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The paper presents a new method of approximate solving of the two- and three-dimensional thermoelas-
ticity problems in a finite body. The method presented here can be used for solving direct and inverse
problems as well. System of thermoelasticity equations is reduced to the system of wave equations where
the temperature occurs as inhomogeneity in one of them. The thermal field is approximated by linear
combination of heat polynomials (Trefftz functions for heat conduction equation). The system of wave
equations is solved by means of wave polynomials (Trefftz functions for wave equation). Convergence of
the T–functions method is proved. The procedure of solving direct and inverse thermoelasticity problems
by means of Trefftz functions is tested on an example. Sensitiveness of the method according to data
disturbance was checked.

1. INTRODUCTION

The approach presented in this paper belongs to the Trefftz methods [21]. The main idea of the
method is to determine functions (polynomials) satisfying a given differential equation (T–functions)
and to fit the linear combination of them to the governing initial and boundary conditions. The
method is suitable for linear differential equations in finite domain. Obtained solution satisfies the
equation identically. In the paper we consider boundary direct and inverse problems. In this case
one or more boundary conditions are not known. Instead of that, values of solution in discrete points
inside the domain (internal responses) are known.

The Trefftz functions method for linear partial differential equations has been developed by Her-
rera, Jirousek, Kupradze, Leon, Sabina, Zieliński and Zienkiewicz [11–14, 23]. These authors con-
sidered equations without time variable or the time was discretized. A little bit different approach
towards using Trefftz functions (the solution depends in continuous way on time) was first described
in the paper [20], where it was applied to solving one-dimensional heat conduction equation. Al-
though his approach has been developed only recently, it has rich literature. In the papers [7–10, 22]
the authors described heat functions (Trefftz functions for heat conduction equation) in different
coordinate systems and for direct and inverse heat conduction problems. Using T–functions as a
new type of finite-element base function is shown in [2, 6]. The paper [4] deals with numerous cases,
involving other differential equations, such as the Laplace, Poisson, Helmholtz and one dimensional
wave equation ones. Solving functions for the wave equation are presented in [3, 5, 15, 16, 18, 19].
Applications of wave polynomials for elasticity problems are described in [17]. Solving polynomials
for beam vibration problems are described in [1].

The approach proposed here has a few remarkable advantages in comparison with other methods.
Firstly, the approximate solution (a linear combination of the solving functions) satisfies the equation
identically and depends continuously on all space variables and time. In standard Finite Element
Method (FEM) (probably the most popular numerical method of solving wide class of engineering
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problems) base functions (usually polynomials) fulfil given equation but only if the degree of them is
lower than the degree of equation. Therefore we have to divide the domain into a lot of elements. For
direct problem FEM gives then a good approximation. When using FEM for solving these problems
the internal responses should be given on the first layer of the elements from the border. The location
of the internal responses on further layers leads to large propagation of the error. In general more
elements (dense mesh) means better results but only for direct problems. In inverse problem more
elements can give a worse approximation of boundary condition. Secondly, the method is flexible in
terms of given boundary and initial conditions (discrete, missing) and the shape of the body can
be relatively more complicated [19]. Most analytical methods require regular shape of the domain
and each initial and boundary condition should be given. Thirdly, the solving functions can be used
as base functions for several variants of the Finite Element Method with time-space elements. It
means that the approach is perfectly suitable for inverse problems.

What is very useful in the solving functions’ method is the properties of the Taylor series:

f(x+∆x, y +∆y, t+∆t) = f(x, y, t) +
df

1!
+

d2f

2!
+ · · ·+ dNf

N !
+RN+1 (1)

where dnf = ( ∂
∂x

∆x+ ∂
∂y
∆y + ∂

∂t
∆t)nf, and RN+1 is the remainder term.

The problem is described in Section 2. Section 3 presents wave polynomials. Trefftz functions’
method for thermoelasticity problems and its convergence is presented in section 4. In Section 5 the
test example is discussed. Concluding remarks are given in last section.

2. FORMULATION OF THE PROBLEM

Let us consider thermoelasticity equations

µ∇2
u+ (λ+ µ)grad div u = ρü+ γgrad T, (x, t) ∈ Ω× (0, t), (2)

where Ω ⊂ R
n, u – displacement vector, ∇ – nabla operator, µ, λ – Lame constants, ρ – mass

density, γ = E
1−2να, E – Young’s modulus, ν – Poison’s ratio, α – coefficient of thermal expansion

and t denotes time. The temperature field is described by equation

1

κ

∂T

∂t
= ∇2T, (3)

where κ – coefficient of thermal diffusivity. Equations (2) and (3) are completed by initial and
boundary conditions for displacements (and/or stresses) and for temperature. The relationship
between strains and stresses describes formula σij = 2µεij + λεkkδij − γTδij , where εij =

1
2(

∂ui

∂xj
+

∂uj

∂xi
) – strain tensor and δij – Kronecker delta. The system of equations (2) can be simplified by

substitution:

u = grad φ+ rot Ψ, (4)

then we obtain

(∇2 − 1

v21

∂2

∂t2
)φ = mT, (5)

(∇2 − 1

v22

∂2

∂t2
)ψi = 0, i = 1, 2, 3, (6)

where v21 = λ+2µ
ρ

, v22 = µ
ρ
, m = γ

c2
1
ρ
. In a finite domain the wave equations (5) and (6) are still

coupled by initial and boundary conditions. The main purpose of this work is to solve the system of
equations (5)–(6) with given necessary initial and boundary conditions by means of Trefftz functions
for wave equation (wave polynomials).
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3. WAVE POLYNOMIALS

3.1. Recurrent formulas for wave polynomials

The way to obtain two- and three-dimensional wave polynomials and their properties was described
in papers [15, 18, 19]. Let us consider wave equation

∇2u =
1

v2
∂2u

∂t2
. (7)

For two space variables the function

g = ei(ax+by+ct) (8)

satisfying equation (7) when c2 = a2 + b2 is called a generating function for wave polynomials. The
power series expansion for (8) is

ei(ax+by+ct) =
∞∑

n=0

n∑

k=0

n−k∑

l=0

S(n−k−l)kl(x, y, t)a
n−k−lbkcl, (9)

where S(n−k−l)kl(x, y, t) are polynomials of variables x, y, t. Substituting c
2 = a2 + b2 in (9), we

obtain

ei(ax+by+ct) =
∞∑

n=0

n∑

k=0

n−k∑

l=0

l<2

R(n−k−l)kl(x, y, t)a
n−k−lbkcl. (10)

The real and imaginary parts of R satisfy equation (7) and are called wave polynomials:

P(n−k−l)kl(x, y, t) = ℜ(R(n−k−l)kl(x, y, t)), Q(n−k−l)kl(x, y, t) = ℑ(R(n−k−l)kl(x, y, t)),

e.g.,

P000(x, y, t) = 1, Q000(x, y, t) = 0, Q100(x, y, t) = x, Q010(x, y, t) = y, Q001(x, y, t) = t,

P200(x, y, t) = −
x2

2
− t2

2
, P110(x, y, t) = −xy, P101(x, y, t) = −xt, P011(x, y, t) = −yt,

P020(x, y, t) = −
y2

2
− t2

2
, . . . , P100 = P010 = P001 = Q200 = Q110 = Q101 = Q011 = 0, . . .

Note that there is no R002, because l < 2 (see formula (10)). For two-dimensional wave equation we
take P000 = 1, Q000 = 0. Then the recurrent formulas for wave polynomials are

P(n−k)k0 =
1

n
(−xQ(n−k−1)k0 − yQ(n−k)(k−1)0 − vtQ(n−k−2)k1 − vtQ(n−k)(k−2)1), (11)

P(n−k−1)k1 =
1

n
(−xQ(n−k−2)k1 − yQ(n−k−1)(k−1)1 − vtQ(n−k−1)k0), (12)

Q(n−k)k0 =
1

n
(xP(n−k−1)k0 + yP(n−k)(k−1)0 + vtP(n−k−2)k1 + vtP(n−k)(k−2)1), (13)

Q(n−k−1)k1 =
1

n
(xP(n−k−2)k1 + yP(n−k−1)(k−1)1 + vtP(n−k−1)k0). (14)

We put P(n−k−l)kl = Q(n−k−l)kl = 0 when any subscript is negative. For three-dimensional wave
polynomials we take P0000 = 1, Q0000 = 0 and have recurrent formulas

P(n−k−l)kl0 = −
1

n
(xQ(n−k−l−1)kl0 + yQ(n−k−l)(k−1)l0 + zQ(n−k−l)k(l−1)0

+ vtQ(n−k−l−2)kl1 + vtQ(n−k−l)(k−2)l1 + vtQ(n−k−l)k(l−2)1),
(15)
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P(n−k−l−1)kl1 = −
1

n
(xQ(n−k−l−2)kl1 + yQ(n−k−l−1)(k−1)l1

+ zQ(n−k−l−1)k(l−1)1 + vtQ(n−k−l−1)kl0),
(16)

Q(n−k−l)kl0 =
1

n
(xP(n−k−l−1)kl0 + yP(n−k−l)(k−1)l0 + zP(n−k−l)k(l−1)0

+ vtP(n−k−l−2)kl1 + vtP(n−k−l)(k−2)l1 + vtP(n−k−l)k(l−2)1),
(17)

Q(n−k−l−1)kl1 =
1

n
(xP(n−k−l−2)kl1 + yP(n−k−l−1)(k−1)l1

+ zP(n−k−l−1)k(l−1)1 + vtP(n−k−l−1)kl0).
(18)

We put Pnklm = Qnklm = 0 when any subscript is negative.

3.2. The second procedure to obtain wave polynomials

The second way to obtain wave polynomials is using wave equation in Taylor series (1) for the
function u. For example for two space variables we assume that the function u(x, y, t) satisfies the
wave equation (7). Let u ∈ CN+1 in the neighbourhood of (x0, y0, t0) and x̂ = x− x0, ŷ = y − y0,
t̂ = t− t0. Then, the Taylor series for function u and for N = 2 is

u(x, y, t) = u(x0, y0, t0) +
∂u

∂x
x̂+

∂u

∂y
ŷ +

∂u

∂t
t̂+

∂2u

∂x2
x̂2

2

+
∂2u

∂y2
ŷ2

2
+
∂2u

∂t2
t̂2

2
+

∂2u

∂x∂y
x̂ŷ +

∂2u

∂x∂t
x̂t̂+

∂2u

∂y∂t
ŷt̂+R3.

By eliminating the derivative ∂2u
∂t2

by equation (7) we get

u(x, y, t) = u(x0, y0, t0) +
∂u

∂x
x̂+

∂u

∂y
ŷ +

∂u

∂t
t̂+

∂2u

∂x2
(
x̂2

2
+
v2t̂2

2
)

+
∂2u

∂y2
(
ŷ2

2
+
v2t̂2

2
) +

∂2u

∂x∂y
x̂ŷ +

∂2u

∂x∂t
x̂t̂+

∂2u

∂y∂t
ŷt̂+R3.

The coefficients succeeding the derivation terms represent the wave polynomials obtained by us-
ing formulas (11-14). For N = 3, 4, . . . we follow similarly. For three space variables we get wave
polynomials analogously. This way of obtaining the wave polynomials will be used to prove the
convergence of the T-functions method.

4. TREFFTZ FUNCTIONS METHOD

We approximate the solution of wave equations (6) by

ψi ≈ ψ̂i =
N∑

n=1

cinV
i
n, i = 1, 2, 3 (19)

and for equation (5) we take

φ ≈ φ̂ =

N∑

n=1

c0nV
0
n + φp. (20)

Here V i
n, i = 0, . . . , 3, are wave polynomials satisfying the corresponding wave equation and φp is

the particular solution of (5). Coefficients cin in formulas (19) and (20) are determined by initial
and boundary conditions for displacement and/or stresses (see examples).
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4.1. The convergence of wave-polynomial method

Each approximate method should be convergent. Let us consider two dimensional homogeneous
wave equation (7). It is easy to prove the convergence of the method when in formula

u ≈ w =
N∑

n=1

cnVn (21)

all wave polynomials from order zero to K are taken, (e.g., for K = 0, N = 1, for K = 1, N =
1+3 = 4, for K = 2, N = 1+3+5 = 9 and so on). Let us consider the wave polynomials obtained
as in section 3.2. When in approximation (21) all wave polynomials from order zero to K are taken,
then in this approximation full differentials of order from 0 to K are taken into account. Let us
denote wK the approximation (21) when all wave polynomials from order zero to K are considered.
Taking all the points above into consideration we have

Theorem 1. Let the function u satisfy the equation(7). When in formula (1) in certain point

lim
N→∞

RN = 0 (22)

for function u satisfying equation (7) with given initial and boundary condition then

lim
K→∞

wK = u.

Proof. For wK we have |wK − u| = |RK+1|. But

lim
K→∞

RK+1 = 0,

hence

lim
K→∞

|wK − u| = 0.

It means that

lim
K→∞

wK = u.

The condition (22) is satisfied for example when all derivatives are commonly restricted. If
function u /∈ C∞ the convergence is not provided but we can estimate the error of approximation
by the remainder term in Taylor series of function u. The theorem presented above can give a
criterion of choosing the number of polynomials which are used in approximations (19) and (20).
It is easy to choose the number of polynomials if we can estimate the remainder term RN+1.
Unfortunately, it can be problematic. Other method of determining the order of used polynomials
is based on the usage of adaptive algorithm. We assume the order of polynomials and check the
quality of approximation. If the error is to big then we increase the number of wave polynomials.
This procedure can be very effective but probably time-consuming.

4.2. Particular solution

The particular solution φp in (20) is calculated as L−1(mT ), where L = ∇2 − 1
v2
1

∂2

∂t2
. The temper-

ature distribution can be expressed as a sum of monomials. The firs procedure to get such form is
expanding T into Taylor series. The second is the usage of approximation by linear combination
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of heat polynomials [4]. Therefore, we have to know how to calculate the inverse operator L−1 for
monomials. Denote Z(xkyltm) = L−1(xkyltm). It is easy to prove that for two space variables we
have three forms of Z(xkyltm)

Z1(x
kyltm) =

1

(k + 2)(k + 1)
(xk+2yltm − l(l − 1)Z(k+2)(l−2)m +

m(m− 1)

v21
Z(k+2)l(m−2)), (23)

Z2(x
kyltm) =

1

(l + 2)(l + 1)
(xkyl+2tm − k(k − 1)Z(k−2)(l+2)m +

m(m− 1)

v21
Zk(l+2)(m−2)), (24)

Z3(x
kyltm) =

v21
(m+ 2)(m+ 1)

(−xkyltm+2 + k(k − 1)Z(k−2)l(m+2) + l(l − 1)Zk(l−2)(m+2)). (25)

For three space variables we have four forms of Z(xnykzltm)

Z1(x
nykzltm) =

1

(n+ 2)(n + 1)
(xn+2ykzltm +

m(m− 1)

v21
Z(n+2)kl(m−2)

− k(k − 1)Z(n+2)(k−2)lm − l(l − 1)Z(n+2)k(l−2)m),

(26)

Z2(x
nykzltm) =

1

(k + 2)(k + 1)
(xnyk+2zltm +

m(m− 1)

v21
Zn(k+2)l(m−2)

− n(n− 1)Z(n−2)(k+2)lm − l(l − 1)Zn(k+2)(l−2)m),

(27)

Z3(x
nykzltm) =

1

(l + 2)(l + 1)
(xnykzl+2tm +

m(m− 1)

v21
Znk(l+2)(m−2)

− n(n− 1)Z(n−2)k(l+2)m − k(k − 1)Zn(k−2)(l+2)m),

(28)

Z4(x
nykzltm) =

v21
(m+ 2)(m + 1)

(−xnykzltm+2 + n(n− 1)Z(n−2)kl(m+2)

+ k(k − 1)Zn(k−2)l(m+2) + l(l − 1)Znk(l−2)(m+2)].

(29)

In formulas (23)–(29) we put zero instead of a polynomial when any subscript is negative.

5. EXAMPLE

The method will be tested on an example when the exact solution is known. We consider the plane
state of strain in a square (x, y) ∈ (−1, 1) × (−1, 1) when the strain tensor depends on time and
two variables εij = εij(x, y, t), (i, j = 1, 2) and εi3 = 0, (i = 1, 2, 3). Then the system of equations
(5), (6) has the following form

(∇2 − 1

v21

∂2

∂t2
)φ(x, y, t) = mT (x, y, t) (30)

(∇2 − 1

v22

∂2

∂t2
)ψ(x, y, t) = 0. (31)

Displacements and stresses are given as

u = [ux(x, y, t), uy(x, y, t)] =

[
∂φ(x, y, t)

∂x
+
∂ψ(x, y, t)

∂y
,
∂φ(x, y, t)

∂y
− ∂ψ(x, y, t)

∂x

]
,

σxx = (2µ + λ)
∂ux
∂x

+ λ
∂uy
∂y

− γT, σxy = µ

(
∂ux
∂y

+
∂uy
∂x

)
,

σyy = λ
∂ux
∂x

+ (2µ+ λ)
∂uy
∂y

− γT, σzz = λ

(
∂ux
∂x

+
∂uy
∂y

)
− γT.

(32)

The direct and inverse problem in the case of the plane state of strain will be solved by means of
Trefftz functions.
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5.1. Direct problem

We assume the temperature distribution given by

T (x, y, t) = x2/2 + y2/2 + 2t, (33)

and conditions for displacements

ux(x, y, 0) =
mxy2

3
, uy(x, y, 0) =

mx2y

3
, (34)

u̇x(x, y, 0) =
2mx

3
+

√
2c2

50000
sin(x) cos(y), u̇y(x, y, 0) =

2my

3
−
√
2c2

50000
cos(x) sin(y), (35)

ux(±1, y, t) = ±
m

3
(2t+ y2 − c21t

2

2
)± sin(1)

50000
cos(y) sin(

√
2c2t), (36)

ux(x,−1, t) = ux(x, 1, t) =
m

3
(2xt+ x− c21xt

2

2
) +

cos(1)

50000
sin(x) sin(

√
2c2t), (37)

uy(−1, y, t) = uy(1, y, t) =
m

3
(2yt+ y − c21yt

2

2
)− cos(1)

50000
sin(y) sin(

√
2c2t), (38)

uy(x,±1, t) = ±
m

3
(2t+ x2 − c21t

2

2
)∓ sin(1)

50000
cos(x) sin(

√
2c2t). (39)

Then we have the exact solution

ux =
m

3
(2xt+ xy2 − c21xt

2

2
) +

1

50000
sin(x) cos(y) sin(

√
2c2t), (40)

uy =
m

3
(x2y + 2yt− c21yt

2

2
)− 1

50000
cos(x) sin(y) sin(

√
2c2t). (41)

We solve the problem described by a system of equations (3) and conditions (34–39) by means
of wave polynomials. We reduce equations (3) to a system of wave equations (30–31). We assume
the approximate solution for (31) in the form

ψ ≈ ψ̂ =

N∑

n=1

c1nV
1
n , (42)

and for equation (30) we take

φ ≈ φ̂ =

N∑

n=1

c0nV
0
n + φp, (43)

where V i
n, i = 0, 1, are wave polynomials satisfying corresponding wave equation. Then

u ≈ û = grad φ̂+ rot Ψ̂. (44)

As a particular solution we take L−1(T ) = (Z1(T )+Z2(T )+Z3(T ))/3 where Zi(T ) for i = 1, 2, 3
are described by formulas (23–25). The notation Z1(T ) means that we take inverse operator for
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each component (monomial) of the temperature T . The coefficients cin are chosen so that the error
of fulfilling given boundary and initial conditions is minimized. We build a functional I

I =

∫ 1

−1

∫ 1

−1
{[ûx(x, y, 0) − ux(x, y, 0)]2 + [ûy(x, y, 0) − uy(x, y, 0)]2︸ ︷︷ ︸

cond.(34)

}dydx

+

∫ 1

−1

∫ 1

−1
{[̂̇ux(x, y, 0) − u̇x(x, y, 0)]2 + [̂̇uy(x, y, 0) − u̇y(x, y, 0)]2︸ ︷︷ ︸

cond.(35)

}dydx

+

∫ 1

−1

∫ ∆t

0
{[ûx(−1, y, t)− ux(−1, y, t)]2 + [ûx(1, y, t) − ux(1, y, t)]2︸ ︷︷ ︸

cond.(36)

}dtdy (45)

+

∫ 1

−1

∫ ∆t

0
{[ûx(x,−1, t)− ux(x,−1, t)]2 + [ûx(x, 1, t) − ux(x, 1, t)]2︸ ︷︷ ︸

cond.(37)

}dtdx

+

∫ 1

−1

∫ ∆t

0
{[ûy(−1, y, t) − uy(−1, y, t)]2 + [ûy(1, y, t) − uy(1, y, t)]2︸ ︷︷ ︸

cond.(38)

}dtdy

+

∫ 1

−1

∫ ∆t

0
{[ûy(x,−1, t) − uy(x,−1, t)]2 + [ûy(x, 1, t) − uy(x, 1, t)]2︸ ︷︷ ︸

cond.(39)

}dtdx.

In the time intervals (∆t, 2∆t), (2∆t, 3∆t),. . . , we proceed analogously. Here, the initial condition
for time interval ((m−1)∆t,m∆t) is the value of function u at the end of interval ((m−2)∆t, (m−
1)∆t). Unfortunately, taking more time intervals we observe a propagation of the error. Each step
the approximation is worse. The numerical calculation for the direct problems shows that we get
acceptable results for about ten time steps. Here we have a general result that small error in the first
time interval allows as to get a better approximation in the next time intervals. Unfortunately, we get
a better approximation when we take more polynomials. This causes a longer time of calculations.
It is a very interesting problem and should be studied wider.

A necessary condition to minimize the functional I is

∂I

∂c01
= · · · = ∂I

∂c0N
=

∂I

∂c11
= · · · = ∂I

∂c1N
= 0. (46)

The linear system of equations (46) can be written as

AC = B (47)

where C = [c01, . . . , c
0
N , c

1
1, . . . , c

1
N ]T and

A =

[
A1 A2

A3 A4

] } ∂I
∂c0i

} ∂I
∂c1i

︸︷︷︸
c0j

︸︷︷︸
c1j

.

From Eq. (47) we obtain the coefficients cin. In practice, this system of linear equations is indeter-
minate. Nevertheless, for different values of parameters we get the same solution. All results below
were obtained for: λ = 1011 [Pa], µ = 8 · 1010 [Pa], ρ = 8000 [kg/m3], α = 14 · 10−6 [1/deg] and
∆t = 16/100000 [s].
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Figure 1 shows ux for time t = 0: (a) the exact solution, (b) an approximation by polynomials
from order 0 to 7, and (c) the relative error [%] between (a) and (b) related to the maximum value
of the function for (x, y, t) ∈ (−1, 1) × (−1, 1) × (0,∆t). It is visible that the approximation of the
initial condition for ux is very good – the relative error does not exceed 0.05%. The Trefftz functions’
method gives the biggest error on the border of considered space-time domain. Therefore, Fig. 2
shows ux for time t = ∆t: (a) the exact solution, (b) an approximation by polynomials from order 0
to 7, and (c) the relative error specified above. Here, the error is bigger but still stays smaller than
1.3%. We can get very similar results for displacement uy. Having displacements we can calculate
stresses by using formulas (32).

(a) (b) (c)

Fig. 1. (a) The exact solution of ux for t = 0, (b) an approximation by polynomials from order 0 to 7,
(c) the relative error between (a) and (b)

(a) (b) (c)

Fig. 2. (a) The exact solution of ux for t = ∆t, (b) an approximation by polynomials from order 0 to 7,
(c) the relative error between a) and b)

(a) (b) (c)

Fig. 3. (a) The exact solution of σxx for t = 0, (b) an approximation by polynomials from order 0 to 7,
(c) relative error between (a) and (b)
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Figure 3 shows σxx for time t = 0: (a) the exact solution, (b) an approximation by polynomials
from order 0 to 7, and (c) the relative error [%] between (a) and (b) related to the maximum
value of the function for (x, y, t) ∈ (−1, 1) × (−1, 1) × (0,∆t). The approximation of the initial
condition for σxx is very good – the relative error does not exceed 0.2%. We calculate the stresses
by differentiation of displacements. Therefore, the error for stresses is bigger than for displacement.

Figure 4 shows σxx for time t = ∆t: (a) the exact solution, (b) an approximation by polynomials
from order 0 to 7, and (c) the relative error between (a) and (b) specified above. Similarly as before,
the error for t = ∆t is bigger but still stays smaller than 4%.

In Sec. 4 we proved that Trefftz functions’ method is convergent. It means that the approximation
is better when we take more wave polynomials in approximate solution. Figures 1 and 2 show that
the approximation is the worst near the point x = −1, y = 1. Figure 5 shows the exact result (solid
line) for the ux as a function of time for the location x = −1, y = 1 and the approximation (dash
line) by polynomials from order 0 to: (a) 4, (b) 5, and (c) 7. The results presented in Fig. 5 are
not a proof of convergence, but in this case we get a better approximation when the approximate
solution contains more wave polynomials. We get a similar result for stresses. Figure 6 shows the
exact result (solid line) for the σxx as a function of time for the location x = −1, y = 1 and the
approximation (dash line) by polynomials from order 0 to: (a) 4, (b) 5, and (c) 7.

We can calculate the mean relative error of approximation of ux in the norm H1(Ω), where
Ω = (0,∆t) for point x = −1,= y = 1. The error is defined as:

E =

√√√√
∫∆t

0 [û(−1; 1; t) − u(−1; 1; t)]2dt
∫∆t

0 [u(1; 1; t)]2dt
· 100%.

(a) (b) (c)

Fig. 4. (a) The exact solution of σxx for t = ∆t, (b) an approximation by polynomials from order 0 to 7,
(c) relative error between (a) and (b)

(a) (b) (c)

Fig. 5. (The exact solution (solid line) of ux as a function of time for the location x = −1, y = 1 and the
approximation (dash line) by polynomials from order 0 to: (a) 4, (b) 5, (c) 7
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(a) (b) (c)

Fig. 6. The exact solution (solid line) of σxx as a function of time for the location x = −1, y = 1 and the
approximation (dash line) by polynomials from order 0 to (a) 4, (b) 5, (c) 7

Table 1. Error E dependence of the polynomial order

Order K 4 5 7

E [%] 34.2 9.17 0.57

In approximation û we take all wave polynomials from order 0 to K. Table 1 shows the error,
which depends on the order K. The error E decreases when the number of the polynomials in
approximation û increases. For K = 7 it does not exceed 0.6%, which is a very good result. The
decreasing of mean relative error while taking more wave polynomials in approximation suggests
that the wave-polynomials method is convergent.

5.2. Inverse problem

Similarly as for direct problem we assume the temperature distribution given by

T (x, y, t) = x2/2 + y2/2 + 2t, (48)

and conditions for displacements

ux(x, y, 0) =
mxy2

3
, uy(x, y, 0) =

mx2y

3
, (49)

u̇x(x, y, 0) =
2mx

3
+

√
2c2

50000
sin(x) cos(y), u̇y(x, y, 0) =

2my

3
−
√
2c2

50000
cos(x) sin(y), (50)

ux(−1, y, t) = −
m

3
(2t+ y2 − c21t

2

2
)− sin(1)

50000
cos(y) sin(

√
2c2t), (51)

ux(x,−1, t) = ux(x, 1, t) =
m

3
(2xt+ x− c21xt

2

2
) +

cos(1)

50000
sin(x) sin(

√
2c2t), (52)

uy(−1, y, t) =
m

3
(2yt+ y − c21yt

2

2
)− cos(1)

50000
sin(y) sin(

√
2c2t), (53)

uy(x,±1, t) = ±
m

3
(2t+ x2 − c21t

2

2
)∓ sin(1)

50000
cos(x) sin(

√
2c2t). (54)

The continuous conditions ux(1, y, t) and uy(1, y, t) are not known. Instead of that we know the

values of them in discrete points (x− δ,−1 + k
5 ,

l∆t
10 ), k, l = 0, . . . , 10 (internal responses). If δ = 0

then we have direct problem. For δ > 0 occur inverse problems. Internal responses are simulated
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Fig. 7. Localization of internal responses

from the exact solution (40) and (41). Location of the internal responses for displacements are shown
in Fig. 7.

Problem described by a system of equation (30)-(31) and conditions (49)-(54) with internal
responses we solve by means of wave polynomials. We proceed analogously as for direct problem.
The functional I has the following form

I = w

∫ 1

−1

∫ 1

−1
{[ûx(x, y, 0) − ux(x, y, 0)]2 + [ûy(x, y, 0) − uy(x, y, 0)]2︸ ︷︷ ︸

cond.(49)

}dydx

+ w

∫ 1

−1

∫ 1

−1
{[̂̇ux(x, y, 0) − u̇x(x, y, 0)]2 + [̂̇uy(x, y, 0) − u̇y(x, y, 0)]2︸ ︷︷ ︸

cond.(50)

}dydx

+ w

∫ 1

−1

∫ ∆t

0
{[ûx(−1, y, t) − ux(−1, y, t)]2︸ ︷︷ ︸

cond.(51)

}dtdy (55)

+ w

∫ 1

−1

∫ ∆t

0
{[ûx(x,−1, t) − ux(x,−1, t)]2 + [ûx(x, 1, t) − ux(x, 1, t)]2︸ ︷︷ ︸

cond.(52)

}dtdx

+ w

∫ 1

−1

∫ ∆t

0
{[ûy(−1, y, t) − uy(−1, y, t)]2︸ ︷︷ ︸

cond.(53)

}dtdy

+ w

∫ 1

−1

∫ ∆t

0
{[ûy(x,−1, t) − uy(x,−1, t)]2 + [ûy(x, 1, t) − uy(x, 1, t)]2︸ ︷︷ ︸

cond.(54)

}dtdx

+ ∆t
10∑

k=0

10∑

l=0

{[ûx(1− δ,−1 +
k

5
,
l∆t

10
)− ux(1− δ,−1 +

k

5
,
l∆t

10
)]2

︸ ︷︷ ︸
internal responses for ux

}

+ ∆t
10∑

k=0

10∑

l=0

{[ûy(1 − δ,−1 +
k

5
,
l∆t

10
)− uy(1− δ,−1 +

k

5
,
l∆t

10
)]2

︸ ︷︷ ︸
internal responses for uy

}.

Here, weights w = (1 −∆t)/4 should occur because the time interval ∆t is small. If we omit this
weights the influence of internal responses on the solution is to big.

Figure 8 shows for δ = 0 (direct problem) ux(1, y, t): (a) the exact solution, (b) an approximation
by polynomials from order 0 to 7, and (c) the relative error [%] between (a) and (b) related to the
maximum value of the function for (x, y, t) ∈ (−1, 1)× (−1, 1)× (0,∆t). In the whole time interval
the relative error for direct problem does not exceed 0.08%.
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(a) (b) (c)

Fig. 8. The solution for ux(1, y, t): (a) exact (b) an approximation by polynomials from order 0 to 7, (c) the
relative error between (a) and (b)

(a) (b) (c)

Fig. 9. The relative error for identification of boundary condition ux(1, y, t) for: (a) δ = 0.1, (b) δ = 0.3,
(c) δ = 0.5

Figure 9 shows the relative error for identification of boundary condition ux(1, y, t) (similarly as
in Fig. 8(c)) for: (a) δ = 0.1, (b) δ = 0.3, and (c) δ = 0.5. Even for δ = 0.5 (internal responses
for displacement are located in distance 0.5 from the border x = 1) the error of approximation the
boundary condition not exceed 0.7% in the whole time interval. Of course for δ < 0.5 the error is
lower. In this case we can calculate the mean relative error of approximation of ux(1, y, t). The error
is defined as:

E =

√√√√
∫ 1
−1

∫ ∆t

0 [û(1; y; t)− u(1; y; t)]2dtdy
∫ 1
−1

∫∆t

0 [u(1; y; t)]2dtdy
· 100%. (56)

In approximation û we take all wave polynomials from order 0 to 7. Table 2 shows the error (56),
which depends on the distance δ. The error E increases when the distance δ increases. Still, even
for δ = 0.5 it does not exceed 0.135%, which is a very good result. The increasing of mean relative
error while taking bigger distance δ is typical for inverse problems.

Table 2. Error E dependence of the distance δ

Distance δ 0 0.1 0.3 0.5

E [%] 0.022 0.044 0.108 0.133
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5.2.1. Noisy data

We usually get internal responses from measurement and they are very often disturbed. In order to
check the sensitivity of the presented method according to noisy data the internal responses were
disturbed by using random number. For example for displacement ux we get umx = ux · (1 + α)
where α is a random number generated by using normal distribution N(0, 0.04). Upper subscript
m denotes measurement. In this case we can say that the mean error of measurement equals 4%.

Figure 10 shows the relative error for identification of boundary condition ux(1, y, t) (similarly
as on figure 9) obtained by using noisy data umx for a) δ = 0, b) δ = 0.05, c) δ = 0.1, d) δ = 0.2,
e) δ = 0.3, f) δ = 0.5. Here all polynomials from order 0 to 7 are taken into consideration. Even
for δ = 0.5 the relative error stays smaller than 5%. For inverse problem with noisy data it is very
good result.

(a) (b) (c)

(d) (e) (f)

Fig. 10. The relative error for identification of boundary condition ux(1, y, t) for: (a) δ = 0, (b) δ = 0.05,
(c) δ = 0.1, (d) δ = 0.2, (e) δ = 0.3, (f) δ = 0.5

Table 3 shows the mean relative error in this case described by formula (56), which depends on
the distance δ. The error E slow increases when the distance δ increases. Even for δ = 0.5 it does
not exceed 2%. In fact, we are considering here an inverse problem with noisy data. Therefore the
mean error smaller than 2% can be admitted as good result.

Table 3. Error E dependence of the distance δ

Distance δ 0 0.05 0.1 0.2 0.3 0.5

E[%] 0.896 0.976 1.073 1.303 1.503 1.394

Table 4 shows the comparison of the error (56) for original and noisy data, which depends on
the distance δ. It is visible that for noisy data the results are more than ten times worse but still
stay low. The data was disturbed by using normal distribution with standard deviation equalling
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Table 4. Error E dependence of the distance δ for original and noisy data

Distance δ 0 0.1 0.3 0.5

Original data 0.022 0.044 0.108 0.133

Noisy data 0.896 1.073 1.503 1.394

0.04. We can see that this disturbance causes the error lower than 4%. Therefore smoothing the
disturbed data is not necessary in this case.

CONCLUSIONS

As a rule, the direct and especially inverse thermoelasticity problems are difficult to solve. In this
paper a new, relatively simple approach to solving these problems was proposed. Thanks to this
method we obtain an analytical solution which depends continuously on all space variables and
time in the whole domain. The example presented shows that we get a satisfactory approximation
of displacement and stresses both for direct and inverse problem as well. The example considered
suggests that the wave polynomials method is convergent, which means that more polynomials
in approximate solution leads to better results. The method proposed is suitable for solving ther-
moelasticity inverse problems. Even for noisy data the internal responses can be distant from the
corresponding border. In considered example it was not necessary to smooth noisy data. We got
very satisfactory results without any kind of regularization. Application of the wave polynomials for
solving direct and inverse thermoelasticity problems is very simple and the quality of the obtained
approximation is good. The method presented here can be used also in more complicated geometry.
In this case we can get global approximation or we can use a Finite Element Method with Trefftz
base functions (FEMT). If we use FEMT the number of polynomials in approximations (19) and
(20) can be obviously smaller than for global approximation. The criterion of choosing this number
for most complicated domains is a good subject for next paper.
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