} — number of random realizations

of vector X¢ at constant S; signs £S5 — denote the realization of the double return of the test

random point X.g;i(()k) — parameters corresponding to the lowest value obtained at k-th stage of

the search F (ng)).

4. DESIGN EXAMPLE

As an illustration let us consider the optimization of the reservoir model having the following
initial data: R =2 m; H =4 m; N = 48; a = 0.06 cm/y; p = 0.8 - 103 kg/m3; ¢; = 0.2; ¢ = 0.01;
S b0 b 10% L = A10% ¢! =ik0%; Bl = 1200; Bry = 8001 Ligey = 10} Lot = 5
Hiax = 250; Hope = 180.

Four values of different coefficients of correlation between the corrosion and stress 8 have been
modelled: 3, = 0.085 cm3/T-year; B2 = 0.17 cm3/T-year; B3 = 0.24 cm3/T-year; B; = 0.34
cm?/T-year. The assumed ranges of the variable parameters are: 2 < n < 10; 5 years < T < 40
years.

The results of the numerical experiment on the optimization of reservoir shell are given in the
Table 1.

Table 1
p n T hy hn B(T7X) Hl(x) L(T’ X) U(Ta X) ﬂf’) N(K>B) lu‘(K7 L) :U(K> Hl) 4
cm? i
] B el e =]

0.085 10 2793 2.191 2.194 969.77 217.62 7.08 745.06 0.085 0.3824 0.6304 0.4413 79.263
0.17 10 27993 2.197 2.2  969.45 218.25 7.11 744.08 0.17 0.3812 0.6212 0.4272 75.27
0.25 10 28.094 2.205 2.21 969.42 219.16 7.11 743.14 0.25 0.381 0.6204 0.407 71.52
0.34 10 28.08 2.204 2.213 968.5 219.21 7.2 742.09 0.34 0.3776 0.5936 0.406 67.53

5. CONCLUSION

It is evident that the increase of the coefficient 8 has little influence on the optimal thickness of
the reservoir (this is connected with the fact that the effective stresses in it are small). Thus, the
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optimal service life of the reservoir is T'= 28 years, when the number of constant thickness belts n
in all variants achieves its maximum. Due to this fact, the change of thickness h; along the height
found from the principle of equal reliability of the reservoir shell, is practically insignificant.

The use of the principle of equal reliability allowed to eliminate in optimization the limitation
of reliability given in the statement (2). In conclusion, we can note that the type of characteristic
functions and the limits set in them can be corrected in the course of search for optimal decisions.
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