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This paper discusses the effect of deformation-sensitive loading devices. The nature of loading is generally
not perfectly dead, namely, it is not perfectly independent of the occurring deflections. However, the surface
tractions or body forces can show some variable characteristics, depending on the actual displacements
and causing changes in the classical equilibrium and stability behaviour of the structure. The present
analysis concerns the influence of deformation-sensitive loading devices on the structural tangent stiffness.

The configuration-dependent loading devices can be characterized by some load-deflection functions,
similarly to the material behaviour characterized by stress-strain functions. The effect of loading seems
to be similar to that of the material and consequently, the nonlinear loading processes can be handled
similarly to the nonlinear materials in the equilibrium analyses of structures. Thus, we can find that in
the tangent stiffness of the structure, beside the tangent modulus of the material, the tangent modulus of
the load appears.

In this paper, the tensorial approach is followed by application to discrete model and the paper is
concluded by numerical examples.

1. INTRODUCTION

Loading devices are analysed in [14, page 188] where dead, rigid and semi-rigid loading devices are
distinguished. Dead load is a force type-loading, rigid load is a displacement-type loading, while
the semi-rigid load means a mixed loading.

Fundamental aspects and classification of loading types are discussed in [1, pages 207 and 224] by
distinguishing the term “dead” and “variable” load. Variable conservative loading process assumes
the applied load to be dependent on the occurring deflections, but independent of the properties
of the structure. This kind of loading device can be specified by a load-deflection function. Here
we focus on that type of a variable load, when the force-type loading device is governed by a given
load-deflection function.

Dead-type loading device assumes the applied load to be independent of the occurring deflections
of the structure, namely, it is characterized by a constant load-deflection diagram. Naturally, in this
case, during a loading process, the load F can be increased or decreased by a scalar load parameter A,
namely F' = F(A) = AFy, thus dF = (dF'/dA)d\ = dAFj, while the constant characteristics of the
load—deflection function is changeless (Fig. 1a).

Variable or configuration-dependent type loading assumes the applied load to be dependent on
the occurring deflections, characterized by a variable, linear or nonlinear, load-deflection diagram.
In this case, F' = F(\,u) = AFy + f(u), namely, the load is divided into two parts: the controllable
part AFy governed by the load parameter A, and the deformation-sensitive part f(u) specified as
a linear or nonlinear function. During a loading process, the controllable part of the load can be
increased or decreased by the load parameter A, while the original characteristics of the load-
deflection function of the deformation-sensitive part is changeless (Fig. 1b and c¢). In the case of
a linear variable load, the load function can be specified as F = F(\,u) = AFy + fiu in which
fi = f is the constant load modulus, consequently dF = (9F/0A)dA + (0F /0u)du = dAFy + fdu
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(Fig. 1b). In the case of nonlinear variable load, the load function is F = F(\ u) = AFy + f(u),
thus, similarly to the nonlinear material, incremental analysis is needed, based on the load tangent
modulus f, (Fig. 1c).
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Fig. 1. Configuration-dependent loading

We are concerned with isothermal deformations of a time-independent solid body subject to a
quasi-static loading program. The body may be inhomogeneous but any material property is always
assumed to vary smoothly with place. Let us assume that the body in the initial configuration
occupies a spatial domain Vj and is bounded by the smooth surface Sy.

In order to develop the incremental analysis modified by nonlinear variable load, nonlinear state
variables are specified. Let us consider, in the Lagrangian description, Sj; as the second Piola-
Kirchhoff stress tensor and E;; as the nonlinear Lagrange-Green strain tensor. Let the material be
described by a nonlinear material function S;j(Emy), then

C].S:'j =1 BEH dEy = D:'jk{{Emn) dEy, (1)

where iju(Emn) is the instantaneous material tangent modulus tensor, by means of which the
nonlinear material behaviour can be handled in an incrementally linear form.

Let us assume that in the volume Vj the body forces F; are applied, on a nonzero part Spg of
the surface Sy the surface tractions P; are given, while on the remaining part S,¢ the displacements
v; are given. Let us assume the scalar loading parameter A to be varied continuously and infinitely
slowly in time. An initial equilibrium state of the body at a certain value of A is regarded to
be known. Thus, for dead load we have F; = F;(\) = AFy;, and P; = Pi(A) = AFPy; consisting
of controllable parts only, while for variable load these functions are completed by the linear or
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nonlinear functions of the deformation-sensitive parts of the loading, namely F; = F;j(\, ux) =
AFyi + fi(ug) and P; = P;(\,ug) = APy + pi(ug). In the case of linear loading functions, we
can specify fi(ux) = miju; and p;(ux) = njju; where tensors m;; and n;; are independent of u,
containing constant volume and surface load moduli, namely the load constants, like the Young
modulus of the linear elastic materials. By applying nonlinear variable load, similarly to the material
in (1), we need incremental form expressions

aFi(’U:k,A) BFi(Uk,)\)
= A SV A — T L dys =d) Fy; + ME ;e
dF, o+ Bz duj = d Fo; + MY (we) du; )
OP;(ux, A) OP;(uk, A)
dP; = —-"a/\—d}\+ Tjdu_j =dA PDi+ij(uk)de,

where the tensors M"f7 (ur) and N%- (ur) represent the instantaneous load tangent moduli by which
the structural tangent stiffness will be modified.

2. PRINCIPLE OF INCREMENTAL VIRTUAL WORK APPLIED TO
CONFIGURATION-DEPENDENT LOADING

Based on the difference of the n-th and n+1-th equilibrium configurations, the linearized incremental
form of the virtual work for any type of loading reads [2, page 129]

/ dS;; 6E;; dVo + f Si; A6 By; AV — / dF; 6u; dVo — [ F;déu;dV
Vo Vo Vo Vo

—f AP dSy — | P abigdSy =0. (3)
Spu SpB

By taking the incrementally linear constitutive transformation (1) into account, in the case of dead
load, the above expression takes the form

/ dEy; Diju1 6By dVo + / Si; d6E; dVo — A / Fyoddu; dVp — A / Py ddu; dSo
Va Va Vo Spo

—dA/ Fu 6u; dVp — d,\/ Py 6u;dSo =0, (4)
Vo Spu

where the operations “d” and “0” represent the first increments and variations, respectively.

If we apply any configuration-dependent load, the corresponding energy functionals can be defined
provided the loading to be conservative in an overall sense [11]. This means that for a fixed value
of the load parameter ), the total work done by the body forces F; = AFy; + fi(ux) and the surface
tractions P; = APy; + pi(ux), in any virtual motion compatible with the kinematic constraints and
leading from the given configuration u to any sufficiently close configuration ug + duy is assumed
to be path-independent, that is, for A = constant,

wp+duy wp+dug

/ f (AFio + fi(ug)) dug; dVp + f [ (AP + pi(ur)) dus dSo = Qug, A) — ug + dug, A),

Vo Uk Spo Up

(5)

where the functional Q(uj,A) can be identified with the potential energy of the configuration-
dependent loading device [10]. Consequently, any variational principles, or energetical approaches
to stability analyses, moreover, the uniqueness and bifurcation conditions, can be investigated on
the basis of the classical functionals modified by additive terms only.
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By considering a general nonlinear configuration-dependent loading specified by the functions
F; = AFy0 + fi(ug) and P; = APjp + pi(ux) and by using the incrementally linear load moduli (2),
the incremental equilibrium equation (3) is modified to

/ dE;; Dijt 6B dV + / S; d6Ey; dVo
W Vo

—[ (A Fyo + fi(u)) daufdvo-fs (A Pio + pi(us)) déus dSo
p0

Vo

—] (dA Fyy + Mij de) du; dVy — /S (d/\ Py + N,;j duj) du; dSy = 0. (6)
Vo p0

By selecting the controllable and the deformation-sensitive parts of the loading, the classical and
the additive terms can clearly be distinguished

/ dE,;j Dijk! 0EL, dVy + / Sx'j dé‘Eij dVp — )\/ Fiodéu; dVpy — /\[ Py dou; dSy
Vo Vo Vo Spo

—dA | Fjgou; dVy — dA Pjg 0u; dSy
Vo Spo

- duj M,;j du; dVy — / duJ' N,‘j du; dSp — / fiddu; dVy — j pi ddu; dSy =0, (7)
I'U Spo VD SPU

where the effects of the deformation-sensitive parts of the loading are represented in the last row
of the expression. Here f; = fi(ux) and p; = pi(ux), similarly to S;; = S;j(Ex). In the case of
linear configuration-dependent loading with fi(ux) = msju; and p;(ux) = njuj, in the last row of
expression (7) constant load moduli M;; = m;; and N;; = n;; appear.

Petryk in [10] summarizes the conditions of bifurcation and stability related to materially non-
linear bodies approximated by incrementally linear materials. In the case of dead load where the
load increments are independent of the actual displacement field, in the current equilibrium state,
the uniqueness of the first-order solution, that is, the bifurcation in the displacements is excluded
when

L dE;j Dijri 0Eg dVp > 0. (8)
b

In the case of configuration-dependent loading, the uniqueness condition is completed by the effect
of the loading moduli

/ dE,'j Dijkl (5EH dVg = / duj Mij (S‘U.i dVg = / de Nij 6‘0@ ClSo >0. (9}
Vo Vo Spo

It seems to be evident that the deformation-sensitive part of the loading plays a similar role to that
of the material, except for the signs. In contrast to the material terms, the load terms are negative.
Thus, we can state that the material and loading tangent moduli can influence the uniqueness of
the first-order solution, namely, the bifurcation of the displacements, and moreover, the stability of
the equilibrium state and process, that is the definiteness characteristics of the structural tangent
stiffness, in an opposite way. For example, while material softening has a destabilizing effect, load
softening helps to maintain stability and conversely.

In order to modify the structural tangent stiffness with respect to the deformation-sensitive
loading, the discrete structural model has to be introduced.
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3. DISCRETE STRUCTURAL MODEL

To construct the discrete model, generalized coordinates must be introduced. If the kinematic
state of the structure can be characterized by number n of independent kinematic parameters
q = {¢;}, these parameters are used as generalized coordinates of the given numerical model. Then
the displacements can be expressed in terms of the generalized parameters as follows

u1(X, q) w1 (X1, X2, X35 q1, 925 -+ Gn)
u=u(X,q) = | u(X,q) | = | ua(X1, X2, X35 91,92, .-, ¢n) | » (10)
(3) (3)

u3(X,q) usz( X1, X2, X35 q1, @2, -+ qn)

where X are the coordinates of the geometric space and q are the coordinates of the function space.
Since nonlinear geometry is considered, functions (10) are nonlinear in q.

In the case of a finite element model, after dividing the body into subdomains named elements,
the generalized coordinates, as a consequence of the division, form the displacement values at the
nodal points. In the case of geometric linearity, the variables X and q in (10) can be separated by
the linear combination

ui =) qrp(X) (11)
k=1

which leads to the classical basic expression of the linear finite element displacement method

u(X,q) =N(X)q, (12)
(3) (3.n) (3)

where matrix N contains the basis functions ¢(X). In the case of geometric nonlinearity, the direct
separation (11) can not be applied, and the solution generally leads to iteration. In such cases,
incrementally linear analysis is needed, so that the increments du of the displacements u can be
expressed in the form of a linear relation in terms of the increments dq.

The first order increment and variation of the displacements are

du={W}dq=H(x,qJ dq, au={w} sq =H(X, q) 6a, (13)
3) 9 @a)  m @ 9g; (3.0)

where the matrix H of 3 x n elements contains the first derivatives of the displacement functions
with respect to the generalized coordinates q. Thus, the incrementally linear relation in (13) can
be considered as the basic relation of the nonlinear finite element displacement method.

Taking into account that the generalized coordinates q are scalar parameters, thus, their incre-
ments have only the first order terms, that is Aq = dq and d?q = 0, we can assume that §dq = dq
and ddq = dq, consequently

0ui(X, :
déu = ddu =dq" {—aiFa—ql} dq = 6q" W(X,q) dq, (14)
(3) (3) 409k (n)  (n3n) (n)

where the three-dimensional matrix W of measure n x 3 X n has a cubic arrangement, by containing
the second derivatives of the displacement functions with respect to the generalized coordinates q.
This matrix represents the nonlinear geometry, since for the variation of the displacement incre-
ments the second derivatives of the displacement functions are needed.

By expressing the nonlinear Green-Lagrange strains in terms of the displacement gradients, for
the discrete version we use the form

E=E(u(X,q)= A-u+ 1 C(u) B(u), (15)
(6) (6) (6,3) (3) 69) (9
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where A, C(.) and B(.) are differential operators with respect to X, since A - u, C(u) and B(u)
represent the displacement gradients. Namely, expression (15) in a detailed form is as follows:

- T -
- .8 1 O%.. D
[ By ] 9 0 = 0
Fye . 0Xy ’ 0X2 [ B_U ]
z 0 i 0 0 E X,
b B3z | 0X3 u+~1- 0X3 | | Ou (16)
B 2E12 - i ._‘?_. 0 E E 0 6X2
. 8X; 0X; X, 0X, Ou
13 KR § 9 uT 3 uT L 0X3 |
2E23 6)(3 3.}(1 3—)1'3 ‘Eﬁl
L 3 2 = L 6X3 3X2 -

The first term A - u represents the linear, while the second term C(u) - B(u) forms the nonlinear
part of the strains, since the strain nonlinearity is related to the displacement gradients. Note that
in the case of a linear finite element approach (12), the first term Au = ANq is used only.

Consider now the required increments and variations of the strains. The first order terms of
them are as follows

dE=[A- H+ C(u)- B(H)]dq and dE=[A- H+ C(u)- B(H)| iq (17)
(6)  (63)(3n) (69)  (9n) (n) (6) (63)(3n) (69)  (9n) (n)
which do not vanish even if the strains are linear. However, the variation of the increment (or,
equally, the increment of the variation)
déE = 6dE = 6q"[A- W + C(H)- B(H) + C(u)- B(W)] dq (18)
(6) (6) (n) (6,3) (3,n;n) (n,6,9) (9,n) (6,9) (9,n,n) (n)
needs either nonlinear strains or nonlinear displacements. Namely, in the case of strain linearity
with geometric nonlinearity, if E = Au and W # 0, the strain increments and their variation
take the form dE = A - Hdq and d0E = 4dE = 6q*A - Wdq. On the contrary, in the case of
strain nonlinearity with geometric linearity, we have dE = [A - H + C(u) - B(H)] dq and déE =
6dE = dq'C(H) - B(H) dq. Obviously, the case of both strain and geometric linearity results in
dE = A - Hdq, and consequently ddE = §dE = 0.
Using the constitutive law S(E), the stresses can be expressed in terms of the generalized coor-
dinates, too. Representing a nonlinear material by the nonlinear function S = S(E(u(X,q))), for
the incrementally linear constitutive law (1) we obtain

0S;(E
dsS = { 61'57 )} dE; =D((E) dE, (19)
(6) i (6,6) (6)
where the quadratic matrix Dy(E) contains the actual material tangent moduli, the scalar elements
of the fourth order tensor Dﬁjk!(Emﬂ), as a consequence of the vector-arranged stress and strain
tensors.

Let us consider now the load variability. By having a configuration-dependent load prescribed
by a nonlinear loading function, for the discrete form of the loads we obtain the vectors

F = F(u(X,q)) = A\AFp+f(u(X,q)) and P = P(u(X,q)) =Py +p(uX,q)), (20)
(3) (3) (3) (3) (3) (3) (3) (3)
where both functions are nonlinear in u. By applying the concept of incremental linearity to the
loading as well, the incrementally linear loading (2) can be introduced in a discrete version

dF =d\Fy+ M;du and dP =dAPy+ M;du (21)
(3) (3)  (3,3) (3) (3) (@) (3) @)
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where the matrices

M, = {M} =M,;(u) and N, = {8?(1:)} = N (u) (22)

Ouy U

represent the loading tangent moduli related to the deformation-sensitive part of the loading.
By using the matrix form of the state variables, the incremental equilibrium condition (7) can
be obtained in a matrix form

dETD, 6E dVp + [ STdSE dV,
Vo Vo

—| da"™™, dudVp - A [ FldéudVp— [ £Fdéudy,
Vo Vo Vo

_[ du™,éudSo— [ PTdsudSs— f pT déu dSp
Spo

SP[] SpO

—ax [ FTsuavp - dA/ PT 6udSy =0 (23)
Vo S

from which, by substituting the expressions of the state variables in terms of the generalized co-

ordinates and their increments, the tangent stiffness matrix modified by variable loading can be
obtained.

4. MODIFICATION OF THE TANGENT STIFFNESS DUE TO
CONFIGURATION-DEPENDENT LOADING

By substituting (13), (14), (17) and (18) into (23), the linearized incremental equilibrium equation
modified by the configuration-dependent loading is obtained as

5q" {/VO [(H"AT + B(H)TC(u)") D, (C(u) B(H) + AH)| dV;
2 /V [S™ (AW + C(H) B(H) + C(u) B(W))| d¥;

- f HTM, H dV; — f HTN, H dS,
A

o SpD
—| f'wav, - | pT™WdS, -\ / FIWdVy- )| P{W ng} dq
Vg SpU i-'g‘_l Sp()
—dq" {dA / HTFo dVp + d) / H'P ng} =0 (24)
Vo Spo
which is equivalent to the scalar equation
5qT Kidq - dq* dQ =0, (25)

and if we assume dq to be arbitrary, it leads to the system of incremental equilibrium equations

K,dq=dQ. (26)
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Here K is the tangent stiffness matriz, namely

X =/ [(HTAT+ B(H)TC(u)T) D, (C(u) BH)+ A H )] dVy
(mm) Vo L\(n3)36) (n9 (96 / (66)\ (69) (9n)  (63) (3.:)

4 [s’f (A W + C(H) B(H) + C(u) B(W))l dV
Vo [(6) \(6,3) (3,n,n) (6,0,9) (9,n) (6,9) (9,n,n)

A FE W dVy—-X[ PJ W dS,

Vo (3) (3,n,n) Spo (3) (3,n,n)
[ 5H'M, H dVg—/ BTN, HdS,— [ T Wave— [ p® WdS (27)
Vo(n,3)(3,3) (3,n) Spo(n,3)(3,3)(3,n) Vo (3)(3,n,n) Spo (3) (3,n,n)

and dQ is the load increment, that is

dQ=dx/ H'FJ dVo+dr[ HTP] dS,. (28)
(n) Yo(n,3)(3) 5po(n,3) (3)

This is the basis for the Newton-Raphson iteration procedure to be discussed later, according
to [12].

Here we interpret the structural tangent matriz in the sense of the system gradient matriz
described in [3], containing the terms related not only to the material and geometry but also to
the loading. In this meaning, the first three rows in (27) concern the classical tangent stiffness
(system gradient) matrix of full nonlinearity, while the last one represents the modification due
to configuration-dependent loading. The first row in (27) concerns the material, named material
tangent stiffness, represented by the material tangent modulus

Kipmpe = l(HT AT B(H)TC(u)T) D, (C(u) BH)+ A H )l dvp, (29)
(n,n) Vo [ \(n3)(36) (n9) (96) / (66)\ (69) (9n)  (63) (3;n)

while the second row concerns the geometry, named geometric tangent stiffness, represented by the
geometric and strain nonlinearities, namely

K poom: = [ST (A W + C(H) B(H) + C(u) B(W))] dVy (30)
(n.n) Vo [(6) \(6:3) Bmm) (619 (9m) (69 (9nn)

The third row in (27) contains the effect of the classical controllable (dead) part of the loading,
named dead load tangent stiffness, as

Kidioad = A Fl W dVp+ A P; W dS,. (31)
(n,n) Vo (3) (3,n,n) Spo (3) (3,m,n)

The last row represents the effect of the deformation-sensitive part of the loading, named variable
load tangent stiffness, as

Kt,vload Z/ HT M; H dV; + HT N; H dSp + fT W dVy + pT W dSp. (32)
(n,n) Vo(n,3)(3,3) (3,n) Spo(n,3)(3,3)(3,n) Vo (3)(3,n,n) Spo (3) (3,n,n)

Notice that the first two terms in (32) with the load tangent moduli are similar to the material
tangent stiffness (29) with the material tangent moduli, while the last two terms in (32) are similar
to the geometric stiffness (30) with the actual value of the material function and the geometric
nonlinearities. Through these expressions, it is obvious that the variable load plays a similar role
to that of the material. Thus, the classical tangent stiffness matrix of dead-loaded structure is
completed by the also symmetric terms (32) of a deformation-sensitive loading program.
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The tangent stiffness matrix consists basically of three types of matrices. The first group, ma-
trices A, C(.) and B(.) are differential operators with respect to the geometric space X, applied
to the second group, to the matrices u, H, W which are generated from each other by derivatives
with respect to the function space q. The third group, matrices Dy, My, N; concern the material
and loading characteristics.

In the case of a fully nonlinear approach, the various types of nonlinearities are represented
by the following matrices: geometric type by W, strain type by C(.) - B(.), material type by D,
similarly to the loading nonlinearity represented by M; and N;. Matrix D, is a diagonal one if we
have one-dimensional material functions. Similarly, if we assume each load functions in (20) to be
one-dimensional, M; and N, are diagonal matrices too.

In the case of strain linearity with geometric nonlinearity at the same time, the tangent stiffness
matrix has a simpler form

K.= | HTATD,AHdV, + | STAWdV,
Vo

Vo

-2 FIwdv, -2 PIwWds,
Vb Spﬂ

" f H'M, H dVj — / HTN, H dS, — / fTW dVp — [ pTW dS,. (33)
Vo Spo Vo Spo

However, for geometric linearity with strain nonlinearity, among other load terms, the control terms
would be lost, since in this case

K, = /L {(HTAT + BH)"C(w)") D, (C(u) B(H) + AH)} d¥;

+ / STC(H)B(H)dV, — / H™,HdV; - | H'TN,HdS,. (34)
Vo Vo

Spo

Moreover, in the case of both geometric and strain linearity, (27) is simplified to

K, = / HTATD, AHdVj - / H'™, HdV, - [ HN,HdS, (35)
Vo Vo Spo
depending exclusively on the material and loading muduli, since in this case matrix H contains
constant elements only. Evidently, to investigate stability, in the case of both dead and variable
load, geometric nonlinearity is strictly required.

Generally, from the tangent stiffness matrix, stability conclusions are drawn: stability of an
equilibrium state and of an equilibrium path; these two terminologies are essentially different [10].
Stability of an equilibrium state belongs to a constant load level, while stability of an equilibrium
path, or a deformation process in an equivalent terminology, assumes a variable load parameter.

When an eguilibrium state is analysed, for a fized load parameter A = A, generally by means
of the iteration process based on the system gradient matrix, we determine the equilibrium state
q = q(A). If the solution q, by chance, coincides with a bifurcation point, the determinant of the
tangent stiffness matrix K, = K, (q) associated with the state  vanishes. If K, is positive definite,
the equilibrium state q is stable. If it is negative definite, the equilibrium state q is unstable and
practically unrealizable in a physical system, since in this case a dynamic departure (a snap-through)
occurs from the state. Thus, in the case of state instability, the fundamental pre-bifurcation path
is left dynamically at a fized A [10].

In the case of a deformation process, the load parameter A is variable during the quasi-static
loading program. In this case, even the variations of the load parameter, the functions A(q) of
the equilibrium paths are required. In the case of a n-dimensional discrete problem, the equilibrium
paths form hypercurves in the n-dimensional space. Namely, to each equilibrium equation a function
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Ai(q) belongs, forming a hypersurface in the n-dimensional space of the generalized coordinates q.
Since the equilibrium paths A(q) have to fulfil all the equilibrium conditions, they are obtained as
the intersection of all the hypersurfaces A;(q), resulting in a hypercurve in the space q. Then, by
substituting A(q) to Ki(q, A) in (27), the associated functions K(q) of the tangent stiffness matriz
can be obtained, for qualifying the stability of the equilibrium paths. Thus, on the basis of the
function of the tangent stiffness matrix, the stability of the deformation process can be controlled.
We can find that for the same loading program, there exists a bifurcating branch of quasi-static
deformations at varying A. Thus, in the case of path instability, the fundamental pre-bifurcation
path is left quasi-statically at varying A [10].

In the case of any type of nonlinearity, for the analysis of both an equilibrium state (at constant
loading), or a deformation process (at varying loading), the iteration method is used, based on the
tangent stiffness (system gradient) matrix (27). For classical dead-loaded nonlinear finite element
problems, the Newton-Raphson type iteration methods are discussed by Stein et al. in [12] or
by Doltsinis in [3]. An iteration process consists of different individual iteration sub-processes,
each aims to find the subsequent equilibrium state qp at configuration B, based on the preceding
equilibrium state q4 at A, as seen in Fig. 2a. The general iterative scheme to obtain the geometry
of the deformed structure at the subsequent state is as follows

AQ
system
. gradient
Qi p— ——
Rt
Ul
@
q
q, 99., ’
a)
Q
system !
gradient AQ, Q..(\.q)
~ 29, Jq_ () Qe ' ’?A
system ﬁ 2?
gradient Z
Q 7 4 T
i L&L ® e.@
N o
\\\; /-*'
Q" Q"“(q) Q:lt
ext @
AN
q q
C TR VT TR G 8 B a4y
b) c)

Fig. 2. Iteration processes for dead and variable loading devices
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qi+1 = q + Ki(q:) 7' - AQ(ai), (36)

where K;(q;) is the classical system gradient matrix calculated at the last known state q;. In order
to avoid the calculation of a new tangent stiffness matrix in each step, generally, during an iteration
sub-cycle (between the two equilibrium states A and B), this matrix is kept constant as K(q4),
calculated at the last equilibrium state q4. Thus the recurrence formula reads

Qi+1 = q + Ki(qa) ™' - AQ(qy) (37)

represented by parallel system gradient lines in Fig. 2a. For controlling the convergence, the residual
non-equilibrium forces AQ(q;) are to be calculated in each step, as the difference of the external
and internal forces

AQ(qi) = Qext(qi) — Qint(qi) (38)

illustrated also in Fig. 2a as the vertical distances between the functions Qex:(qi) and Qini(qi)-
For dead load, in a sub-process, the external load is fixed as Qey(q;) = QZ,, thus AQ(q;) =
Qg:t - Qiut{ch')'

Consider now the iteration process of a configuration-dependent loading program. While the load-
ing functions in each iteration sub-cycle are constant, represented by horizontal straight lines in
Fig. la, in the case of variable loading they are changing, as seen in Fig. 2b and c¢ for nonlinearly
hardening and softening loading devices, respectively. Even in this case we can use the same recur-
rence formula (37) and convergence criterion (38), but the terms appearing in them are modified.
Namely, in the iterative scheme (37) the system gradient matrix K;(qa) contains the additive terms
(32) concerning the variable loading; moreover, the residual non-equilibrium forces AQ(q;) in (31)
are extended to the effect of variable loading, represented by the vertical distances between the
functions Qext(qi) and Qine(q;) in Fig. 2b and c.

In the nonlinear finite element realization, the external load and internal stress terms in the
recurrence formula are as follows:

Qext(ai) = f1 AFYH(X,q) dVo + [ NPT H(X,q:)dSy
o p0

+ [ £(a(X, q)" H(X, ) Vo + js p(u(X, q:)" H(X, q;) dSo, (39)

in which the first two terms are related to the classical controllable part, while the last two terms
concern the effect of sensitive part of the loading. The internal effects are the same as in the classical
case, namely

Qui(a) = [ S(E(u(X,q))" (AH(X,q) + Cu(X,q:)) BEH(X, q:))) dVo. (10)

An iteration sub-process is continued until the displacements stabilise or diverge. Displacement
stabilisation will occur if the structure is loaded below its smallest critical load factor, and diverge
above this level. The iteration process can be continued with the applied load progressively in-
creasing, and it is terminated if the structure arrives at its primary eigenstate, by reaching the
generalized limit point of the load-deflection diagram. Petryk in [10] mentioned the term general-
ized limit point related to configuration-dependent loading devices. In a dead-loaded program the
equilibrium path has a classical limit point if it becomes tangent to the horizontal characteristic of
the dead-loaded device (Fig. 3a). According to Petryk, in the case of variable load, the generalized
limit point is met when the classical equilibrium path of dead-loaded structure becomes tangent to
the linear (or possible nonlinear) characteristic of the loading device (Fig. 3b and c). It seems to
be obvious, since in the case of configuration-dependent load, the deformation-sensitive parts of
the loading is added (with opposite sign) to the material-dependent parts of the classical tangent
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Fig. 3. Generalized limit point

stiffness matrix. Thus, at the generalized limit point, the tangent stiffness tends to vanish, if the ma-
terial and loading characteristics have the same tangent. Consequently, the definition of Petryk for
the generalized limit point can be written in an alternative form. That is, the generalized limit point
is met when the generalized equilibrium path of configuration-dependently loaded structure becomes
tangent to the horizontal characteristic of the controllable part of the loading device. Both these
equivalent statements concern the tangent stiffness relations (27) and (28), respectively. Figure 3b
and ¢ show the cases of linear and nonlinear hardening and softening loading devices, respectively.

An alternative definition of the generalized limit point can be given on the basis of an eigen-
value analysis related to the structural tangent stiffness matrix. Also the classical critical load and
bifurcation analyses lead to eigen-value analysis, dividing the tangent stiffness matrix into two parts



Modification of the structural tangent stiffness 379

as
Kt — Kt,str ing /\Kt,load ) (41)

separated into structural and loading effect, respectively, according to Milner in [9], for a dead-
loaded program. To detect bifurcation instability, or the critical load level, the condition

(Kistr — AKy joad) dq = 0 (42)

is fulfilled by performing an eigen-value analysis [9]. The symmetric matrix K, g, in the eigen-
problem consists of Ky mar and Ky geom (29) and (30), respectively, and in the case of configuration-
dependent loading it is completed by the matrix K yj0aq of the deformation-sensitive loading effects
in (32),

Kistr = Kimat + Kt geom — Kt vicad » (43)
while the term K joaq is the same as for dead load (31), namely

K. load = Ky,dioad - (44)
Consequently, (27) leads to

(Kt,mat + Kt geom — Ki vicad — AKy dload) dg = 0. (45)

Milner in [9] analyses the component matrices in (42) for a dead-loaded program, in the aspect
of the definiteness characteristics of them and the Rayleigh quotients and the minimum eigen-value.
Milner assumes the stiffness K ¢ to be positive definite due to the positive definite strain energy.
In the case of configuration-dependent load, the positive definiteness of matrix K g is not ensured.
On the basis of (45), in harmony with Fig. 3, we can conclude that material and load exert opposite
effects on the structural stability. Namely, material softening has a destabilizing effect, while the
load softening has a stabilizing effect, and conversely, material hardening helps to maintain stability,
while load hardening in itself can cause the loss of stability. The case of simultaneous material and
load variability can result in, for example, a stable state, in spite of the material softening.

Numerically, determination of the equilibrium states or the equilibrium paths, and moreover,
of the tangent stiffness matrix, leads to enormous mathematical difficulties. In the case of full
nonlinearity, for the instantaneously changing material and loading moduli, an approximation is
needed. As for the material, it has been proved by Kurutz in papers [4, 5, 6] that by using nonsmooth
analysis for material nonlinearity, if the material functions are approximated by polygons, the
equilibrium paths can be obtained as the envelope of the individual linear solutions related to each
segment of the material polygon. As we have seen in (27), (29), (30) and (32), the loading and
the material variability play a similar role in the tangent stiffness; consequently, we can extend the
results of nonlinear material to the case of nonlinear configuration-dependent loading.

In order to illustrate the effect of configuration-dependent load on the equilibrium state and
path, let us present several one-dimensional numerical examples.

5. APPLICATIONS: MODIFIED POST-BIFURCATION EQUILIBRIUM PATHS AND TANGENT
STIFFNESS DUE TO CONFIGURATION-DEPENDENT LOADING

To compare the effect of dead and variable load, we consider the simple structural models applied
usually in stability analyses. To avoid the integration in the potential functions, these models are
composed of perfectly rigid elements connected to each other and to the supports by springs by
which the material properties, the relations between the stresses and strains are represented.
Consider first the classical example of stable symmetric bifurcation described in [13, page 5].
This type of dead-loaded simple structure seen in Fig. 4a is assumed to be composed of a perfectly
rigid element of length [, pinned to a rigid foundation and connected to the support by a linear
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elastic spring. The material behaviour is concentrated in this spring by a spring constant ¢ in both
tension and compression. The spring moment M represents the stress variable, while the rotational
deformation € in the spring represents the strain variable. We suppose a linear elastic material by
the linear material function M (@) = cf, but we can prescribe a nonlinear constitutive law M (0) as
well.

By applying a one parameter load controlled by A, we consider F'()A,u) as the given external load
acting on the top of the cantilever; furthermore, consider u as the associated displacement. For dead
load we have F(\) = A\Fp, while for linear configuration-dependent load we have F(A,u) = AFy+ fu.
In the case of nonlinear load, we apply polygonal approximation for the instantaneously changing
tangent load modulus f;. In this case, the load polygon is specified by the associated load moduli
fi and initial load values Fp; segment by segment, thus F;(\,u) = AFp; + fiu, 1 =1,2,...,n for n
segments, as shown in Fig. 4a.

The functional discretization needs the generalized coordinates. In our simple discrete model,
let the single generalized coordinate be the angle of rotation ¢ = @ at the support hinge. We use
perfect nonlinear geometry, namely, the trigonometric function u = [(1 —cos g) as the compatibility
conditions. Here we assume that the system is perfect in the sense that the spring is unstrained
when the link is vertical.

In the case of dead load, from the incremental form of the virtual work, the tangent stiffness
matrix

Ki(Aq) =c— AFylcosq (46)
and the load increment
dQ = dA Fylsing (47)

are obtained. Since we want to deal with the stability of the deformation process, we need the
function of the equilibrium paths. In the case of dead load, the pre- and postbifurcation equilibrium
paths are given by the classical expression

C g c

A =2 v et Mg i
(@) Fol sing” " Fyl’
with the stable symmetric point of bifurcation at the critical equilibrium state at ¢ = 0 in Figure 4b

for f =0, by supposing ¢ = 1,1 = 1, and F, = 1. By substituting A(g) into K; (1, ¢), the associated
function K(q) of the tangent stiffness is obtained

Ki(q) =c(1 - ta‘iq) (49)

(48)

shown in Fig. 4c¢ for f = 0.
In the case of linear configuration-dependent load, where f; = f = const, and Fy; = Fy = const,
the modified postbifurcation equilibrium path takes the form

c

4 ¢ q _c
M0 =7 (Fa - A -s0) . de= 55, (50)

with the same symmetric point of bifurcation at the same critical point at ¢ = 0 of dead load,
shown also in Fig. 4b for the individual cases of different values f;. The associated functions

q 2 42
K =c|l- — fl*sin 51
@) = (1- ) - pitsints 1)
of the modified tangent stiffness can also be seen in Fig. 4c for the individual cases of different
values f;.

Let us consider now the case of nonlinear configuration-dependent load. It has been proved by
Kurutz in [4, 5, 6] that by approximating the material functions by polygons, the equilibrium
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paths can be obtained as the envelope of the individual equilibrium paths related to each segment
of the material polygon. By exiending the results to t':e case of nonlinear variable load, without
any details of the nonsmooth approach presented i [8], the approximate equilibrium path can be
obtained as the envelope of the paths

1 (¢ ¢q

Ailg) = ?‘:n; (?S—iﬁ—&—f,-!(l—cosq)) e 1T L (52)

by keeping constant the Young modulus ¢ of the material. The equilibrium paths of the given
n?n}lliFearly hardening loading device is seen in Fig. 4b, as the lower envelope of the individual
pdtlr; ’the case of such polygonal loading, from the modified incremental virtual work

dq [c — fil*(sin® ¢ — cos® ¢ + cos q) — Angicosc;] dg—dqdA Fy;lsing=0, i=1,2,...,n (53)
applied to each of the actual loading segment, the modified tangent stiffness

Kii(\, q) = ¢ — fil®*(sin® g — cos® ¢ + cosq) — AFpilcosq, i=1,2,...,n (54)
can be obtained, in which we can discover the components of (45) as

Kimat = ¢  Kiivioad = fil®(sin® ¢ — cos® ¢+ cos q),  Kiiaioaa = Foil cosq, (55)
since in (45)

Kii = Kiimat — Ktivioad — AKiidioad s ©=1,2,...,n. (56)

By substituting the equilibrium paths (52) into (54), the function of the associated tangent
stiffness can be obtained also as the envelope of the following functions

Ki(q) = c(l =D ) — fil’sin’q, i=1,2,...,n (57)
tan g
shown in Fig. 4c.

Figure 4b illustrates the approximate generalized equilibrium paths due to a nonlinearly hard-
ening configuration-dependent load seen in Fig. 4a. Here we can see that due to the destabilizing
effect of the hardening variable load, the equilibrium path is represented by the lower envelope of
the component paths. In comparison with the dead-loaded program, in the case of a nonlinearly
hardening loading process, the equilibrium forces are smaller. If the loading function is specified
to be initially tangent to the dead load function, then the stable symmetrical point of bifurcation
remains stable but the post-bifurcation equilibrium path turns to be unstable causing a dynamic
snap-through to the nearest stable path.

In Fig. 4b and c the effects of dead and variable loads can be compared. From the graphs of
the functions, the stabilizing (destabilizing) effect of the softening (hardening) effect of the load
modulus can be seen. In the case of a linear deformation-sensitive loading, at a certain value of f,
the classical stable bifurcation mode turns to be unstable. In the papers of the author [7.8] it has
been shown that the value f = ¢/31%, by which the bifurcation mode changes, can be considered
as a critical load modulus. Thus, in the case of nonlinear loading, if the initial tangent of the
loading function is smaller than this critical load modulus, the stability of the symmetrical point
of bifurcation is ensured.

On the contrary, in Fig. 5, we introduce the case of the nonlinearly softening configuration-
dependent loading, applied to the classical unstable symmetric bifurcation problem seen in Fig.
5a and discussed in [13, page 9]. By specifying the loading program given also in Fig. 5a and by
supposing a constant linearly elastic material at the same time, the postbifurcation equilibrium
path can be composed as the upper envelope of the component paths given by the functions

Ailg) = % (ccosq— fil(l —cosq)) , i=1,2,...,n (58)
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shown in Fig. 5b. The modified nonsmooth postbifurcation equilibrium paths shown in Fig. 4b
and in Fig. 5b, representing nonlinearly hardening and softening loading, respectively, demonstrate
that due to the destabilizing (stabilizing) effect of the hardening (softening) variable loading with
increasing (decreasing) loading tangent, the occurring equilibrium path chooses the lower (upper)
envelope of the component paths, if the material properties are changeless.

The destabilizing (stabilizing) effect of the configuration-dependent loading can clearly be seen
in the associated functions of the tangent stiffness

Ki(q) = —(c+ f;)?sin’q, i=1,2,...,n (59)

shown in Fig. 5¢ where, in the stabilizing process, the stiffness function jumps up to the subsequent
curve.

Here we can conclude again that in the case of linear deformation-sensitive loading, due to the
stabilizing effect of the softening load, by the (critical) value of f = —c, the classical unstable
bifurcation mode tends to be stable. Thus, in the case of nonlinear loading, if we want to stabilize,
we can keep the initial tangent of the loading function to be smaller than this critical load modulus;
thus, the stability of the symmetrical point of bifurcation is ensured.

Finally, in Fig. 6 we demonstrate how the classical asymmetric bifurcation problem presented
in [13, page 15] can be modified by a nonlinearly softening loading program.

Consider the inclined cantilever shown in Fig. 6a, where the distance L = «l, [ is the length of
the cantilever. Here the linear elastic material is characterized by the stress-strain relation B = cw
where B is the force in the spring, ¢ is the spring constant, and w = [(v/1 + a2 + 2asing— V1 + o?)
is the elongation of the spring. In the case of L = [, the ratio @ = 1, thus w = IV2(\/T Fsing —1).

In the case of dead load, the fundamental equilibrium path coincides with the load axis while
the postbifurcation equilibrium path is given by the classical expression

e« 1+a? e o
AMg) = — 1-— Aer = = — - 60
(9) Fy tang ( \/1+az+2asinq) Sl Fy 1+ o? (60)

representing the asymmetric point of bifurcation at ¢ = 0, and ¢ = %, respectively, seen in Fig. 6b
for f; = 0, in the case of ¢ = 1, l = 1, Fy = 1 and by choosing o = 2. For the associated classical
functions K(g) of the tangent stiffness, we obtain

. 7% 2 2 )
K(q) = cl? |a® cos®q 5 g - - .cr 1- 12—|—a - (61)
(14 a®+2asing)® sing 1 + a* + 2asing

shown in Fig. 6¢ as a curve for f = 0.
In the case of linear variable load, the postbifurcation equilibrium paths are

co 1+ a?
I~ = f(1—icos
tan g ( \/1+02+2crsinq) H coqq)] ’

cd o l a?
Ry B Doy | 28]
“ TRHita’ T F (c1+a2 f)

with the same asymmetric point of bifurcation at the critical point at ¢ = 0, and different asym-
metric points of bifurcation at ¢ = %, respectively, shown in Fig. 6b for the individual values of
fi- The associated tangent stiffness function reads

1+ a? o 1+a?
K(q) = cl? | a® cos? ~ 1- —fl?sin’q (63
(@) =c [a Cidy (1 +a® +2asing)?® sing 1 +a® +2asing et (38)

illustrated in Fig. 6¢ for the individual values f;. On the graphs of the functions of the equilibrium
paths and the associated tangent stiffness we can observe that the asymmetric characteristic of the

l

Ag) = "P:E
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bifurcation at ¢ = 0 is changeless, independently of the values of loading moduli. This is the case
if the ratio a = L/l of the structure is changed.

In the case of nonlinear configuration-dependent load, by supposing a linearly elastic material
with ¢ = const at the same time, the postbifurcation equilibrium path can be constructed also as
the envelope of the component paths given by the functions

l co
’\T(q}': }; (tanqﬁ(QJ—fi(l_COSQ)) 3 1,2,...,?’1, (64)

in which

1402
Alg)=1- \/1 +a? + 2asing (65)

Figure 6b illustrates the modified nonsmooth postbifurcation equilibrium paths as the upper
envelope of the functions (64), as a consequence of the nonlinearly softening load specified in
Fig. 6a for ¢ = 1 of the material and for the ratio L = 2[. Figure 6b shows again that due to
the stabilizing (destabilizing) effect of the nonlinearly softening (hardening) variable load with
decreasing (increasing) loading tangent, the occurring equilibrium path chooses the upper (lower)
envelope of the component paths, if the material properties are changeless. These effects of the
configuration-dependent loading can clearly be seen in the functions of the associated tangent
stiffness

Kl(q) 252 (C (QQ COS?Q’Y(Q]_%) _'fiSin2Q) ’ 1,2,...,?’3, (66)
sing
in which
1+a?
= ; = . 67
7(9) \/(1 + a? + 2asing)? (67)

In Fig. 6c illustrating the functions of the tangent stiffness due to nonlinearly softening
deformation-sensitive loading process, it can be found that in a stabilizing (destabilizing) pro-
cess of the softening (hardening) loading, the stiffness goes up (down) to the subsequent curve
leading to a jump-type tangent stiffness function.

Figure 6 demonstrates also the fact that the asymmetric characteristic of the bifurcation type
does not change in terms of the configuration-dependence of the loading process. However, by
increasing the distance of the spring support controlled by «, the bifurcation type tends to the case
of the classical unstable symmetric one, supported by a horizontal spring.

In the case of any polygonal approximation, the equilibrium paths and tangent stiffness functions
are nonsmooth. The equilibrium paths have break points associated with the break points in the
material or load polygons. Moreover, the related tangent stiffness functions are multivalued, having
jump-type discontinuities due to the break points of the material or load, and consequently the
equilibrium paths. Figures 4, 5 and 6 also demonstrate the nonsmooth properties of the equilibrium
paths and the multivalued characteristics of the tangent stiffness, due only to the loading polygons,
since the material is kept constant. The tangent stiffness, associated with the break points of the
loading polygon and consequently the equilibrium paths, consists of intervals. If we draw tangen-
tially the approximate smooth function of the nonsmooth upper or lower envelope-like equilibrium
paths, we can obtain the associated approximate smooth tangent stiffness as well, by connecting
the related upper or lower values of the stiffness intervals, shown by dashed lines in Fig. 4c. The
nonsmooth approaches are discussed in [8].

By the method presented here, the effect of the material can also be analysed. The interaction
between the nonlinear material and nonlinear loading; moreover, some other interesting analyses,
for example, information about the imperfection-sensitivity with respect to the material, geometry,
supports, etc., in a deformation-sensitive loading process can also be analysed by the presented
method. The corresponding results will be published elsewhere.
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6. CONCLUSIONS

Loading devices were analysed, special attention being paid to the structural tangent stiffness. The
effects of configuration-dependent conservative loading program were compared with the classical
dead-loaded programs.

The modification of the structural tangent stiffness matrix due to linear or nonlinear
configuration-dependent load has been discussed. The presented method is based on the incre-
mental principle of virtual work.

It has been proved that the effect of the controllable part of the loading is equal to the effect of
the classical dead loading, while the effect of the deformation-sensitive part of the loading is similar
to that of the material. Consequently, in the equilibrium analysis of structures, the configuration-
dependent loading programs can be handled similarly to the material ones. Thus, in the system
gradient matrix, besides the tangent modulus of the material, the tangent modulus of the loading
appears. The modified structural tangent stiffness matrix is obtained by completing the classical one
by a deformation-sensitive part. Iteration methods can be investigated, stability and bifurcation
conditions and conclusions can equally be drawn on the basis of the modified tangent stiffness
matrix.

Tensorial investigations were followed by discrete (finite element) application, and the results
were illustrated by numerical examples. The nonlinear variable load was analyzed by using polygonal
approximation, on the basis of the results of the author, related to polygonally approximated
nonlinear materials, by applying nonsmooth analysis.

As a conclusion, we can state that the deformation-sensitive load has an effect opposite to that
of the material. Namely, while a softening material has a destabilizing effect, a softening load sta-
bilizes the equilibrium, and conversely. This fact can be seen from the construction of the modified
tangent stiffness matrix. By using polygonal approximation, any type of nonlinear configuration-
dependent conservative loading process, moreover, interaction between linear or nonlinear materials
and loading devices, can also be studied on the basis of the presented method.
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