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The initial-boundary value problem for quasi-linear parabolic equation with distribution coefficient mod-
elling the nonlinear filtration is discussed. The presented results constitute extension of the earlier works
of the authors concerning the filtration problem in the domains without sources to the case of filtration
in the presence of sources.

1. INTRODUCTION

The purpose of the present paper is to present a new approach to the study of nonlinear filtration
with point sources. Our approach is based on the new model of nonlinear filtration (cf. [17]), in which
traditional constitutive formulae have been replaced by more adequate ones giving more accurate
description of the filtration phenomenon in the range of low velocities. Moreover, we propose the
new treatment of the point sources, i.e. sources having small geometrical size compared with the
filtration domain.

The problem of filtration is old and has been treated by numerous authors, see e.g. works [1, 2,
20, 21, 23] and references therein.

The papers [1, 23] discuss general physical setting of the filtration problem. In works [17, 19]
the new constitutive formula is proposed, the case when functions describing physical parameters
of the system are not regular (e.g. are square summable) is also considered. The problem of point
sources has not been discussed as yet.

The new treatment of point sources consists in modelling the sources operation by the use of
Dirac measures. This leads to the equation with distribution coefficients. Equations of such kind
have been used for modelling the vibrations of mechanical systems containing concentrated masses,
see e.g. [8, 14], but their application to the study of filtration problems seems to be new.

The paper is organized as follows. The second paragraph contains discussion of various constitu-
tive formulae used in the nonlinear filtration, and in the fourth paragraph the situations in which
point sources appear are described. In the fourth one the theoretical result justifying approach
based on new constitutive formula is presented. In the fifth paragraph we discuss mathematical
justification of a model with point sources. The last three paragraphs contain the description of
the numerical method for solving filtration equations in the presence of point sources, software for
prelinear filtration problem, and the computational example.

2. PRELINEAR FILTRATION — LOCAL MODELLING

The widely accepted constitutive filtration law, established by H. Darcy in 1858, has the linear form
v=ks, (1)

where v denotes the filtration velocity, & is the (Darcy’s) coefficient of permability, s stands for
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the hydraulic slope vector. In addition, it is assumed that s = grad h, h being the piezometric height
distribution. Darcy’s formula remains valid for medium grained, moderately permeable soils, and
in the middle range of hydraulic slopes.

Significant discrepancies begin to appear in the case of fine grained (more than 5% particles
with diameters less than 5u), cohesive or organic soils. In such a case the filtration velocity obeys
exponential law in the lower range of slopes, s € [0, so] and then tends asymptotically to the straight
line v = M(s — sp) relation.

The precise modelling of the phenomenon described above, the prelinear filtration phenomenon,
plays the crucial role in the earth dam stability analysis as well as in the designing of the boggy
terrain drainages.

There are some well known formulae describing prelinear filtration, such as threshold formula
(cf. [10]), Hansbo power relationship (see Hansbo [7]) or the three parameter Swartzendruber’s
formula (see e.g. [20, 21])

v = M][s — so(1 — exp(—05s/50))] (2)

in which M is the “asymptotic Darcy coefficient”, having the same dimension as Darcy coefficient,
so and 6 are dimensionless constants: so is the analogue of the threshold gradient and @ is the so
called "nonlinearity index” (compare Fig. 1).
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Fig. 1. Filtration velocity versus hydraulic slope

The latter seems to be very convenient since it permits to describe the filtration process in a
wider range of slopes.

The above mentioned formulae have been derived for one dimensional flows. Their major draw-
back lies in the fact that they cannot be simply extended to multidimensional cases without the
loss of accuracy characteristic for the one dimensional prelinear filtration case, and preserving the
invariance with respect to rotations of the coordinate system.

The first attempt to overcome the above difficulty has been made by Swartzendruber in [21],
where the nonlinear part of (2) has been replaced by its Taylor expansion up to terms of second
order
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v=~k(1+ D|s|)s, k=M(1-s00), D

|s| denotes the norm of the slope vector, which is introduced in place of scalar value used in the
one dimensional case. The above formula is valid only for small values of slopes, and it lacks the
nice asymptotic behaviour exhibited by the one dimensional Swartzendruber law.

The first of the authors (see [17]) has proposed the new well conditioned constitutive formula
of the real prelinear filtration remaining in agreement with both local and asymptotic behaviour,
and being invariant with respect to rotations of coordinate system:
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where Dh = gradh, and |Dh| = (Dh|Dh)'/2, (-|-) stands for the usual scalar product in R® (or
generally, in R"™).

The constant E appearing in (5) depends on the floating point arithmetic accuracy and on the
features of the current soil pattern. Positive parameters M, sg, €, not necessarily constant, satisfy
conditions below

M E
0<b<l, — (so—(so+0E) exp <—0—>) >0
E2 S0

resulting from the physical nature of the considered phenomenon and they are assumed to be
enough regular in respect of arguments t, z, such that ¢ is C' in ¢, C° in z and C! in respect of
the last argument.

The formula above has been described in details in [17], and thoroughly tested in the case of
consolidated organic layers (see [25]), and in the case of filtration through the earth dams.

The local mass balance leads to the following initial-boundary value problem for the piezomet-
ric height distribution h(z,t) governing the filtration process in the case of deformable skeleton,
provided strains and displacements are small:

3
Bt 55 = L g ibm DR+ Q) for (4,2) € OTI X0 )
h(t,z) = hp(t, ) for (t,z) € (0,T] x 0%, (7)
3
Zni vi(t, 2, Dh) = qu(t, z) for (t,z) € (0,T] x 99y,
i=1
h(0,z) = ho(z) for =€ (8)

In the equations above €2 is the domain of filtration (e.g. it represents an earth dam protection
screen), T is the time of filtration, n = (nj,n2,n3) denotes the unit vector, orthogonal to the
part 0§ of the boundary 09, 8 > 0 is a coefficient of the water compressibility, Q@ = Q1 + Q2,
while functions @1, Q2, q», p, hy, ho represent the yield of sources, the volume strain velocity of
the skeleton, the boundary flux, the soil porosity, the piezometric height on 0€2;, the initial height
distribution, respectively.

Remark. The mixed problem (6)—(8) constitutes the part of the initial-boundary value problem of
Biot’s type concerning consolidating of soil (see Veruit [24]). Observe that in the case when the
volume strain velocity is known, the Biot’s system reduces to the problem considered here.

Note that v; is nondifferentiable at Dh = 0, so the C?-regularity of h cannot be expected, which
implies that the solutions to (6)—(8) should be understood in the weak sense. Correspondingly,
derivatives of h appearing in (4) are also understood in the distributional sense.
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3. NONLINEAR SOURCES IN CONSOLIDATED ORGANIC LAYERS

loading
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y

interlayerings

sand

Fig. 2. Cross-section through the consolidated organic layers

The drainage flow through river banks composed of organic sediments horizontally interlayered with
thin sand strata as depicted in Fig. 2, presents an important example of the prelinear filtration in
the presence of sources.

Each interlayering, being much more permeable than the surrounding organic soil, forms a
two-dimensional conductor transmitting water to the recipient. Consider the situation, when the
part of organic layers is loaded from above by the massive structure, e.g. the flood protective wall.
The movement of the water is stimulated by the skeleton deformation (consolidation), the artesian
pressure in the interlayering, and the stable sand strata.

In a simplified model containing single sand interlayering, as presented in Fig. 2, the percolation
of water in the cross-section A—A can be considered as a one-dimensional filtration problem through
the domain being the segment [0, ] of the real line in the presence of the negative source situated
at the point zo € [0,!]. In this case we set Q =|0,I[, h(0,t) = ro(t), h(l,t) = ri(¢t) for t € [0,7],
h(z,0) = ho(z) for z € Q. In addition, we assume compatibility conditions: ho(0) = ro(0), ho(l) =
7‘1(0).

Since the cross-section of the sand interlayering is small in comparison with the length of the
considered cross-section, it can be assumed that its action on the system is concentrated at a single
point, and thus is modelled by the Dirac measure: q(h)d,,, where d,, = d(z — o) denotes the Dirac
distribution concentrated at zo. The expression g(h) describes the discharge intensity.

We will denote by h. the piezometric pressure under the center of the loaded area (cross-section
A-A) and by hye the piezometric height in recipient. If the transmission flow belongs to the
laminar range (he < hjqm) then its discharge intensity g is assumed to be proportional to he — hyec.
In the case of turbulent flow (h. > higm), ¢ grows like v/he — hrec. Thus, the formula taking into
account both cases takes the form

(0 1 {0) GO ; PRIl TOS
J ay (hc - hrec) for hpee < he < hiam,
q(he) = (9)
azvhe = hrec for higm < he < hmaz,
\ 82V hmaz — Prec for - hmaz < he.
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The positive constants a;, a, describe the hydraulic characteristics of the interlayering and are
chosen in such a way, that ¢ is continuous for all A, € R.

The lack of discharge for h. less than h,.. is justified on physical grounds, while the extension
of g over hpaz is only formal. The hyqg is the maximal piezometric pressure, which can appear in
the loading part of the strata as a result of summing the hydrostatic pressure, artesian pressure hy
and the upper loading o.

4. MATHEMATICAL JUSTIFICATION OF THE VARIATIONAL MODEL

Let L?(Q2) denote, as usual, the space of square summable functions defined on € and let H'(()
be the Sobolev space of order 1 over : H(Q) = {u : u, Dju € L?(Q),i = 1,2,3} (D;u stands for
the distributional derivative of u with respect to z;). Denote by || - [|12(q), | - || H1(n) the norms in
L?(Q) and H'(9), respectively. Finally let V = {u € H(Q) : yju = 0} Where U 1s the trace of
u on 0Q; (71 is an extension of the restriction operator u — u|gn, on H'(Q) (for details consult,
. [6))

Function & : [0,T] x @ — R is said to be a weak solution to (6)—(8), if for any w € V it satisfies
identicaly the equation (the variational form of (6)-(8))

dt/ptm z)dr = — /(,otx |Dh(t,z)|) (Dh(t,z)|Dw(z)) dz

+ [ @ea)uEds+ [ gt ou()do, (10)

'ylh(t, ) =hg, tE€ O,T], h(O, ) = hyg.

It is assumed that the functions appearing as coefficients in (10) are regular enough for the formula
above to make sense.

Theorem below, proved in [19], justifies the well-posedness of the proposed variational model of
prelinear filtration.

Theorem 1. Suppose (4) and (5) hold. Let p(t,z) = a(t)e(z), (a(t) > 0,0 < ey < e(z) < e), let
Q; g, €, ho, &/ (t) be continuous in their domains and let Q have sufficiently regular (e.g. of class C")
boundary. If hy is continuous, then (6)—(8) has the unique weak solution depending continuously
on initial data.

5. NONLINEAR SOURCES

The problem with nonlinear sources differs from the classical one by the presence in (6), in addition
to Q(¢,), the terms containing distributional coefficients, i.e. the expression Y 5_; qx(h)d(z — z)
representing the yield of point sources located at points z; € .

For the sake of simplicity we will consider the system with one negative source and without
boundary supplies (gy(t,0) = gy(¢,!) = 0). From the proof below it will be clear that our consider-
ations remain valid also in the general case.

In addition to definitions given in paragraph 4, let us introduce the following notations.

For a Banach space B, denote by || - || its norm, by B’ its dual and by (g,&) (g € B, ¢ € B)
the duality between B and B’.

Ck(S; B) denotes the space of functions defined on S with values in B, k times continuously
differentiable. || - [|co(s;p) denotes the supremum norm in C°(S; B), i.e. the norm of the uniform
convergence on S.

Considering the case Q2 =0, [, observe that V = H}(Q) = {u € H(Q) : u(0) = u(l) = 0}. Note
that for @ C R functions u(0) and u(l) are well defined, see Remark I below. The norm Il |lv.is
defined by [lully = ||v'|| 2(q)- Note that [|u|y is equivalent to the norm || - (7

cillull ) < llullv < llull gy, (11)
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where ¢; = (14412 /72)~1/2 ([12, Th. 2.3.4]). For g, £ € L*(Q) the duality (g, ) reduces to the usual
scalar product (g,€) = (9,8)12(q) in L2(). Recall that for v,w € C°(]0,I[; R) and Dirac measure
§ concentrated at zo €]0,1[, (vd, w) = v(zo)w(zo)-

Let X = L%(0,T;V), so its dual is X' = L2(O T;V') and ( = JT(f(s),u(s))ds is the
scalar product of f € X' and u € X. The d“ = denotes the tlme denvatlve of u in the sense of
scalar distributions on [0,T]. Define W = {u u € X,u € X'}. For u,v € W the formula of the
integration by parts holds ([6, Ch. IV, Th.1.17]).

Now (10) can be stated as follows:
find a function h € L?(0,T; H'(R)) satisfying for all w € V' the equation

< (eh,w) = ~blt,h, hyw) + f(t,w) + (g(WEw) for ¢ €]0,T) (12)
the boundary conditions h(t,0) = ro(t), h(t l) r(t) (t € (0,T]) and the initial condition h(0,z) =
ho(z), z €]0,1[. The mappings b: [0,T] x (H'(2))* = R, f € L?(0,T;V'), are given by expressions

1 ¢ Oul\ Ov 0z
b(t,u,v,2) = Fal) /cp(t,:c, 5;) 92 52 & (13)
!

(10,2 = £(t.2) = gy || Q. 2)2(z) da (1)

It will be convenient to formulate the problem above as the initial value problem for the operator
equation. For this sake, introduce operators B : [0,T] x H'(Q)? - V', G: H(Q) = V', and
c:V' -V

(Cr,u) = (er,u) = (r,eu), wueV, reV, (15)

(B(t,u,v),w) = b(t,u,v,w) for we HY(Q), (16)

(G(u),w) = (q(u)d, w), w e H'() (17)

and set B(t,h) = B(t,h,h).

Remark 1. For Q =]0,1[ the Sobolev embedding theorem implies that H 1(Q) c C°([0,1];R), from
which it follows that G is well defined. Moreover the inclusion map is continuous:

lullcogo.my < o lullm(e)y, € H(Q) (18)

with co = (tanhl)~'/2 (see [12, Remark 2.2.1]).
The change of variable h(t,z) = a(t, z) + u(t, z) (
the problem (12), h(t,0) = ro(t), h(t,1) = ri(t), h(0,z

homogeneous boundary conditions:
Given f € L%(0,T; V"), find u satisfying
du

Cd—+B(t u+a(t)) = G(u+a(t)) + fi(t), (19)

w(0) = hy, u€W, (20)

where a(t) = a(t,-), f1(t) = f(t) — C(8/8t)a(t) and hy = ho — a(0).

Note that W c C°([0,T]; L?(R2)), hence the first condition in (20) is meaningful.

It can be proved (cf. [19]) that (4) and conditions imposed on «(t) and e(z) in Theorem 1 imply
that the operator B is Lipschitz continuous, strongly monotone and coercive, the operator G is
bounded, Lipschitz continuous and monotone, i.e.:

|B(t,u + a(t)) — B(t,v +a(t)lv: < Millu —vllv, (i)
(B(t,u + a(t)) — B(t,v +a(t)),u — v) > m|u— v||%, (ii)
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(B(t,u +a(t)),u) 2 &(llullv) llullv, &(s) 200 as s— oo. (iii)
G (t,u+a(t)llv: < a2V hmaz — hrec, (iv)
IG(t,u+a(t)) — G(t,v +a(t))llv < arflu —ollv, (v)
(G(t,u+ a(t)) — G(t,v + a(t)),u — v) > 0. (vi)

all inequalities hold for any u,v € V, uniformly in ¢ € [0,T]. Moreover

eollu =~ vllZz(q) < (Clu—v),u—v) <elu—vllfzq) for uve L), (vii)
%(Cu, u) = 2(Cu',u) for ueW. (viii)

Now, we are in a position to state and prove the main result of the paper.

Theorem 2. Assume conditions of Theorem 1. Let G = q, = 0. Let ¢y, c; be defined as above.
If constants m, a; satisfy mc; > cyay, then for any hg € L?(Q) and ro,r; € C*([0,T); R) problem
(6), (7), (8) with Q(t,z) replaced by Q(t,z) + q(h)d has exactly one weak solution h,

h € L?(0,T; HY(R)) N C°([0, T]; L%(R)) (21)

depending continuously on initial data.

Proof. It is clear that in order to show the theorem it suffices to prove, that the problem (19),
(20) has the unique solution u depending continuously on the initial data. The proof is based
on the classical Faedo—Galerkin method combined with monotonicity and compactness techniques
(compare [8, Ch.VI], [11, Ch.II]). As it will be seen such an approach is acceptable in case of the
distribution operator equation considered here.

Denote by {w,} a countable basis of V' (e.g. the finite element basis) and denote by V the
subspace of V' spanned on wy,ws,...,w,. Choose {up,} such that uo, € Vp, upp — h1 in V as
n — o0o. Let un(t) = 37-; gjn(t) wj, where gjn(t) are so defined that u,(t) is a solution of the
initial value problem

(e’u’;w ’U)i) = _b(ta Up + a(t)a Up + a(t)a wi) + <f1 (t) 2 G(u’n + a’(t))’ ’U)i), (22)

un (0) = uon. (23)
Correspondingly, n-vector g, with components g;»(t), j = 1,...,n solves the problem (the Galerkin
approximation of (19))

Cng;z + Bn(t, gn)gn + rn(t, gn) = f1a(t), (24)

9n(0) = dp, (25)

where Cy, By(t,gn) are n x n-matrices with entries (ew;,w;), b(t,un + a(t), w;,w;). The fin(t),
Tn(t,gn) are n-vectors with components f; (¢, w;) — %(ea(t),wi), b(t, un + a(t), a(t), wi) — (G(un +
a(t)), w;). The components djn of dy, are defined by Y7, djn wj = uon).

Obviously, matrix C, is invertible. The By, (t,g,) and r,(t,g,) are continuous in ¢t and by (i),
(iv), (v), they are bounded and Lipschitz continuous with respect to g;,, hence the initial value
problem (24), (25) is uniquely solvable with solution defined for all ¢ € [0,7] and the same holds
true for (22), (23).

Applying to the formula

5 737 {Cun(t), un(t)) + (B(t, un(t) + a(t)), un(t)) — (B(¢,a(t)), un())

= (f1(t) + G(un(t) + a(t)) — B(t,a(t)), ua(t)).
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inequalities (f1(t) — B(t,a(t)), un(t)) < collunllv, (G(un + a(t)),un) < a2v/hmaz — hrecllunllv (c2 is
a suitable constant; the last inequality results from (iv)), and using (ii) we get
1d

5 57 (Cn(t), un(8)) + mlfun ¥

§<Cun( ), un(9) + (Blt,un(9) + a(0), un () — (B(t,a(0), un ()
2V hmaz — Prec + c2)|[un|lv

from which, by (vii), using reasoning similar to this in [6, Ch.VI] we conclude that the sequence
{un} is bounded in X and in C°([0, T]; L?(£2)). This in turn implies, that the sequences {((B(-, un +
a),un))} and {((G(un + a),un))}, are bounded, which by the monotonicity of B and G, implies
that {B(:,un +a)} and {G(u, + a)} are bounded in X’. In consequence (cf. [6,Ch. VI, Lemma1.4])
there is a subsequence {u,} C {u,} such that

Py
=3
< (a

Uy — U weakly in X ()
uy(T) = 2 weakly in L2(Q) 1)
B(,uy +a()) 2w weakly in X’ (i)
G(yuy +a()) »w  weakly in X’ (jv)

and the limits defined above satisfy
vu€X, ul0)=hy, uT)=2 OCu+v=fi+w. (v)
By Remark 1, (j) and (jv) imply, that
(Gl +a()), ) = (Glu +a()), u) = {w, )
Again from the monotonicity of B and the formula
lim sup((B(-, a(") + wy), wy))
= limsup ({(f1 + G(a(-) + ), 1)) + $((Cop, ay) — (Cun(T), uu(T))))
< ((fi +w,u)) + 5((Ca,a) — (Cz,2)) = ((fi + w,u)) — ((Cu',u)) = ((v,u))

we have (compare [6, Ch. III, Lemma 1.3, 11, Ch. II]) v = B(-,u + a(-)), so u satisfies (19). From
conditions u € W and (v) it follows, that u satisfies also (20). Clearly, h = a+u is the weak solution
of (6), (7), (8). If hy, hg are solutions to (19), (20), then by (ii), (v) and the inequality imposed on
m, ai, a2, we get

5((C(h1(8) = ha(8)), ha () = ha(t)) = (C(h1(0) = h2(0)), h1(0) ~ ha(0)))
= /0t<C(h1(s) — ha(s))', h1(s) — ha(s)) ds
A /Ot(B(s,hl) — B(s,hg),h1 — hy)ds + /Ot(G(hl) — G(h2),h1 — ho) ds

t
< [ emer+ coan)lib(s) = ha(s)lyy ds <0,

which by (vii) implies finally
eollh1(t) — ha(t)[72qy < €°11A1(0) = h2(0)l|72(q)

proving the uniqueness and the continuous dependence of the solution on initial data.
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6. APPROXIMATE SOLUTIONS

The Galerkin system (24), (25) solved numerically provides the approximate solution of the problem
(6)-(8). The Galerkin equations will be solved using difference methods. For this sake write (24),
(25) in the form

Cng;, + An(t,gn) = fin(t),
9n(0) = dn, } 28)

where Ay (t,gn) = Bn(t,gn)gn + n(t,9n) and Cr, Bp(t,gn), Tn(t,gn), fin has been already defined.

Denote by Y, = C!([-7,T);R") the space of continuously differentiable vector valued func-
tions defined on the interval [—7,T] with the supremum norm. Fix 7 >0 and let S = {ri : i =
—-1,0,1,...,k; kr=T} be the time-grid over [—,T]. Denote by g, = g|s the grid function corre-
sponding to the function g € Y, and set gi = g,(i7). Let Yy, denote the space of grid functions

corresponding to Y. The ||g-|lxr = maz{|g| : i = —1,0,...,k} is the norm in Y.
One of the possible formulations of the difference problem corresponding to (26) reads as follows
(cf. [22]):

given the “initial guess” p € C'([—tg,0]; R™), p(0) = dy, find g, € Y, satisfying the system of
equations

.R:‘+1g7' = (f].n):" Z == 0, 1, o ,k1 g:l = p(—T)’ g2 e dn, (27)

where R; : Ynp — Yy is the three-level linearized difference approximation of the operator R,
( R(t)g(t) = Cng’ + Apn(t,g) ) defined by the formula:

Rig, = Ri(g}, 05", 9572)

1 s u _ 5 1 s . :
= 570nlor —gr7") + An((i = )7,077") + 5 (A7) 7N (0372 — 20571 + g3,
with (A},) = A}, (i, ul) (AJ is the Jacobian matrix of the mapping (t,g) — An(t, 9)).
Theorem below relating approximate solutions g, of (26) to weak solutions u, of (19)-(20)
presents the extension of results of [19] (see also [17]) concerning the three dimensional sourceless
filtration to the case of the one dimensional filtration flow with point sources.

Theorem 3. Let conditions of Theorem 2 be satisfied. Then for any fixed T > 0, natural n and p €
C'([~to,0); R™), p(0) = dy, the difference scheme (27) has the unique solution gnr,p approximating
the solution g, of (26) (i.e. of the Galerkin system (24), (25)) and in the consequence the solution
un, of (22), (23), in a sense that the function un, ,(t) = Yi=19jnrp(t)wj, t € S, satisfies

11-2)1(1) ”un‘r,p = u’n”kT =0, (28)

uniformly with respect to p in a bounded sets in C*([—ty,0]; R"™). Moreover

Lim (A= har,ll; =0, (29)
70
where [Jull; = max{[|u(iT)||L2(q) : i = 0,1,...,k}, Anrp = tUnr,p + a.

Outline of the proof. Since spaces V; are finite dimensional, By (t, g,) fin inherit all properties of
B and f stated in paragraph 5. Moreover by (iv), (v), n(¢, gn) is continuous and bounded. Using
(i)—(viii) one can prove (exactly in the same way as in the case of filtration without sources, see [19]
for details) that R, approximates R, the system (27) is uniquely solvable and stable with respect
to the right hand side, hence the modified version of the Lax-Filippov Theorem (compare e.g. [16,
Ch. 2)) is applicable giving (28).
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To prove (30), it will be shown firstly that the sequence of Galerkin approximations {un} con-
verges uniformly to the solution u of (19), (20), i.e

up = u in  C°([0,T); L3(R)). . (30)

For the proof of (30), observe that since the problem (19), (20) has the unique solution, all con-
verging subsequences of sequences {un}, {B(-,un +a(:))} must have the same limits, which implies
that

up, = u weakly in X, B(-,un +a(-)) = B(,u+a()) weaklyin X".

Choose the sequence{v,} C C'([0,T);Vy) such that |lv, — ullx — 0, |lvy, — w'[lx» — 0. Set (for
simplicity arguments ¢ are omitted)

I, = —(B(,a+up) — B(-,a + u),un —u),
I, = —=(B(ya+up) — B(ha+u),u—va), I3= (C(u—vn),un—va),
Iy = (G(un + a) — G(u + a),up — u), Is = (G(un +a)— G(u+a),u— Un)

Inequalities (18), mec; > cpay, (ii) and (v) imply that I; 4+ Iy < 0. From the continuity of the
operator C, boundedness of the sequences {vn}, {usn}, {B(:,a + un)} and conditions (i), (v) it
follows that

|| < Millun — ullv |lu = vallv < Killu — vallv,
13| < ICII(u = vn)'llvllun — vnllv < Kallw' —vyllvr,
|Is| < 2a2v/hmaz — Precllu —vnllv = Ksllu —vallv,
where K; denote suitable positive constants. We have .
(C(tun — vn)', Un — vn) = (—B(-,a + un) + B(ya +u),un —v) = »_I;
and a simple calculation gives =
3((C(un(t) = vn(?)), un(t) — va(t)) = (C(un(0) — va(0),un(0) — va(0)))

5

t t t
. /0 (C(tn(8) — vn(3))', tn(s) — va(s)) ds = /0 ]Z:,: ds < /0 (L +Is + Is) ds

< (K1 + Ks)llu = vnllx + Kalu' = vnlx.
The last formula and (vii) yield for ¢ € [0,T] the inequality

eollun(t) = va(®)llz2(@) < K1 (€llun(0) — vn(0)ll2(e) + llu = wallx + llu' — vpllxr)

from which (30) follows immediately.
The formula (29) is a consequence of (28) and (30).

Remark 2. Usually, in practical computations, the spaces V), are chosen as the finite element spaces,
but other choices are not excluded. In the case of the prelinear filtration problems the Lagrange
simplex elements seem to be the most suitable (see [22] or [26] and the references therein).

Remark 3. Function p appearing as starting data in the discussed scheme can be obtained either
from the experimental data or can be computed with the aid of a two-level difference scheme
(e.g. Crank—Nicholson scheme). The latter approach leads to the method using two grid operators:
Crank-Nicholson for computing the first value of u, and the 3-level one for determining u, at
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remaining points of the time grid (cf. [22] where such kind of complex schemes are considered and
their convergence is discussed).

Remark 4. The assumption  C R plays the crucial role in the model with nonlinear sources, since
only in the one dimensional case H!(Q2) can be embedded in C°(2; R), permitting to neglect the
size of the source and to describe the process by the equation with distributional coefficient.

In the case when in numerical computations Lagrange simplex elements are applied, it is strongly
recommended to choose the space-grid over 2 in such a way that one, say z;, of its nodes is located
at zo. For such a choice and the Lagrangean basis {w;} we have

0 for 1i#s,
wi(xs)={1 for iis

which implies that

{0 for i#s,
(G(un + a’(t))awi> T { q(gsn(t) +a(t,zs)) for i=s,

i.e. the impact of the source upon the system is concentrated in a single (s-th) equation of the
system (24).

Remark 5. Equations with distribution coefficients are not suitable for modelling point sources
in two or three dimensional filtration domains. However, it is still possible to obtain the similar
result as stated in Theorem 2 (using the same arguments) when the influence of the source on the
sorrounding filtration field is described by the operator (we specify it for the two dimensional field,
the three dimesional case is treated similarly)

G:H'(Q) - L*(R*,R}) G(h) = %(z)g(L(h))

where g is defined as previously, ¥ € L2(R%; R,),

¢(x)={o for |z —zo| >,

1 for |z—=z0|<Tr

(r is a diameter of the source) and L(h) = ¢1 [g2 ¥(2)h(z)dz, ¢; = (nr?)~L.

In both two- or three-dimensional cases and when Lagrangean elements are used, the influence
of the source on a system (24) is no longer concentrated at a single equation. It acts on the system
through the group of equations. Their numbers correspond to the numbers of the shape functions
not vanishing at zg.

7. SOFTWARE FOR PRELINEAR FILTRATION PROBLEMS

Computer codes for solving various engineering problems concerning the nonlinear filtration have
been developed and refined giving the package MUBS (Multipurpose Underground Basin Simula-
tor). Routines collected in the MUBS package can be divided into three groups according to their
purposes.

The first group contains one- and two-dimensional codes for stationary and nonstationary Dupuit
filtration (the free surface filtration). Both Dirichlet and Neumann boundary conditions are avail-
able as well as the special option for the well modelling. The classical Crank-Nicholson scheme is
used in nonstationary cases.

Routines from the second group may be applied to the prelinear as well as to the linear Darcy
filtration in whole completely saturated soils. Similar cases of boundary conditions and time-step
scheme as in the first group are taken into consideration. Moreover fast linearized difference scheme
[19] may be utilized.
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The third group offers the method for the parameter identification (inverse problem solving) for
prelinear flow fields (cf. [3]).

All three groups of codes have been thouroughly tested in application to real engineering prob-
lems (see e.g. [19]) and in application to simplified ones for which the distance between obtained
numerical and accurate analytical solutions have been evaluated (see e.g. [18]).

Both PC and UNIX platform for MUBS numerical codes are acceptable. Codes for one-di-
mensional problems have been tested mainly, on PC 386 and SPARQ computers. Two-dimensional
codes have been also run on VAXes and on CONVEX C3820 on which fast, completely vectorized
VECLIB routines have been linked.

The MUBS computations on UNIX platform is supported by a powerful graphic environment
called OCTOPUS ! (cf. [4, 5]) which includes mesh generation modulus, various viewers and ani-
mation procedures for different type of solutions (cf. Fig. 3).

N_test nst3pre

nstatS nstprelin pr|

stprelin

Fig. 3. Working on nonlinear filtration in OCTOPUS environment

' All numerical MUBS software as well as the graphical OCTOPUS elements mentioned above are obtainable for
research purposes. The requests should be send by E-mail: schaeferQii.uj.edu.pl
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8. COMPUTATIONAL EXAMPLE

The model presented above is illustrated by simulation of a simple vertical prelinear flow similar
to the one described in paragraph 3. Input data are based on the measurements which have been
performed at the testing site ”Bialosliwie” located in the valley of the Note¢ river (cf. Wolski [25]).

The lower sediment part of depth 2.7m is gytia with hydraulic parameters p = 0.75, M =
0.22 - 107° m/s, & = 0.86, so = 2.8. It is covered by the 3.1 m peat stratum with p = 0.86,
M =0.3-10"% m/s, 8 = 0.6, so = 2.5.

Both organic soil patterns are separated by a thin 0.2 m sand layer, which is dramatically more
permeable, and drains its neighbourhood water content into the river bed. Transmission parameters
(described in (4)) of the part of the sand layer between the central part of considered area and
the river bed are as follows: hree = 0.0 m, g = 2.8 m, hpgz = 4.0 m, a; = 0.5- 1077 m/s,
ag =0.7-1077 m%/s.

The upper loading of testing area has grown rapidly during first ten days of simulation. Resulting
time rate of volume skeleton strains grew from zero at the beginning to about 0.2 - 1076 s~! after
the loading period and then decreased to 0.1- 1078 s~! at the end of the simulation (two months
later). Filtration process in sediments has been also simulated by the artesian piezometric pressure
hy = 2.04 m appearing in the well permeable, stable, preconsolidated sand layer which constituted
the basis of organic sediments.

The simulated evolution of piezometric pressure A[mH>0] vs. time t[s-10°] and depth z[m]
(z = 0 on the terrain surface) is shown on Fig. 4. The numerical results are satisfactory close to
the experimental data (cf. [17, 25]).

interlayering position

X 7.875.90 3,93 1,97 0,00 K
-
2.00
1,00
0,50
0,00

Fig. 4. The piezometric pressure h versus ¢ (time) and z (space variable)

9. GENERAL CONCLUSIONS

e The numerical model (6)—(8) of prelinear filtration based on local mass balance, new constitu-
tive formula and FE/FD scheme is well posed from the mathematical standpoint (cf. Theorems 1
and 3), i.e. (6)—(8) has the unique solution being the limit of the sequence of approximate FE/FD
solutions. The replacement of the classical filtration models by the nonlinear model using the for-
mulae (4) and (5) leads to the visible improvement of the accuracy of obtained results.

e The well conditioning of proposed constitutive formula (4), (5) extends also to the non-classical
cases of filtration with point sources. The discrete representation of small size outlets or supplies
consumes considerably less computational time and RAM space than the standard element represen-



96 R. Schaefer and S. Sedziwy

tation. The advantage of proposed approach becomes more apparent in two or three dimensional
cases in which the lumped models of small sources (wells, interlayerings) provide the significant
complication in FE network.

e Experiments show considerable advantage of the proposed FE/FD 3-level scheme over the
classical ones, based on the 2-level schemes (see [17]).

e Current MUBS numerical algorithms are actually transformed to the parallel form by the
use of various domain decomposition methods. Their distributed implementation is prepared and
tested using low level RPC tools (PVM, Power C) as well as high level O-O techniques which will
be delivered in OCTOPUS environment (cf. [9, 13, 15]). The second direction of development is to
attach the mesh adoption algorithms in space as well as in time domains.
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