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We consider apriori and aposteriori error estimation for the FEM solution of Helmholtz problems that arise
in acoustic scattering. Our focus is on the case of high wavenumber (highly oscillatory solutions) where
existing asymptotic estimates had to be generalized to “preasymptotic” statements that are applicable in
the range of engineering computations. We refer the key results of an 1D analytic study of error behavior
(apriori estimates) and announce new results on aposteriori error estimation. Specifically, we show that the
standard local aposteriori error indicators are not, in general, reliable for Helmholtz problems with high
wave number, due to considerable numerical pollution in the error. We then discuss a methodology how
to (aposteriori) estimate, in addition to the local error, the pollution error. Throughout, the theoretical
results will be supplemented by numerical evaluation.

1. INTRODUCTION

The reliable identification of submarine objects is a topic of continued interest in naval research. The
physical problem is, in the frequency domain, formulated as an exterior boundary value problem
(BVP) for the Helmholtz equation (rigid acoustic scattering) or a coupled system of Helmholtz
equations (elastic scattering), respectively.

Analytical solutions for Helmholtz BVP (or, equivalently, for the Helmholtz integral equations)
are feasible for regular shapes of the scatters, whereas numerical methods are applied in the general
case. We assume in this paper that a domain decomposition of the exterior domain is applied for
the numerical solution as depicted in Fig. 1:

!

Fig. 1. Scatterer within a unit sphere
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The rigid scatterer Q is enclosed by a regular smooth artificial boundary I's (specifically, we
assume that the physical object has been scaled such that it is fitted into the unit sphere). The
annular region €5 between the scatterer and the artificial boundary is discretized by standard h-p
finite elements. For concreteness and in accord with our numerical evaluation, we assume that the
region Q¢ exterior to the artificial boundary I's is divided into infinite elements. The focus of this
paper is on the quality and reliability of the FEM-discretization in the annulus, hence the choice
of the numerical method in the exterior is optional. The FEM could be coupled as well with the
BEM, DtN-condition or another method of numerical approximation. We consider here only the
case of rigid scattering. For related results on the FEM in elastic scattering, see [12, 11].

Here, we give a survey of published and unpublished results on error estimation for oscillatory
solutions that are typical in acoustics. We elaborate on the problems of apriori and aposteriori
error estimation in separate sections. We hope to give the reader an understanding of the tight
interlink that exists between these two approaches of error estimation. While aposteriori estimation
of the error is the subject that is certainly most important in engineering applications, a deep
understanding of the error behavior and thus a judgement about the reliability of the aposteriori
estimates is usually gained from apriori analysis. In the case of the Helmholtz equation, the most
important feature is the pollution effect that dominates the quality of the finite element solution for
high wavenumber. The notion of this effect was introduced in [8]; here, we show also how pollution
of the FE error affects the quality of local indicators in aposteriori error estimation.

The analytical results are given for a very simple 1D model problem. As an applied example of
3D calculations, we present in section 4 numerical results for the rigid scattering of a plane wave
from a sphere. It will be seen that the error behavior in the 3D computations for the Helmholtz
equation shows the same numerical effects as studied in the 1D model problem. To our knowledge,
this is the first numerical investigation of the FEM error in 3D computations for the Helmholtz
equation. For a study of the FEM for 2D Helmholtz equation, see [2, 10].

The investigations were motivated by numerical problems that surfaced while the author was
involved in a research project of the U.S. Office of Naval Research which also partly funded the
author’s stay at the University of Maryland at College Park.

2. THE POLLUTION EFFECT IN FEM-SOLUTIONS OF HELMHOLTZ EQUATION — APRIORI
ESTIMATES

For analytical purpose, we consider the following most simple one-dimensional model problem. Let
Q = (0,1) be the unit interval and find the complex-valued solution u of the BVP

u'(z) + k*u(z) = —f(2),
u(0) =0, (1)
u'(1) —iku(l) =0,

where the real parameter k > 0 is the wavenumber. The boundary condition at = = 1 is equivalent
to a non-reflecting Sommerfeldt condition. We are interested in the performance of FE-solutions to
this problems for large wavenumbers (i.e., in the high-frequency domain). A standard method to
measure the quality of FE-solutions is the check of optimality. Roughly, a finite element solution is
called optimal if its error is of the same order as the interpolation error in the discrete subspace.
More precisely, assume that the problem of interest has a unique solution in a function space V
and that there has been computed a conformal FE solution up € V, C'V (i.e., up lies in a subspace
of V). The FE solution is called optimal if

lu — unllv < Cv}fgf,h lu — vallv (2)

holds for a constant C' that does not depend on the choice of the subspace (i.e., on the numerical
parameter h — the meshsize of the FEM). For our analysis of the Helmholtz problem, we require
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that all constants of error estimation are also independent of the physical parameter k. The choice
of the meshsize h is a delicate question in discrete solutions of Helmholtz’ equation. The reason
lies in the oscillatory behavior of the exact solution. Let us illustrate this on the model problem.
The fundamental solutions to the ordinary differential equation are the sine and cosine functions
{sinkz,cos kz}. The higher the wavenumber k, the higher are the oscillations of the solutions and
the shorter the wavelength A = 27 /k. It is intuitively clear that a “rule of thumb”

Tires = 3 & const. (3)

should be applied in the design of the mesh for given k. The number n, is called the resolution of
the mesh. We illustrate this in Fig. 2 with nes = 8; the choice nes = 10 is usually recommended in
practice. However, it is known from computations that the FE error grows with the wavenumber

Oscillatory function

Piecewise linear
Interpolant

J
4

Fig. 2. Resolution of wave — nires = 8

also on meshes where the rule of thumb is satisfied. On the other hand, the error of interpolation
of the exact solution (which, of course, is not known in general) is constant for any wavenumber
k if the rule (3) is used. Indeed the optimality condition (2) can be proven for the model problem
(1) only under the assumption that k2h < 1. For large k, this assumption is much too restrictive
for practical computations.

A complete analysis of the FE-error behavior for Helmholtz’ equation in the range of practical
computation, hk = const., has been given in [8, 9, 10]. Here, we refer only the results for the classical
h-version from [8]. Since we consider a second-order problem, the natural functional space for the
variational (weak) solutions is the Sobolev space V = H(IO(O, 1) where the subscript (o indicates
that the functions satisfy the essential boundary condition at z = 0. Assume that a FE mesh X},
of stepsize h has been introduced, then the FE-subspace V;, C V is the space of piecewise linear,
continuous functions with nodal points in X;. A norm on V is defined by

full = [ wd, @

where u' is the first derivative of u. The relative error of the finite element solution in this norm is
denoted by

= uplly
e = —————
llull1

In [8], we prove — assuming only that kh < 1 — the estimate

e1 < Cikh + Cok®h?, (5)
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where C;, C, are constants independent of k, h. The first member on the right hand side of (5)
represents the interpolation error (note that this error is bounded if kh is constant). Further, writing
the r.h.s. as Ckh(1 + k%h) we see that the estimate (5) reduces to the optimality statement (2) if
k2h is small. However, if this condition is not satisfied then, for large wavenumber, the second term
is clearly leading in the estimate (5). We call this term the pollution term.

Remark 1: The notion of numerical pollution is frequently used in the analysis of elasticity prob-
lems in domains with geometric singularities like cracks or re-entrant corners. Roughly, we speak of
numerical pollution if a considerable part of the error in some local domain of interest (say, some
part of an elastic structure that is located at some distance from a singularity) is not measurable
and not improvable on that local domain only. In the case of elastic structures, the error throughout
the domain depends significantly on the degree of local refinement around the singularity. In the
case of Helmholtz problems, the pollution effect is related not to a local singularity but to the phase
lag of the finite element solution as will be explained below.

To understand the nature of the pollution effect, cqnsider the numerical results plotted in Fig. 3.
We see that the numerical solution is not in phase with the exact solution and that the phase lag is
the main source of numerical error. On uniform mesh, the phase lag can be quantified by computing
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Fig. 3. Phase lag of the finite element solution for k = 10, h = 0.1

the discrete wavenumber k via discrete Fourier analysis (see, e.g., [13]). In the engineering literature,
this approach is frequently called dispersion analysis.
In [9], we prove that, for general h-p-FEM,
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holds if kh < 1, where k is the exact wavenumber, C, is an approximation constant and C does
not depend on k, h and p.

Taking p = 1 we see that the phase lag of the p.w. linear FEM is exactly of the same order as
the pollution term (this observation generalizes to the h-p FEM, see [9]). In this sense, the results
of dispersion analysis and numerical analysis of the Helmholtz equation are equivalent [10].

The foregoing numerical results are illustrated in Fig. 4. The curved lines in the plot show the
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Fig. 4. Relative error of the FEM solutions and of the best approximation in H'-norm for different k

relative error e; of the finite element solution. We see that, as the effect of numerical pollution,
this error increasingly deviates from the interpolation error (straight lines below the curved lines)
as k grows. On the other hand, the lines connecting different values of k?h on the FE error and
the BA error, respectively, show that indeed the finite element error is optimal if (and only if)
k%h is restricted. Note that we show a log-log-plot, hence constant distance in the plot actually
depicts a constant ratio as indicated by the optimality condition (2). All error curves asymptotically
decrease with the rate —1. By standard theory of piecewise linear interpolation, the interpolation
error satisfies

lu — urlly < Chlullz,

where the norm ||ul|2 is defined by replacing the first derivative with the second derivative in (4).
Since h = N~!, the rate —1 is to be expected as N (number of elements) is plotted on the abcissa.

3. THE PROBLEM OF APOSTERIORI ERROR ESTIMATION FOR HELMHOLTZ’ EQUATION

We have seen in the preceeding paragraph that the error of the finite element solution for Helmholtz’
equation is increasingly polluted for large wavenumber unless the mesh is extremely refined. In
practice, one is most interested in accurate and reliable methods of aposteriori error estimation. In
the analysis of large structures, typically the error has to be estimated only in some local region
of particular interest. Several methods have been proposed for local aposteriori error estimation.
Here, we analyse a method based on the solution of local residual problems. We will then see in
numerical examples that the results apply to the local smoothening method (ZZ-estimator, [14]) as
well. Let us introduce the usual local notations. On an arbitrary element A;, we define the interior
residuum

d%u
Thes (‘f = H;Eg_h T kQUh) (6)

A;
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We then define the element residual indicator function é; € H}(A;) as the solution of the variational
problem: Find é; € H}(A;) such that

BAi(éiaﬁ) = ("_Z —>A e k2(éi»ﬁ)Ai e (TANO)AI. ) Vi e H(}(Az)a (7)

where H!(A;) denotes the subspace of H!-functions that vanish on the element boundaries and

(u,v)a, denotes the L? inner product / ud dz. The element error indicators are given by

i
n; = [éi|1,Ai = </
A

To measure the quality of the error estimators, we introduce two global entities: the global estimator

B (Z ng) 9)
=1

and the global effectivity index
£

B |6h|1,ﬂl

dé;

9 1/2
Ratd) dcc) , =1, 207 N (8)
dz

K (10)

Desirably, the effectivity index is close to one. The following theorem holds [1], cf. also [7]:
Theorem: Assume kh < w. Then

k2h2
i L Qb W et
kh Tz, SRE IR
IEEINEE
R I T
holds with
9
Ol ,
K2h2
T

provided k, h are such that C is positive.

It will be shown by numerical experiments that the effectivity index is in fact close to the lower
bound of the Theorem. Hence the local error indicator significantly underestimates the true error
for large wavenumber. Only if k?h is small the effectivity index is close to 1. This is consistent
with our analysis in section 2. Indeed, if k is large and k2h is not small then the numerical error is
dominated by the pollution term that, due to its global nature, cannot be measured by any method
of local aposteriori error estimation.

As an illustration, consider the numerical results shown in Fig. 5. We solve again the 1D model
problem (1) of section 2. The error of the FEM is estimated aposteriori by the local residual method
and the smoothening method proposed by Zienkiewicz and Zhu [14]. The first observation is that
both local indicators lead to similar behavior of the error estimators and effectivity indices. In
accord with the Theorem, the effectivity indices tend to 1 asymptotically (if k2h is sufficiently
small); however, for large k, the error indicators significantly underestimate the true error on the
meshes used in practice (i.e., with hk = const).

Thus it is necessary, for large wavenumber, to use a method for estimation of the pollution
error that complements the standard local estimators. This method should be again local, i.e., the
estimate of the pollution error should be computable only in some region of interest, using the
already computed FE-solution as data.
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Convergence of the global effectivity index Convergence of the global effectivity index for the estimator based on local smoothening
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Fig. 5. Effectivity index for local residual method and ZZ-method. Comparison of results for different k

We investigate the problem of aposteriori estimation of the pollution error in [1]. Here, we only
refer the main conlusion of our analysis:

Reliable aposterioir estimation of the pollution error is possible if the highly oscillatory waves
are smoothened over a patch of elements covering one-half wavelength.

By reliable error estimation, we mean estimators that have an effectivity index not growing
rapidly with k£ on meshes for which hk = const. Let us shortly introduce our methodology and
explain more precisely what mean by “smoothening”. The key point in estimation of the pollution
error is to use the Green’s function of the Helmholtz problem as a test function in the variational

formulation.
Consider again the model problem (1) or, equivalently, the weak formulation: Find u € V' such

that
B(u,v) = (f,v) (11)
holds for all v € V', where

B(u,v) = : u'(2)0' (z) — k*u(z)o(z) ) dz — iku(1)5(1) (12)
0

; _
and (f,v) = / f(z)o(z) dz. By definition of the Green’s function, B(w(-),G(z,-)) = w(z) for all
weV. Tamking0 w = e = u — up we have, in particular,
en(z) = B(en(s), G(z,5)) = Blen(s), G(z,s) — vn(s)) (13)

for all vy, € V.. Here, we used the fact that the finite element error is B-orthogonal to all functions
from the FE-subspace Vj,. Choosing v, = Z} G (piecewise linear interpolant of G), and denoting
=G —1I} G, we have

N
en = Blen,§) = )_ Bj(en, §;)
j=1
N B N B
= Zr;t(g]) = ZBJ(éjagj)a
=1 j:1

where é; is the local residual indicator of the FE-error, g; is the restriction of § to the element A
and r* = f — d?up/dz? — k%uy, is the interior local residuum defined in Eq. (6). Note that, by
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definition of é; in Eq. (7),
Bj(é;,) = rj(9)

holds for all ¥ € H, 1(A ). Hence it remains to replace the interpolation error g; by a function
o € HL(A,) that is computable a posteriori. The obvious choice is the local residual indicator ef
of the FE error G — Gy, where G}, is the finite element approximation of the Green’s function G.

More precisely, we define é eJ as the solution of : Find 4 € H}(A;) such that

Bj(a,9) = r§ (d)

for all & € HL(A,), where

P70 = 6,() - Kz, ).

Since we already established local aposteriori estimates for the element interiors, it is sufficient to
compute the pollution estimate in just one point of each element A;. We choose the right boundary
of each element by fixing z = z; for computation of the pollution error in the element Aj.

Resuming, we obtain the entity

N
5 2G( i
= Z BAj (6], J( " )) ) (14)
i=1
J#1
where e¢0%) ¢ Hy(I;) satisfies

j
~G(*5Ti) A G r35) o A .

BAJ- (ej( m)’v):(TAJ(’ m)’U>Aj’ ’UEH&(A]'), 1<j<N
with 75 Y m)( ) = —k2Gy( - ;z;). Note that the Dirac function in the residual is skipped here since

the evaluatlon is done in nodal points and the functional r acts only on functions that vanish in

the nodal points.
The element of interest is left out in the summation since the pollution error is evaluated on the

outside of the element. Similarly to E(z), we define an estimator for %(Ei), where Z, = %xi_—l
is the midpoint of element A;, as follows:

dey, _ e, (z;) —ep(z;_q) AL

d;’l(l‘)’“ bt hh = = B(ey, DG(-;2;)),

1

where DG( -;%;) := E(G( x;) — G(- §33¢_1))- As before, we have the equality

den (5 By, (é;,DG —IpD

el Z a, (6, DG =T,DG). (15)

J;ﬁz

Replacing the interpolation error DG — Z, DG by the FEM solution éPC we get an estimator for
the derivative of the error at T;:

j ZBA (], é; G(- viz)) ’ (16)
J;ﬁt

where eJ S H{(A;) satisfies

B, (éjDG(-;a':i),@) - (rgf’(';ff),ﬁ)A]_ Vi € Hi(A)
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with rgj ) = _k2DG, (- :3,).

Remark 2: The computation of the discrete Green’s function Gp( - ; x;) is inexpensive when a direct
solver is employed for the solution of the system of linear equations for the finite element solution.
It involves only the forward elimination of an additional right-hand side and a back-substitution.

Both a theoretical analysis (here we refer to [1]) and numerical evaluation show that the esti-
mator E'(z) is not yet reliable for large k in the sense defined above. As a remedy, we propose to
compute from E’ a smoothened estimate over a patch. Frequently used methods of smoothening in
the numerical treatment of oscillatory functions are the wave-envelope or the mean-value approach.
Here, we consider only the latter one. In Fig. 6, we show a plot of the absolute error |u(z) — uy(z)]

Absolute error with and w/o averaging

k=100, N=600
1.2e-05 T i T

———— averaged over quarter of wavelength
" : : ---- not averaged
1.0e-05 ! " :: \ - agveraged over half of wavelength

-

Fig. 6. Smoothed exact error obtained by sliding averages over 1/2 wavelength

for the finite element solution of the model problem (1) for £ = 100 and N = 600 and com-
pare the original error to the smoothened error that is obtained by taking moving averages over
one-half wave-length (i.e., we compute in each nodal point z; the average of all nodal values on
the patch, were z; is taken as the center of the patch). Note the significant reduction of amplitude
in the smoothened curve. Furthermore, the smoothened curve is strictly bounded away from zero,
preventing distortions in the effectivity index. For the computation of the effectivity index, the
smoothened estimator (sliding averages of the elementwise pollution estimators E;) is divided by
the average of the exact pollution error over the same patch. We can show by numerical experiment
that a reliable pollution estimator is obtained by this methodology. Details are given in [2]. For
large wavenumber, a patch of one-half wavelength is small compared to the size of the domain and
hence the methodology is local as required.

4. NUMERICAL EVALUATION

As an applied example, consider the 3D problem of scattering of a plane wave from a rigid sphere.
For this problem, the exact solution is known and can be used to compute the exact error as well as
the error of best approximation. We solve the problem numerically with a coupled FEM-IFEM ap-
proach that has been implemented on DEC and IBM workstations at TICAM. The implementation
is based on a code that has been developed under the supervision of L. Demkowicz in Krakéw and
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Austin [3, 4]. Details of the solution procedure and analytical results are given in [6]. The scatterer,
a sphere of radius r, = 0.5, is enclosed by an artificial boundary — the surface of the unit sphere,
denoted by I's. In the annulus, a 3D finite element discretization is employed — cf. Fig. 7. The
master prismatic element, shown in Figure 8, consists of six vertex nodes and fifteen higher-order
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Fig. 7. Finite Element Mesh for the annulus between the sphere with radius r, = 0.5 a sphere within the
unit sphere. The mesh-parameters are p=4, q=2, n=2 (layers of finite elements). Three quarters of the mesh
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Fig. 8. Master triangle and master prism

nodes: nine mid-edge, two mid-base, three mid-side and one middle node. The corresponding shape
functions are tensor products of the 2D triangle shape functions ©i(&1,&2) and 1D incremental

shape functions ¢;(&3)
Sok(617§2’§3) N 99i(§1,§2) 99](53)’ k.= k(l7]) . (17)
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For j = 1,2, ¢;(&3) are the regular linear shape functions. Given a particular order of approximation
q in the “vertical” (£3) direction, the functions ¢;(&3), 7 = 1,...,¢ — 1, coincide with the regular
1D Lagrange shape functions of order ¢, vanishing at the endpoints. Consequently, the mid-side
and the middle node have two corresponding orders of approximation: a horizontal order p and a
vertical order g. For the infinite element discretization, see [6]. Based on the convergence analysis
for IFEM in [5], the IFEM approximation has been designed as an “overkill” in order to minimize
the influence of the IFEM error on the FEM error in the coupled solution. We thus may assume
that the errors measured in the annulus that is discretized by FEM are “pure” FEM errors. The
error between the numerical and the exact solution is measured in the weighted H'-norm in Q¢
where

= unlB e = I =l g + s — wili g, (18
1 1
lu=ualfos = [ Sh—wl a2+ [ 90— ) a; (19)
and
u=walifo, = [ fu—wif d+ [ V(= un)? d. (20)

The best approzimation error in §)g is defined as

inf - 21
uhel\%(ns)”u upll g1 (o) 5 (21)

where V},(Qs) C H'(€) is the finite dimensional FE subspace of the Sobolev space H!(f)). The
best approximation up, is defined uniquely and can be computed as the solution of

{ Find up, € V(%) such that
(22)
(uba, Vn) H1(0) = (W VR)H1(0,) Y vh € VA(9s),
where (u,v) g1(q,) is the H'-inner product
('U/,'U)HI(QS) = / Vu- V7 + uv df. (23)
Qs

Computational results for this problem are shown in Table 1. We compute the relative FE and
best approximation errors for the wavenumbers k£ = 5, 10, 20, 40. The mesh consists of n = 1,
2, 4 layers in radial direction with 24 prismatic elements in each layer. The polynomial degree in
radial direction is p = 2, the degree in angular direction is ¢ = 4. Convergence is explored by
refinement in radial direction only; the angular discretization does not vary. The error curves are
plotted in Fig. 9. Comparing to the one-dimensional results in Fig. 4, we see that the curves for
lower k show a slight pollution effect but the FE-error is in the optimal range for n = 4, 8. On the
other hand, the results for higher k show a significant pollution effect: on the maximal refinement
possible (for this particular implementation), the FE error for k = 40 is still almost twice as large
as the minimal error. Further refinement or p-enrichment would lead to asymptotic convergence as
well. The results of additional computations will be published in [6].
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Table 1. Best approximation error and Finite Element error in s in percent measured in the H'-norm

error

100

50

[l — up?ll g1 (04

llw — unll g1 (0,

5 Telmmy Tl o0
1 12.382 15.472
2 5 5.127 5.217
4 2.326 2.341
8 1.760 1.772
1 38.10 57.706
2 10 1277 14.670
4 5.41 5032
8 4.280 4.398
1 100. 100.

2 2 50.214 70.228
4 14.671 18.453
8 9.833 12.353
2 100. 100.

4 40 68.831 100.

8 20.943 39.4196

error of best approximation, k=5
error of best approximation, k=10
error of best approximation, k=20

error of best approximation, k=40
FEM error, k=40

,,,,,, i

+OoXbXDO+ 0
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Fig. 9. Pollution effect in 3D-computations: Comparison of the optimal error and the finite element error
for different k and radial refinement n
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