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Mathematical linguistics models that can be useful for controlling FE mesh generation are presented
in the paper. The problems concerning an application of formal grammars for this purpose are outlined.
Advantages and drawbacks related to the use of various types of Lindenmayer string/graph systems applied
recently for FE mesh generation are discussed. An efficient (parsable) class of ETPL{k) graph grammars
is proposed as a formal tool in this research area.

1. INTRODUCTION

Construction of efficient algorithms for mesh generation according to a current initial/boundary
value problem that could be adopted during a computational process is one of the most important
problems in CAE [9]. The following three main groups of generation methods are known in the
literature.

e Structural generation, which consists in mapping some network primitives (patterns) in a compu-
tational domain. If one needs to obtain a high quality network (in a sense of a low computational
error), a class of admissible mappings is restricted severely. As the result, meshes that are quite
uniform on simple domains can be accepted only.

e Delaney’s process a of simplex triangulation (triangles in 2D, tetrahedra in 3D) under a given
set of vertices, which generates an optimum network of an arbitrary distributed density in case
of convex domains. Node positions are usually determined basing on a density function that is
specific to a current b.v. problem.

e Wandering front methods, which add elements consecutively, starting from a border. Elements
may be fitted to a predefined set of nodes, or generated together with their vertices. In the first
case, node displacement may be arbitrary, but the topology is usually far from the optimum one.
In the second case the topology is forced to be optimum (e.g. triangles are close to equilateral)
but node positions are accidental.

Refinement /derefinement techniques are used, firstly, in order to remove imperfections in a
network, which is generated initially by methods listed above. Secondly, they are also applied in
order to adopt a network to a current error estimator displacement or to solution singularities,
which may wander across a computational domain in the case of nonstationary problems.

Computational networks may be refined or derefined in the following two ways:

e by total or partial remeshing based on e.g. a newly assumed node density function and using
one of above methods. Old nodes and degrees of freedom may be then removed in this process,

¢ by element breaking or gluing in order to obtain a network that is more or less dense locally.
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The last technique can be formalized on the basis of the theory of formal grammars and au-
tomata (mathematical linguistics). This theory delivers suitable models for such important areas
of computer science applications like image and vision analysis, pattern recognition, information
coding, CAD/CAM, etc. The usefulness of its models for generation of 2D structures interpreted
as FE meshes has been demonstrated recently in the literature [15]. In a cited paper, string graph
Lindenmayer systems of the class OL have been proposed as the generation formalism. Its authors
have shown that a broad spectrum of 2D structures can be generated with this formalism. In the
third chapter we show some power limitations of OL systems that can make using such systems
difficult in case of more complex situations encountered during FE mesh restructuring. Moreover,
we discuss also computational efficiency issues related to using Lindenmayer systems. We propose
two ways of enhancement of the model proposed in [15]. The first one, discussed in Chapter 4,
consists in using stronger (i.e. context-sensitive) string Lindenmayer systems, namely IL systems.
In the fifth chapter we introduce graph Lindenmayer systems, GL systems, as an enhanced multi-
dimensional version of standard (string) Lindenmayer systems. We discuss, also, some generative
power properties of GL systems in comparison with other, computationally more efficient, classes
of graph generation systems (graph grammars). At the end, we propose parsable, O(n?), ETPL(k)
graph grammars [4, 5, 6, 7, 8] as a tool for 2D FE mesh structure generation.

2. THE USE OF OL-SYSTEMS FOR A FE MESH GENERATION

In computer science, a structure generation problem is solved usually in a dynamic, iterative, way.
That is, we begin with some axiom representing the initial structure, and then we apply a sequence of
structure-modifying operators that act locally at certain substructures and rewrite them according
to pre-specified rules. For example, if we want to restructure a lattice/mesh shown at the left-hand

side of Fig. la, in order to receive the one shown at the right-hand side of the figure, we can use
a rewriting rule (called a production in the theory of formal grammars and automata), which is

&
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Fig. 1

As one can see in Fig. 1b, we want to restructure the mesh only at certain places, i.e. we
want to apply a production only at these places. This problem is referred to as the control of
a (local) applicability of a production, and it will be discussed further on. Another important
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problem encountered, in case of applying formal grammars for a structure generation/modification
is formulated in the following way. Restructuring a mesh in a certain place according to one rule can
sometimes cause a need of restructuring the mesh in other specific places. This situation is shown
in Fig. 2a, in which an application of a production defined in Fig. 1b should cause restructuring
the neighbourhood cells, but according to a different rule, which is defined in Fig. 2b. This problem
is very difficult to handle, and “plain” structure rewriting systems, as e.g. OL systems used in [15]
do not support its solution. We will come back to it in the next chapter.

A — A

b)
Fig. 2

OL systems defined by Lindenmayer in [12] are one of the most powerful rewriting systems used
for structure generation/modification. These systems have been used for FE mesh generation in
[15]. We will start our considerations concerning the use of rewriting systems (formal grammars)
from that point. Therefore, let us introduce OL systems in a formal way.

Definition 1
An 0OL-scheme is a pair S = (X, P), where ¥ is a finite nonempty set, called the alphabet of S,
P is a finite nonempty set of productions of the form a — y,a € ¥,y € X*.

Definition 2
Let S = (X, P) be an 0L-scheme and z € 7,y € =*. The word y is directly derivable from z,
denoted z —+ y, iffz=z1...2n,y=m.. Mz €L, vi €LY andz; — 1 €P for1 <i<n.

We say y is derivable from z iff £ —— y, where —— is the reflexive and transitive closure of

———

5
Definition 3

An 0L-system (grammar) is a triplet G = (X, P,w), where (X, P) is an (underlying) OL-scheme,
w € T is the axiom.

Definition 4

The language generated by the OL-system G is the set L(G) = {z:z € ¥* and w —Z» z},

A simple example of OL grammar production is shown in Fig. 3a. This production is formally
defined as:

a— be
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3. BASIC PROBLEMS OF THE USE OF LINGUISTIC FORMALISMS FOR THE CONTROLLED
STRUCTURE REWRITING

After introducing an 0L grammar in a formal way, we can discuss three basic problems concerning
its use for the controlled structure rewriting. These problems can be formulated in the following
way.

1. The problem of generated object semantics. Formal grammars and automata were defined origi-
nally as formalisms for generation/analysis of abstract structure representations, like for example
natural languages syntactic structures. Therefore in its “pure” form they describe only a syntax
of structures, not their semantics (other features different from a syntactic frame only). In case
of the use of these formalisms for the description of real-world phenomena/objects we need
to associate additional information with syntactic elements. This can be made with attributes
associated with elements of a grammar alphabet. For example, the element a shown in Fig. 3b
can be attributed with coordinates of its “corners”. Then, instead of using just “pure” syntax
element a, we use an attributed alphabet symbol of the form a[(z1,y1), (2, ¥2), (z3,y3)]. Of
course, this attributing property influences a way of defining grammar productions.

— A\

a)
(X1 ¥3)
(X0 ¥s) (% Y2) (X Ya)
b) c)
d)
Fig. 3

Let us notice, for example, that if a production shown in Fig. 3a is concerned, we would like
to be able to assign an additional attribute to a point (z4,y4) which is generated as the result
of this production application (see Fig. 3c). Therefore, we have to modify the form of the pro-
duction. Till now, we assumed that a production is a pair (a,7) (cf. Definition 1). Attributed
scheme/system/grammar production is a triple (a,~, F'), where F is the set of attributing func-
tions. In case of our example the set F' should contain the following two attributing functions
computing values of coordinates z4 and y4:

z4 = (21 + 22)/2;
Y4 = (Y1 +y2)/2.
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2. The problem of (local) applicability of productions. As we have mentioned in the previous chapter,
we want to be able to modify a structure only at certain places. Usually these places of a
production application are just determined by attributes ascribed to them. This problem is
also solved by changing the form of a grammar production. The production is then treated
as a quadruple (a,v,, F), where 7 is the so-called predicate of production applicability. It is
simply a conjunction of conditions defined over attributes of a substructure to be rewritten. The
production is applied at the substructure occurence only if these conditions are fulfilled, i.e. the
predicate equals to “true”.

For two problems discussed above, there are simple and effective solutions described. They have
been applied successfully in [15] to enhance a generative power of 0L systems applied for FE mesh
generation. However, the third problem, which will be discussed below, is much more difficult. There
are no ready solutions delivered for applications by the theory of formal grammars and automata.
What is worse, the problem is still open from the theoretical point of view. Before we propose some
solutions for FE mesh generation in the following chapters, let us now discuss this problem.

3. The problem of context-sensitiveness. Modification of a structure at a certain occurence of a
substructure should sometimes cause its further modifications in a context (neighbourhood)
of an already modified substructure. Such a situation is schematically shown in Fig. 3d, in
which restructuring of a central cell should force restructuring its context. Modifying a context
should be made either with the same production or not. The problem is crucial, because without
solving it we are, in fact, unable to control a rectructuring process, that is we cannot restructure
meshes in a way we would like to. The theory of formal grammars and automata does not provide
satisfactory solutions of this problem.

However, it points out three directions of enhancing generative power, namely:

e context-sensitive rewriting systems/grammars,
e multidimensional systems/grammars,

e quasi context-free systems/grammars.

In the following chapters, we discuss these solution in more detail.

4. IL-SYSTEMS AS A ONE-DIMENSIONAL FORMALISM INCREASING THE STRUCTURE
GENERATIVE POWER

Increasing generative power in a way that it allows one to take into account the context, and in
this way to control a restructuring process is the simplest solution. In case of using Lindenmayer
formalisms, the problem reduces to the application of (context-sensitive) IL schemes, which are
defined in the following way.

Definition 5§

Let k,l € Ny. A (k,l)-scheme be a triple S = (X, P,g), where ¥ is an alphabet, g € ¥ is a
special symbol, called the environmental symbol, P is a finite nonempty set of productions of the
form (a,a,8) — 7, in which a € &, a € {g}*Z*, |o| =k, B € Z*{g}*, |8l =1, y € ="

Definition 6

Let S = (X, P,g) be a (k,l)-scheme and z € ¥,y € £*. The word y is directly derivable from
z, denoted Tivg A, ifre=z1...25, y=m... M, z; €, 7 € T*, and o;7;8; — 7; € P for
1 <1 < n, where o;(f;) is the adjacent subword to the left (right) of length k(I) of z; within the
word gkz; ... z.g'.

We say vy is derivable from z iff —;—» y, where —;— is the reflexive and transitive closure

of = .

S
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The notions of: indirect derivation, (k,!)-system and (k,[)-language are defined in an analogical
way as for OL-systems. The following naming convention is used for IL-systems:

e (0,0) — systems correspond to OL-systems,
¢ (1,0) — systems correspond to 1L-systems,
e (1,1) — systems correspond to 2L-systems, etc.

We call a Lindenmayer system a (proper) IL-system, if I > 0. If with £(X) we denote a class of all
the languages generated by the grammars/systems of the type X, then the following holds:

L(0L) § L(IL).

Let us notice, that with extending an I parameter of IL-systems, we extend a context of an
occurence of a substructure, which is to be modified. This production can be applied only in case
of occurrence of a specific context of a substructure to be replaced by the right-hand side of a pro-
duction. As we have mentioned, this solution is simple from the theoretical point of view. However,
from the practical point of view, it is usually unacceptable, since algorithms for context-sensitive
systems/grammars are of non-polynomial time complexity. Therefore, for lattices/meshes with a
large number of nodes they are very inefficient.

5. GRAPH PARALLEL-REWRITING SYSTEMS AS A MULTIDIMENSIONAL TOOL FOR
CONTROLLED STRUCTURE REWRITING

Multidimensional (tree and graph) grammars have been introduced in the theory of formal gram-
mars and automata as a natural way to represent 2D and 3D structures. From their definitions,
they are more “context-sensitive” than standard (string) grammars, since apart from the “normal”
elements of an alphabet in the form of labelled tree/graph nodes, they have also edges that create
a kind of links to a context. Graph Lindenmayer systems were introduced in 1975 by Nagl [13]. Let
us start with formulating the following definition:

Definition 7

A GL-scheme (Graph Lindenmayer scheme) is a pair G = (X, P), where ¥ is a finite, nonempty
set of node labels, P is a finite nonempty set of productions of the form (d;,d,, E), in which d; is
the left-hand side graph, d, is the right-hand side graph, E is the embedding transformation of the
form E = (11,71, -y In, ), i = U=y Am(v) X {vm}, i = UL =1 {vm} X Am(v) , v is the node of
d;, vmm 1s the node of d,, A,, is the Nagl operator.

The notions of: GL-system and language generated by GL-system are defined in an analogical
way as it has been done for OL-systems.

GL-systems are strong enough as a tool for controlling contex-sensitive rewriting in the sense
understood in this paper. However, we met here a similar problem to that discussed in a previous
chapter. Algorithms of controlled rewriting for GL-systems are also inefficient. However, in this
case we can use a formalism of a similar power, for which very efficient algorithms are defined.

We will start our considerations leading to this formalism, from rewriting systems introduced by
Culik and Lindenmayer in 1975 [3]. Culik-Lindenmayer graph grammars of the class edSCp (ab-
brev. from a graph grammar generating edge-labelled directed graphs with the Stencil Controlled
embedding transformation and parallel derivation) are, in fact, another form of extending string Lin-
denmayer systems to graph languages than the form proposed by Nagl. What is interesting for us is
that Stencil Controlled graph grammars are of a similar generative power as the Janssens-Rozenberg
Node Label Controlled graph grammars [10]. For the latter class, we are able to define the men-
tioned efficient algorithms. Let us formalize our considerations by defining the sequential form of
Node Label Controlled graph grammars [10].
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Definition 8

An edNLC graph grammar (abbrev. from a graph grammar generating edge-labelled directed
graphs with the Node Label Controlled embedding transformation) is a quintuple G =
(,A,T, P, Z), where ¥ is a finite, nonempty set of node labels, A C ¥ is a set of terminal node
labels, I is a finite, nonempty set of edge labels, P is a finite set of productions of the form (I, D, C),
in which I € £, D € EDGyxr (i.e. D is a directed graph with nodes labelled with ¥ and edges
labelled with T), C : T" x {in, out} — 9ExExI'x{in,out} ig the Rozenberg embedding transformation,
Z € EDG):’[*.

The edNLC and edSC graph grammars are of similar generative power. In [10] it is shown that:
L(edNLC) = L(edSC),
L(edNLCp) C L(edSCp) .

In the next chapter, we will define the computationally efficient subclass of edNLC graph grammars.

6. PARSABLE ETPL(K) GRAPH GRAMMARS FOR FE MESH GENERATION

In this chapter we present definitions introduced in [4, 5, 6, 7] concerning an ETPL(k) subclass of
edNLC graph grammars, for which an efficient parsing algorithm, O(n?), has been defined in [7].
We discuss neither the restrictions imposed by succeeding definitions nor the auxiliary notions in
a detailed way, since it has been done in above mentioned papers. In the second section of this
chapter we show how to enhance the generative power of ETPL(k) graph grammars.

6.1. Basic definitions concerning ETPL(k) grammars

We will start with definitions concerning IE graphs generated by ETPL(k) grammars.

Definition 9

An indezed edge-unambiguous graph, IE graph, over ¥ and T is a quintuple g = (V, E, %, T, ¢),
where V is a finite, non-empty set of nodes to which indices have been ascribed in an unambiguous
way, ¥ is a finite, non-empty set of node labels, I is a finite, non-empty set of edge labels, E is a set
of edges of the form (v, \,w), where v,w € V, X € T, such that index of v is less than index of w,
$:V — ¥ is a node-labelling function. The family of all the IE graphs over ¥ and T' is denoted
by IEEJ‘.

Definition 10

Let k € V be the node having an index k of an IE graph g = (V, E,X,T',¢). A characteristic
description n(k),r, (e1...ey), (41...4,), where n is the label of the node k, i.e. ¢(k) = n, r is an
out-degree of k (out-degree of node designates the number of edges going out from this node),
(i, . ~ iy) is a string of node indices, to which edges going out from k come (in increasing order),
(e1...e;) is a string of edge labels ordered in such a way that an edge having the label e, comes
into a node having the index i,.

Definition 11

Let g = (V,E,%,T, ¢) be an IE graph, where V = {1,...,k} isaset of its nodes, I(i),i = 1,...,k
is a characteristic description of the form of a quadruple defined above, of a node i. A string
I(1)...I(k) is called a characteristic description of a graph g.

A derivation in ETPL(k) grammars is determined by a traversal of a derivation tree, which is
spanned in an IE graph. This traversal is performed according to the well-known Breadth First
Search (BFS) rule (i.e. we traverse a graph level-by-level). Therefore, let us introduce a notion of
a level in an IE graph.
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Definition 12

Let g = (V,E,%, T, ¢) be an indexed edge-unambiguous EDG graph. A node having an index
1 is called a node of the first level. Some node v is called a node of the n level, if: there exists
(w,\,v) € E : w is a node of the n — 1 level, and for each [(u,,v) € E or (v,\,u) € E] : u is a
node of at least the n — 1 level.

Now, we impose several restrictions on the form of the right-hand side graphs of grammar
productions in order to obtain an efficient parsing algorithm.

Definition 18
Let G = (X,A,T,P,Z) be an edNLC graph grammar. Grammar G is called a TLP graph
grammar (abbrev. from two-level productions), if the following conditions are fulfilled.

1. P is a finite set of productions of the form (I, D,C), where:

a) le L,
b) D is the IF graph having the characteristic description:
ni(l) na(2) ... np(m) or ni(l), where n;(3)
™ 2 ‘e Tm 0 T
Eq By vl il — E;
L I sl T - 1
is a characteristic description of the node i,¢ = 1,...,m,n; € A (i.e. n; is a terminal label),
1,7 = 2,...,m is the node of the second level,

c) C:T x {in,out} — 22*ExIx{inout} s the embedding transformation.
2. Z is an IE graph such that its characteristic description satisfies the condition defined in point

1(b).

Since we want to define a parsing scheme without backtracking, we have to restrict the way of
deriving a graph to the one determined by the linear ordering imposed on the resulting graph.

Definition 14
A TLP graph grammar G is called a closed TLP graph grammar G if for each derivation of this
grammar

Z=go—4+N—¢g" G- 9n

a graph ¢;,1 =0,...,n is an IF graph.

Definition 15
Let there be given a derivation of a closed TLP graph grammar G:

Z=go——g> 91— -~ 9n:

This derivation is called a regular left-hand side derivation (denoted (e ) if:

(1) for each i = 0,...,n —1 we apply a production for a node having the least index in a graph g;,
(2) node indices do not change during derivation.

A closed TLP graph grammar rewriting graphs according to the regular left-hand side derivation
is called a closed TLPO graph grammar (abbrev. from Two-Level Production-Ordered).

Now, we introduce two auxiliary notions allowing us to extract handles during syntax analysis.
A limitation introduced by Definition 18 enables us to construct an efficient, non-backtracking,
top-down parser.



Quasi context sensitive graph grammars 199

Definition 16

Let g be an IE graph, | some node of g defined by a -characteristic description
n(l),r,e1...ep, 41 ...%-. A subgraph h of the graph g consisting of node [, nodes having indices
fa+1s9a+2s - - 1a+m, @ = 0,6 +m < r, and edges connecting the nodes: [,i541,%042,: .., %a+m iS
called an m-successors two-level graph originated in the node | and beginning with the (ig4+1)th
successor. The subgraph h is denoted h = m — TL(g,l,%4+1). By 0 — TL(g,l,—) we denote the
subgraph of g consisting only of node /.

Definition 17

Let g be an IE graph, [ some node defined by the characteristic description
n(l),r,e1...ep,41...%.. The subgraph h of graph g consisting of node I, nodes having indices
g+1s%a+2,s---,0r,a > 0, and edges connecting the nodes l,iq41,%+2,...,% is called a complete
two-level graph originated in node | and beginning with the (iq4+1)th successor. The subgraph h is
denoted

h = OTL(galaia+1)'

Definition 18
Let G = (3,A,T, P, Z) be a closed TLPO graph grammar. The grammar G is called a PL(k),
production-ordered k-left nodes unambiguous, graph grammar if the following condition is fulfilled.
Let

* *
Z 5o 214X SEr @1 SEr
and
* *
Z @ X1AXe s 92 St he
where 7—(%)> is the transitive and reflexive closure of @ be two regular left-hand side deriva-

tions, such that A is a characteristic description of a node indexed with [, and X; and X, are
substrings. Let maz be a number of nodes of the graph X; AX,. If

k —TL(hy,l,maz + 1) “Z" k — TL(hy,l,maz + 1)
then
CTL(gy1,l,maz + 1) “Z" CTL(gy,1,maz + 1).

The last two definitions of this section, allow us to restrain potential possibilities of the embed-
ding transformation of edNLC grammars. This will make possible to define a polynomial parsing
algorithm for the resulting subclass of edNLC graph grammars.

Definition 19

Let G = (X,A,T,P,Z) be a PL(k) graph grammar. A pair (b,z),b € A,z € T, is called a
potential previous contezt for a node label a € X, if there exists IE graph g = (V,E, %, T, ¢)
belonging to a certain regular left-hand side derivation in G that: (k,z,l) € E,¢(k) = b, and

#(l) = a.

Definition 20
A PL(k) graph grammar G is called an ETPL(k), embedding transformation - preserving
production-ordered k-left nodes unambiguous, graph grammar, if: for each production of the form

Xi(1) X2(2) ... Xm(m)
1 ) e
G -sidh -meebery By 2l vt B

i Ti o vl
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where X, # Xp,a,b=1,...,m, if (b,y) is a potential previous context for A, then there exists only
one (Xj,b,2,in) € Ci(y,in),1 € {1,...,m}, where C; is the embedding transformation of the /th
production. If i = 1, then z = y, i.e. (X1,b,y,in) € Ci(y,in).

For the ETPL(k) graph grammars, the efficient parsing algorithm has been defined in [7]. It
means that we are able to control graph rewriting with efficient procedures, that is we are able to
restructure meshes in a controlled manner and in an efficient way. Moreover, as we have mentioned
it in a previous chapter, graph grammars allow us to simulate a context-sensitiveness (to some
extent, of course). This simulation is possible due to a great generative power of the embedding
transformation. Let us come back to our example from chapter 3 (Fig. 3d). In case of string
grammars the only way to generate additional edges of a mesh (shown with dashed arrows) was
to use three productions in neighbourhood cells. With ETPL(k) graph grammars we can make it
with one production, because these context-bordered edges can be generated with the embedding

transformation.
0= N\ 2= RO

b) c)

Fig. 4

The form of this production is shown in Fig. 4a, whereas a derivation process in Figs. 4b-e. First
of all we identify the left-hand side graph [ (see Fig. 4b), and we remove it as shown in Fig. 4c. At
the next stage of the derivation step we put the right-hand side graph D at the place from which
the graph [ was removed (see Fig. 4d). At the last stage, shown in Fig. 4e, we generate with the
embedding transformation all the needed edges (i.e. we restore the “old” edges and add the “new”
ones). As a result we obtain a mesh restructured in the required way.
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6.2. Programmed ETPL(k) graph grammars

Although we have just shown how ETPL (k) graph grammars can support context-sensitiveness, we
will enhance them even more. In the last example we generated additionally a context that consisted
only of mesh edges. In order to support modifying a context in the full meaning of this notion, that
is edges and nodes of a graph, we have to define quasi-context ETPL(k) graph grammars. In case
of string structures two ways of enhancing context-free grammars are known from the literature:
Aho indexed grammars [1] and Rosenkrantz programmed grammars [14]. For graph grammars, a
programming concept has been introduced by Bunke [2]. For ETPL(k) graph grammars a kind of
programming has been introduced in [8] in order to increase the generative power of the ETPL(k)
graph grammar generating structures representing CAD solid models for CAD/CAM integration
purposes. Let us introduce a programming mechanism for our purpose of FE mesh generation.

Definition 21

A programmed ETPL(k) graph grammar is a six-tuple G = (3, A,T, P, Z,0), where £,A,T, Z
are defined as for an ETPL(k) graph grammar, P is a finite set of productions of the form
(I, D,C,n, F), in which (I, D,C) is an (underlying) ETPL(k)-type production, 7 is the predicate of
a production applicability, F' is the set of attributing functions, and O is the control automaton.

a) ‘U'(l)
1) (11=A,D1= &’stnlst)

2 (12=A),D2= <&:Cz’r[z,l?z)
v Y
T ) 1 o ) TR
1
u( ) ﬂ~(2)2

Fig. 5
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We discuss the definition for an example shown in Fig. 5. Let us assume that we start with
a mesh shown in Fig. 5a, and we want to control its restructuring with grammar productions in
such a way that we receive exactly a structure shown in Fig. 5e. In a box we see two productions
containing additionally: the predicate of production applicability and a set of attributing functions
(both discussed in Chapter 3). These two additional elements of productions allow us to control
applicability of productions locally. The control automaton, the part of which is shown in Fig. 5
enables us, however, to control a derivation (or rather to force a way of rewriting) in a global way.
The part of the automaton shown in the figure can be interpreted in the following way.

If you have succeeded in applying production indezed with 1, i.e. you have exited a node indezed
with 1 of the automaton with a transition labelled with “Y” (Yes — means a success in applying
the production; contrary to a label “N” — No: meaning the predicate of applicability has not been
fulfilled, so a production has not been applied), you have to try to apply the production indezed with
2 (only this one — not another). Then, let us notice that a success in applying a production 2 forces
us to try this production once more (a transition labelled with “Y” comes back to the same node
indezed with 2). Only if the predicate of applicability of the production 2 disables us to apply this
production, we can go to other (invisible in the figure) parts of the control automaton, that is we
can try to apply other productions.

Let us notice that the part of the automaton really controlls a derivation in the way that we
receive the required restructured mesh shown in Fig. 5e.

7. CONCLUSIONS

The formalisms of the theory of formal grammars and automata becomes more and more popular
in the area of Computer Aided Engineering. Especially it concerns graph models, which have been
recently used for decomposition in Finite Element Analysis (see for example [11]). In order to
use them in an effective (and efficient) way, common research of computer scientists conducting
fundamental research in the area of mathematical linguistics and specialists in computer methods
for mechanics and engineering sciences seems to be necessary. Our paper includes the first results
of such a cooperation. We have discussed a formalism that has been recently used successfully for
FE mesh generation [15]. Then, we have presented the theoretical background of this formalism
pointing out, in advance, the problems which can be met while using this model for more complex
cases. At the end, we have proposed the extention of this model that is more powerful, i.e. it can
be used in more complex situations.

Summing up, there are following advantages of the linguistic generation/adoption formalism
proposed in this paper.

e Modification can be applied as locally as possible using a production to a particular single
element, which is the minimum area to be analyzed in discrete CAE technique. The applicability
of a production is controlled by the Boolean predicate expression taking into account a local
value of error estimator, element size and shape, etc.

e A modification (production) can be applied recursively which is essentially important in the
case of problems with singularities (e.g. crack forming, point source and loading, plastic zone
determination).

e A refinement process is reversible (totally or partially), i.e. a modification path is stored auto-
matically and all intermediate network configurations can be restored easily. A derefined process
is then very simple and it can be provided without loss of old nodes and degrees of freedom.

e Solutions obtained using initial and refined computational networks can be compared easily,
because all degrees of freedom coming from the initial network are applied in the refined one.

e The adoption technique keeps global network features (e.g. the Delaney’s feature) or it can
control global features (e.g. a minimal angle in case of triangle networks).
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e Grammar reductions are context-sensitive. It means, that breaking or gluing of each single
element introduces a topological perturbation in its neighborhood. A topological context of a
production to be applied is automatically recognized and additional proper productions are
forced to the neighbourig elements.

e The formalism proposed is computationally efficient, which has been verified practically in such
applicational areas as: image analysis, syntactic pattern recognition, and CAD/CAM [4, 5, 6,
7, 8].

These numerous advantages of the method proposed encourage the Authors to continue their re-
search into the use of mathematical linguistics models for Computer Aided Engineering. Future
results will be the subject of further publications.
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