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We examine S—continued fraction bounds on the effective dielectric constant €. of a two-phase composite
for the case where the dielectric coefficients €; and €2 are complex. The starting point for our study is
a power series expansion of g¢(z) at z = 0, z = e2/e1 —1. The S—continued fractions to the expansions
of €e(z) have an interesting mathematical structure. Its convergents represent the best bounds derived
earlier by Milton [24-25], and independently by Bergman [5]. Specific examples of calculation of complex
S—continued fraction bounds on €. are provided.

1. INTRODUCTION

Transport coefficients of composite materials may be evaluated effectively by the method of bounds
[6,17,18,24,25]. The bounds become increasingly accurate when more information concerning the
geometrical properties of the medium is available.

From Bergman’s paper [4] it follows that the bulk effective dielectric constant e(e1,€e2) of
two-components composite with dielectric constants €1, €2 has a special Stieltjes function rep-
resentation. The analytical properties of this Stieltjes function have been used to develop a number
of methods for evaluation of bounds on €, (¢1, €2) for cases, where: 1) the microstructure of the com-
posite is known exactly [21,25]; 2) only partial information about microstructure [5-11] is available.

The analytical properties of Stieltjes functions were studied extensively in mathematical litera-
ture, cf. [1-3]. Consequently, the methods applied in the theory of inhomogeneous media [4-11,24,25]
are directly related to the Padé approximants and continued fractions approaches developed in [1-3].

In the present paper we shall apply the S—continued fraction method for evaluation of the
effective dielectric constant €, of a two-phase medium. This method was originally developed by
Baker for calculation of the errors of Padé approximants to Stieltjes functions [13].

Our paper is organized as follows. In Section 2 we introduce a characteristic geometrical function
zf1(z) representing €, and derive the S—continued fraction to zfi(z). In Section 3 the definitions of
the inclusion regions and bounds for a hierarchy of special Stieltjes functions zfi(z) (p = 1,2,...)
are introduced. Analytical expressions for the auxiliary inclusion regions and bounds are derived in
Section 4. In Section 5 the results of numerical calculations of complex bounds on bulk dielectric
constants in the case of square and hexagonal arrays of cylinders are presented. Summary and
discussion complete the paper.

2. BASIC ASSUMPTIONS, DEFINITIONS AND NOTATIONS

We consider the effective dielectric constant E, of a two-phase medium for the case where the
dielectric constants €; and €9 are complex numbers. The bulk dielectric coefficient E, is defined



110 S. Tokarzewski and J.J. Telega

by the linear relationship between the volume-averaged electric field (U) and the volume-averaged
displacement field (D)

(D) = E.(U). (1)

By ¢1 and @3 we denote the matrix and the inclusion volume fractions, respectively. In general,
E, will be a second-rank symmetric tensor, even when €; and €5 are both scalars. Our study will be
focused upon one of the principal values of E, denoted by e(e1,62). The remaining principal values
of E, can be studied similarly. The analytic properties of the bulk dielectric coefficient e¢(e;,€2)
were examined by Bergman in [3]. He proved that ee(e1,€2)/e1 = €e(1,€2/€1) is a Stieltjes function
of €5/e1, analytical outside the negative part of the real axis. Consequently, we can write

ee(2)

——1=Zf1(2), (2)
€1
where
1
fl(z)=/0 fl(’:i z=h-1, h=efer, (3)

is a Stieltjes function defined in the cut (—oo < z < —1) complex plane by means of the real,
bounded and non-decreasing spectrum v, (u), cf. [1-3].
Consider now the power expansions of (2) at z = 0:

o0
zfi(z) = Z cg)z”. (4)
n=1
The coefficients ¢, are determined as moments
1
&V = (—1)n+1/ Y (u), n=12.... (5)
0
Let us introduce an infinite sequence of functions f,(z) (p =1,2,...) defined by
(p—1)
7! (p-1)
2 = = fp =230 00
fp 1(2) 1+zfp(z) I cl fp 1(0)7 p 73, (6)
Here fp(z), given by (3), is an input for relation (6), while cgp D denotes the first coefficient

of the power expansion of the function zf,_1(z). We call zfi(z) the basic function, while zf,(2)
(p = 2,3,...), the auziliary functions. The functions f,(z) (p = 1,2,...) generated by fi(z) via
recurrence formula (6) are Stieltjes functions of type (3), see [1, Lemma 15.3 and Chap. 17A]. Thus
we have

b dyp(u)
fp(z)"/o 1+Z’U,, p—1,2,"" (7)
The power expansions of zfy,(z) at z =0 can be written as follows
o0
2fp(2) = Z P p=1,2,..., (8)
n=1
where
[e.e]
P) = (—1)"+1/ u"ldy,(u), n=1,2,...; p=12,.... 9)
0

The fractional transformation (6) applied (p—1) times to the Stieltjes function fi(z) leads to a
continued fraction relationship between fi(z) and f,(2)

filn) = 8 922 922 Gp-12  2fp(2)
1+ 1+ 7+ 1 + 1 + 1 7

p:172""7 (10)
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where

=0, k=12..,p-1. (11)
Since the first power series coefficients cgk) (k=1,2,...,p—1), given by (9) satisfy the condition
cgk) = fr(0) = fol dvk(u) > 0, hence

>0, k=1,2,...,p—1. (12)

Now we are in the position to propose the algorithm for finding the S—continued fraction coefficients

gr from the coefficients cfc) (k =1,2,...,p—1), given by (5). By applying the linear fractional
transformation (6) to (8), we obtain

1-
Gk+12 " bt 4 k=0.1 3 13
p—2—k Z =UL4L...,P—9, ( )
e z c,(,k“)z 73
n=1

(k

where gx41 = ¢; ), Simple rearrangements yield

(( k=0,1,2,...,p—2,

n=12,... ,p—2-k ,

] n—1 (14)
(2+k) (2+k) 1 (2+k) (1+k)
(&) =1, Cn = T T (1+k) Z ¢ Cnt+1=5 | »
€l j=0
\ 92+k = Cg2+k) ;
where
cs,ll), m=1,2...,p~1; gl—cgl) (15)

are input data for (14). By starting from (p—1) terms of the Stieltjes series fi(z) we generate
successively, with the aid of (14)-(15), the power expansions of fa(2), f3(2), fa(2), ..., fp-1(2)
with steadily decreasing numbers of terms, see (15). At some point we will be left with the function
fp(2), for which no terms of its series expansion are given.

3. INCLUSION REGIONS AND BOUNDS

Our subsequent considerations are based on the assumption that a number of p—1 (p = 1,2,...)
coefficients of the power expansion of the Stieltjes function zf;(z), given by (4), is known. Let us
rewrite (10) as follows:

tfele) = B2 G112 Op—32~ igpiiz’ 2fp(2)
B sk Atk s rlasbes Lar $onl

Now, for z given by (3)2,3 and for fixed parameters u;, up and v1, v9, and for a fixed k (1 < k < p),
)

y 1<k<p. (16)

we introduce a region .7-',&” )( ) defined in the F )= complex plane as follows

FP(2) = {FP(z,u,0) [u1 Su<uy, v Sv<wp}, (17)
We may now introduce three definitions, convenient for our subsequent considerations.

Definition 1. We call f,gp )(z) the inclusion region for zfi(z), while .7-',51’ )(z,u,v) the including
function, if

sz()e]-'(”) {fkp)zuv)|u1<u<u2,v1<v<v2} (18)
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Prior to providing the next definition, we introduce, in the F,gp - complex plane, a curve F,Sp ) (2,.)

determined by means of two functions Fk(p )( .) and F,é'(p )(z, i
F'(l)(z,u), if -1<4<0,
F®)(z,u) = { k (19)

FW(zu), if 0<u<l.
Obviously z is a fixed complex number given by (3)2,3.
Definition 2. F(p )( ) is said to be the bound for zfi(z), while F(p )(z, u) the bounding function, if
F®)(z,u) = 0FP (2) = {FP (z,u) | —1<u<1}. (20)
Here Bf,gp )(z) denotes the boundary of the inclusion region f,gp )(z)

Definition 3. If k =1 (k = p, p > 1) then .7-'(” )( ) and F,Sp )(z) are called basic inclusion regions
and basic bounds (auxiliary inclusion regions and auxiliary bounds), respectively.

Let us assume that the auxiliary including function Fp (p) (2,u,v) for zfp(z) is known. On account

of (16), the including functions f,ﬁ” )(z,u,v) for zfy(z) has, in the f',gp ) complex plane, the
following S—continued fraction representation

gkZ  Gk+12 g1z FP(z,u,0)
1+ 1 + 774+ 1 + 1 ’

Similarly, also on the basis of (16), we can write the S—continued fraction representation for the

bounding function F,gp )(z, u), determined in the F,Sp ), — complex plane

(p)
FO) (zu) = BF G017 gp—12  Fp ' (2,u) 1 <k<p. (22)

1+ 1 +77°+ 1 + 1 7
To understand better the last formula, we rewrite (22) explicitly

f,gp)(z,u,v) =

1sksp. (21)

()

/(p) _ % gk+12 gp—-12 FP (Z ) <k< “1<u< 29
F." (z,u) o Ve ey L o p ) 1 , 1<k<p, <u<l. (22a)
Fll(p)(z w)ie 9kZ  Gk+1% 9p—1%2 F,',l(p)(z, u) 1<k<p 0<u<l (22b)

Ll L& F 4 A L T s

For a fixed z, the following recurrence formulae
()

(») g1z Fpoj(mwv)

Fpoi-j(zu,0) = T+ 1 , j=0,...,p—1-k, (23)
FP). Z, U,V

F®,_(2,u,0) = 22 p=i (%) 520, pe R (24)

1 1 ’

allow us to calculate the values of the including functions F (r )(z, u,v) represented by (23) (bound-
ing function F,gp )(z,u) represented by (24)) from the values of the auxiliary including functions

]-',(,p)(z,u, v) (bounding functions F,Sp) (z,u)).
On the basis of (2)-(3) and (23)-(24), the including functions B,(z,u,v) and the bounding
functions By(z,u) for the effective, dielectric constants e(2)/e1 are given by:

BP (z,u,0) =1+ FP(z,u,0), B (z,u,0) = 1+ F(z,u,0) . (25)
According to (23)-(25), the determination of the inclusion regions (bounds) for e.(z)/e; by the
method of the S—continued fractions requires the knowledge of only the auxiliary regions .77,(,” )(z)

(bounds F,Sp )(z)) for the Stieltjes function zfp(z), see (10). In the next Section, we shall derive
analytic expressions for both the inclusion regions f,S” )(z) and bounds F,Sp )(z), p=152; .5+
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4. AUXILIARY INCLUSION REGIONS AND BOUNDS

To derive an explicit formula for the auxiliary bounds F,E” )(z) we use, as the available data con-
cerning a microstructure of a composite, the (p —1) coefficients of the power series (4) and the
inequality [6]

ce<er for e9=0<e¢;. (26)

On account of (26) and (2)-(3) we obtain

fi(-1) <1. (27)
Note that for real z, the inequalities
fo(z) >0, ?—%gl<0, W>O, z€(-1,0), p=1,2,... (28)

are a direct consequence of (7). By using (10) we can rewrite (27) in the form of the sequence of
the following continued fractions:

g1 g1 g1
TN L SR YN STLY, | S . ek T 29
—RED - [ w R 29)
1= f3(=1) i L@
1 — fa(-1)
Due to (28), relations (29) yield
fp(—l)s‘/}l) p=1a27 ) (30)
where
=1, V}’—l = ! P=23, (31)

The relations g, = fol dyp(u) > 0, fo(-1) = fOI (dvp(u)/(1 — u)) result in

fo(=1)>gp, 9p>0. (32)
Hence, on account of (30)—(32) we obtain
Vi=1, 0<V,<1, p=23,.... (33)

We now pass to the problem of finding the range of functions f,(z) satisfying (30). Relations (7)
and (30) give

b dyp(u)
—-1) = P < = 30k @
w0 = [ TRy, p=123, (34)
Consequently,
d
duw,(u) = 171(1;) <V,, p=1,23,... (35)

are also Stieltjes measures satisfying

/0 ' duy(u) <V, . (36)

Hence we can write

1 i
5@ = [ Tramdup(w), 7
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where dwp(u) is an arbitrary, nonnegative measure obeying the inequality (36). The range of ad-
missible values of fp(z), resulting from (36)—(37), forms a convex region obtainable for measures
written formally in the following manner:

dwp(u) = Vpd(u —ug)du and dwp(u) =V, [(1 — a)d(u) + ad(u — 1)] du, (38)
where u € [0,1] and 0 < a < 1, ¢f. [1, Chap. 17A]. By substituting (38) into (37), we obtain the
bounding functions F,S” ) (z,u):

FP(z,u) = V,F(z,u), (39)
where

l+u)z, if -1<u<0,

z2(1 —u)
1+2zu

F(z,u) = (40)

if 0<u<l.

Note that F,Sp )(z,u) describes, in the cut (—oo,—1) F,Sp b complex plane, the boundary of a
convex region f,ﬁ” )(z) of admissible values of the Stieltjes function zfp(z) appearing in (10). The
curve F(z,u) given by (40) consists of the straight line F”(u, z) and of the circular arc F"(u, 2):

z2(1 —u)

Fl(zyu)=(1+u)z, -1<u<0; F"(z,u) = .
1+2u

0<u<l. (41)

The curve F(z,u) determined by (40) is called the elementary bounding function. Relations (41)
were originally derived in a different manner by Bergman [14]. For p = 1 we have V, = 1. Hence
the bounding function (40)-(41) forms in the cut (—oo0, —1) complex plane the convex, lens-shaped
region

@) ={

of admissible values of the family of Stieltjes functions zf;(z) satisfying the inequality (34). Some-
times it is useful to characterize the straight line (41); and the whole circle (41), by triplets of
points {0, 2,1} and {0, z, 00} obtainable from (41); for u = —1,0, 00 and from (41), for u = 1,0, cc.

z2v(1 —u)

o |0§u,v§1}, (42)

5. REGULAR ARRAYS OF CYLINDERS

To illustrate our theoretical developments, let us consider the problem of determination of the
bounds on the effective dielectric constants €, of square and hexagonal arrays of circular cylinders.
Each cylinder in the arrays has the dielectric constant h, where both ¢, and h are so normalized
that the dielectric constant of the matrix material may be taken to be equal to unity. The bulk
dielectric constant €, is defined by

(D) =€ (V®), (43)

where ® denotes the electric potential; from (1), it follows U = V®. The averaging ( . ) is performed
over the unit square or hexagonal cell. The electric potential ® appearing in (43) have to fulfill:

1) The Maxwell equation of the form
V- 1420)V®=0, z=h-1 (44)

2) The continuity condition for the normal component of the electric displacement D = (1+20)V®
at the surfaces of the cylinders

m-D_=m-D+, (45)



S—continued fractions for complex transport coefficients 115

where m is the unit vector normal to the surface of a cylinder, while D_, D, denote the electric
displacement on the inside and on the outside of a cylinder surface. The function # appearing in
(44) stands for the characteristic function of the cylinder; i.e. §(z) = 1 (6(z) = 0), if z belongs
(does not belong) to the domain occupied by the cylinders.

As an input for calculation of the S—continued fractions, the coefficients of the expansions of
€e(z) in powers of z = h — 1 have been obtained by solving the system of equations (43)-(45), cf.
[18,27]. The results are summarized in Tables 1 and 2.

Table 1. Coefficients of a power expansion of the effective dielectric constant €2 /e; for a square array of cylinders

©2 C1 C2 c3 C4 Cs Ce C7

0.10 | 0.10 | 0.04500 | 0.020250 | 0.009113 | 0.004101 | 0.001846 | 0.000831
0.20 | 0.20 | 0.08800 | 0.032024 | 0.012830 | 0.005148 | 0.002068 | 0.000832
0.30 | 0.30 | 0.10500 | 0.036936 | 0.013086 | 0.004682 | 0.001698 | 0.000626
0.40 | 0.40 | 0.12000 | 0.036784 | 0.011662 | 0.003884 | 0.001381 | 0.000530
0.50 | 0.50 | 0.12500 | 0.033646 | 0.010208 | 0.003615 | 0.001488 | 0.000685
0.60 | 0.60 | 0.12000 | 0.029979 | 0.010181 | 0.004465 | 0.002255 | 0.001215
0.70 | 0.70 | 0.10500 | 0.028735 | 0.012751 | 0.006975 | 0.004169 | 0.002617
0.75 | 0.75 | 0.09375 | 0.030114 | 0.015261 | 0.009200 | 0.006077 | 0.004242

Table 2. Coefficients of a power expansion of the effective dielectric constant €2/, for a hexagonal array of cylinders

©v2 C1 C2 c3 C4 Cs Ce Cc7

0.10 | 0.10 | 0.04500 | 0.020250 | 0.009113 | 0.004101 | 0.001846 | 0.000831
0.20 | 0.20 | 0.08000 | 0.032000 | 0.012800 | 0.005120 | 0.002048 | 0.000819
0.30 | 0.30 | 0.10500 | 0.036754 | 0.012867 | 0.004506 | 0.001578 | 0.000553
0.40 | 0.40 | 0.12000 | 0.036031 | 0.010834 | 0.003265 | 0.000988 | 0.000301
0.50 | 0.50 | 0.12500 | 0.031397 | 0.007960 | 0.002054 | 0.000548 | 0.000155
0.60 | 0.60 | 0.12000 | 0.024528 | 0.005275 | 0.001262 | 0.000361 | 0.000128
0.70 | 0.70 | 0.10500 | 0.017303 | 0.003605 | 0.001089 | 0.000452 | 0.000220
0.80 | 0.80 | 0.08000 | 0.011955 | 0.003569 | 0.001676 | 0.000926 | 0.000546
0.88 | 0.88 | 0.05280 | 0.010877 | 0.004970 | 0.003014 | 0.002072 | 0.001515
0.90 | 0.90 | 0.04500 | 0.011273 | 0.005526 | 0.003584 | 0.002637 | 0.002061

By employing the algorithm (14) to power series coefficients presented in Tables 1 and 2, the
parameters g, of S—continued fractions (22) have been evaluated and shown in Tables 3 and 4 and
in Figs. 1 and 2.

Table 3. Coefficients of S-continued fraction to the effective dielectric constant €2/e; of a square array of cylinders

P2 91 92 g3 94 95 ge g7 g8

0.10 | 0.10 | 0.450
0.20 | 0.20 | 0.400 | 0.0003 | 0.4997
0.30 [ 0.30 | 0.350 | 0.0018 | 0.4982
0.40 | 0.40 | 0.300 | 0.0065 | 0.4935 | 0.0005 | 0.4995
0.50 | 0.50 | 0.250 | 0.0192 | 0.4808 | 0.0030 | 0.4970 | 0.0002 | 0.4998
0.60 | 0.60 | 0.200 | 0.0498 | 0.4502 | 0.0142 | 0.4858 | 0.0025 | 0.4975
0.70 { 0.70 | 0.150 | 0.1237 | 0.3763 | 0.0632 | 0.4368 | 0.0220 | 0.4780
0.75 | 0.75 | 0.125 | 0.1962 | 0.3038 | 0.1441 | 0.3559 | 0.0741 | 0.4259
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Table 4. Coefficients of S—continued fraction to the effective dielectric constant 2 /€1 of a hexagonal array of cylinders

P2 g1 92 g3 94 95 [ g7 g8

0.10 | 0.10 | 0.450
0.20 | 0.20 | 0.400
0.30 | 0.30 | 0.350
0.40 | 0.40 | 0.300 | 0.0003 | 0.4997
0.50 | 0.50 | 0.250 | 0.0012 | 0.4988 | 0.0001 | 0.4999
0.60 | 0.60 | 0.200 | 0.0044 | 0.4956 | 0.0012 | 0.4988
0.70 | 0.70 | 0.150 | 0.0148 | 0.4852 | 0.0076 | 0.4924 | 0.0006 | 0.4994
0.80 | 0.80 | 0.100 | 0.0494 | 0.4506 | 0.0415 | 0.4585 | 0.0081 | 0.4919
0.88 | 0.88 | 0.060 | 0.1460 | 0.3540 | 0.1693 | 0.3307 | 0.0746 | 0.4254
0.90 | 0.90 | 0.050 | 0.2005 | 0.2995 | 0.2640 | 0.2360 | 0.1667 | 0.3333

08 Square array of cylinders, 2=0.75

a7l
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Fig. 1. The sequence of coefficients g, of S—continued fraction bounds for a square array of cylinders

0.9 Hexagonal array of cylinders, 92=0.88

0.8 |
07 [ @2—-Vvolume fraction of the cylinders
06|
05 [
0.4 L B
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0.2
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S—-continued fraction coefficients g,
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Fig. 2. The sequence of coefficients g, of S—continued fraction bounds for a hexagonal array of cylinders
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Finally, by using the recurrence formula (24) we computed the sequences of lens-shaped complex

bounds on €, presented in Figs. 3, 4, 5, 6.

92=075 z=5-i5

ImBp(2z)

—Bpnlz); p=1,85.,B

! 1 1 1 L L

1 2 3 4 S 6
Re Bp(z)

Fig. 3. The sequence of lens-shaped narrowing
bounds on e.(z) for square array of cylinders;
z=5-—1b

S| ¢2=088 z=5+i5

—Bpl(z]), p=1,2,..,5

Im Bp[Z]

—
T -

1 . ! L 1

At BB b s B0 B

Re Bp[ZJ

Fig. 5. The sequence of lens-shaped narrowing
bounds on e¢(z) for hexagonal array of cylinders;
z=5+15

6. DISCUSSION AND SUMMARY

10 _
¢2=0.75 Z==5+i5
9l
8l
7|
~ 8l
N
— 5[
[«
@ 4
E 5
2]
'F | —Bplz), p1,2,..,9
ol J

Re Bp(z)

Fig. 4. The sequence of lens-shaped narrowing
bounds on &¢(z) for square array of cylinders;

z=-5+15
0L ¢2=0.88 z==5-i5
=11
‘N 'Zr
Q
o -3
& i
=41
—Bplz), p=1,2,..,5
-5

1 2 3 4 S 6
Re Bp(z)

Fig. 6. The sequence of lens-shaped narrowing
bounds on €¢(z) for hexagonal array of cylinders;
z2=-5-15

Starting from a partial information about power expansions of the geometrical functions zf(z),
we have derived and numerically investigated the S—continued fraction method of determination of
complex bounds on ¢, (z) for two-phase composite media.

The proposed S—continued fraction approach to the transport coefficients of two-phase composite
media is based mainly on the algorithms given by (14), (24) and (31), which are simply recursive
and do not require solving of a large number of coupled equations.

It is worth noting that the derived S—fractions bounds agree with the corresponding bounds
derived earlier in a different manner by Milton [24-25], and independently by Bergman [5].
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As an example of practical calculations, the sequences of lens-shaped narrowing bounds on €¢(2),
for square and hexagonal arrays of circular cylinders, have been found and depicted in Figs. 3, 4,
5 and 6.

The S-continued fraction method applies also to the analysis of mathematically similar quan-
tities, like for instance the overall effective magnetical, electrical or thermal conductivities of a
two-component composite media. It can also be extended to the study of effective elastic moduli
of a two-component composite.

In this paper, the scalar-valued Stieltjes function only has been used for the determination of
bounds on the overall transport coefficients of two-phase composite materials. It seems, however,
that the matrix-valued Stieltjes function [1,2,3] would be more appropriate, especially for microin-
homogeneous anisotropic composites. We hope to apply such a new approach in future.
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