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The aim of this contribution is to present two-point Padé approximants method for the determination of
upper and lower estimates on the effective transport coefficients of two-phase composite materials. The
obtained formulae improve the corresponding one-point Padé approximants bounds [1,2,4,14,23]. As an
example, a set of narrowing bounds for the overall conductivity of a square array of cylinders has been
evaluated.

1. INTRODUCTION

The mathematical properties of one-point Padé approximants to the effective moduli A\¢ of
two-phase composites consisting of components of moduli A\, A2, were extensively investigated
in recent years [4,14,16,23]. The most important result valid in the real domain reads: the sequence
of diagonal and subdiagonal one-point Padé approximants to power expansion of A¢(z) at z = 0,
z = (A1/A2) — 1, form the upper and lower bounds uniformly converging to A\e(z). Moreover, these
bounds are the best with respect to the given number of power series coefficients [1,Th.15.2].

On the contrary, the mathematical properties of two-point Padé approximants to \e(z) generated
by two power expansions of \¢(z), namely at z = 0 and z = oo, have not been examined as deeply
as the one-point Padé ones. The results reported in mathematical literature [8-11] are concerned
mostly with two-point Padé approximants to an equal number of coefficients of power expansions of
Stieltjes function at zero and infinity (“balanced” situation). Some special type of two-point Padé
approximants to Stieltjes function (2PTA) is studied in [6].

The convergence of sequences of two-point Padé approximants generated by non-equal number
of coefficients of power expansions of Stieltjes function at zero and infinity has been investigated in
[17,20]. General inequalities in real domain for unbalanced two-point Padé approximants to Stieltjes
functions have been derived in [22].

Main aim of this paper is to present two-point Padé approximants method of determination,
from the coefficients of a power series expansion of \¢(z), of the upper and lower bounds on A¢(z),
for two-phase composite materials.

This paper is organized as follows: in Section 2 we introduce basic definitions, notations and as-
sumptions dealing with Padé approximants to A¢(z). General two-point Padé approximants bounds
on Ae(z) are presented in Section 3. Auxiliary algorithms for the determination of coefficients of
a special continued fraction representation of two-point Padé approximants are demonstrated in
Section 4. In Section 5 we present the exact recurrence formulae for finding two-point Padé approx-
imants from the terms of power series expansions of A¢(z) around zero and infinity. In Sections 6
the correctness of the proposed algorithms is tested. A nontrivial example of practical calculation of
two-point Padé approximants bounds on A¢(z) is provided in Section 7. In Section 8 we summarize
and discuss the results achieved.
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2. BASIC ASSUMPTIONS, DEFINITIONS AND NOTATIONS

From the physical point of view, our study is concerned with the effective conductivity A of a
composite consisting of two isotropic components of conductivities A;, A2 and volume fractions
¢ and 1 — ¢, respectively. The bulk effective conductivity is defined by the linear relationship
(J) = Ae (VT) between the volume-averaged temperature gradient (VT') and the volume-averaged
heat flux (J). The average value ( . ) is evaluated over a representative volume or a basic cell. In
general, A, is a second-order symmetric tensor depending on the microstructure of a composite.
Our study, however, will be focused upon one of the principal values of Ae denoted by A.. The
remaining principal values can be studied similarly.

Analytical properties of the bulk dielectric coefficient Ae(A1, A\2) were examined by Bergman
in [4]. He proved that Ae(A1,A2)/A1 = Ae(1,A2/A1) is a Stieltjes function of A2/A;, analytical
everywhere except for the negative part of the real axis. Consequently, the effective conductivity
Xe(z) has the following general Stieltjes-integral representation:

Ae("I“) —1= R(x, O) = (EF(.'L‘,C),
. (1)
[ dl(y,C)
F(z,0) —/0 T+ou’

defined for 0 < z < oo, where the spectrum I'(u, C):
I'(u,C) = CH(u) + v(u),

W 0 for u<0 (2)
H(u) =
1 for u>0

is a real-valued, bounded and non-decreasing function defined for 0 < u < oo, while C' and H(u)
denote a non-negative constant and Heaviside function, respectively.
Consider now the formal power expansion of the Stieltjes function R(z,C) at z = 0,

oo

R(m,C’) ~ Z (Cén1 + cn) 2",
n=1
1" % n=1, (3)
On1 =
0 if n>1.
The expansion coefficients ¢, in (3) are given by
o0
o = (—1)"+1/ e T N 4)
0
Similarly at z = oo we have
[ce}
R(z,C) ~Cz + Z N (5)
n=0
where
o0
Ch= (—1)"/ uw " ldy(u), n=0,1,.... (6)
0

The coefficients ¢, and C), are assumed to be finite, ¢f. [1-3]. Two-point Padé approximants to
Stieltjes function R(z,C) defined by (1) and (2) via the formal power series (3) and (5) with
C > 0, have the following general form

ay kT + az’ka L aM+1,k:vM+1

1+ bz + bg,k.'tz +...+ bM,k:L'M )

[M +1/M] = (7)
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Let us examine the power expansion of rational function (7) at z =0

[M + l/M]k = Z cn’km" (8)
n=1
and at £ = o0
o0
[M+1/M)= ) Cppz™". 9)
n=-—1

By definition, the rational function (7) is a two-point Padé approximant to power series (3) and
(5) with C > 0, if

cnk=Cohin+cy, for n=1,2,...,2M+1—-k (10)
and
Can=0C, Cpp=Cq for n=0,1,...,k-2. (11)

According to the above notation, [M + 1/M], stands for the one-point Padé approximant.
Let us pass to the Stieltjes function R(z,C) for C = 0. Then the two-point Padé approximants
to power series (3) and (5) take the form

a) 4T + a5, 2% + ...+ afy aM

14+ b’l,k‘” + b’2,k:1:2 4.5k b’M’kmM'

[M/M]y. = (12)

The rational function (12) is the two-point Padé approximant to the Stieltjes function R(z, C), still
for C' = 0, with power expansions (3) and (5), if

Cak=cCp for n=1,2,...,2M —k (13)
and
Copg=Cqn for n=0,1,2,...,k—1, (14)

cf. also (10) and (11). It is worth noting that on account of (7)—(11) and (12)-(14), one readily
gets:

if C = 0% then apy1p2z™™ >0 and [M +1/Mjjy — [M/M]y . (15)
Thus by using (9)-(14) we obtain
M +1/Mlg41 =Cz+ [M/M]; for k=0,1,.... (16)

Formula (16) determines the general relation between the two-point Padé approximants [M +
1/M]k41 and [M/M]y constructed for the Stieltjes functions R(z,C) with C' > 0 and R(z,C) for
C = 0, respectively. Two-point Padé approximants (7) and (12) can also be expressed in the form
of S-continued fractions [1]

a1z gpT gp+1T g2M+JT
M =2 L o o BElD L SBT3 i 17
(M + J/M]; J i ™ e F " 1 % I " 0, (17)

or alternatively

(M4 Ty = 2= BE BE HE G p ST o BMWR oy orl (18]

e+ 1l+8%1+ =+ o % + a

where s = 1/z, and p = 2M + J — k (j = 0,1). The coefficients g1, ..., g, appearing in continued
fractions (17) and (18) are uniquely determined by p coefficients ¢, (n = 1,2,...,p) of a Stieltjes
series (3). To determine the remaining coefficients gp41,...,q2m+7 (J = 0,1), the values of k
coefficients Cy, of a series (5) are additionally needed. However, well known continued fractions
(17)—(18) [1,2,3] are inconvenient for an investigation of two-point Padé approximants bounds on

Ae(z). Below we will propose a special two-point continued fraction representation for [M + J/M],
(J =0,1), different from that given by (17)—(18).
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3. TWO-POINT PADE APPROXIMANTS BOUNDS

The mathematical framework for the application of two-point Padé approximants for the investi-
gation of overall properties of two-phase composites is provided by the present authors in [22], see
also [17-20]. In particular, the following theorem indispensable for further development was proved
in [22]:

Theorem 3.1. Two-point Padé approximants to Stieltjes power expansions (3) and (5) satisfy the
following inequalities
(—1)*[M/M]; <(-)*M+1/M+1)y <(-1)fR(z,C), if C=0, (19)
(=1)* M +1/M)i < (-1)¥ M +2/M +1)x < (-1)*"'R(z,C), if C>0, (20)

where R(zx,C) with C = 0, R(z,C) with C > 0, defined by (1) and (2), stand for the limit as M
goes to infinity of [M/M|i, [M + 1/M]y, respectively, and z is real and positive.

These inequalities have the consequence that the [M/M]i, [M + 1/M]; bounds are obtainable
using only the given number of coefficients, and that the use of additional coefficients (higher M)
improves the bounds. Note that for £ = 0, the relations (19) and (20) take a form of well-known
inequalities for one-point Padé approximants [1, Th.15.2].

An interrelation between two-point Padé approximants and continued fractions is furnished by:

Lemma 3.1. Two-point Padé approximants [M/M]; (2M < k) and [M + 1/M]);, 2M +1 < k)
can be uniquely represented by the following two-point continued fractions:

(i) if k is odd, then
g1z 9pT G1 Gas Gk-15

M/M)=—/— ... —_— = ... : 21
(MM = == | +0+2)Go+ 1 + 1 + 774 1 &)
(ii) If k is even then
a1z gpT Gi1 Gass Gps
M/Mljy=~— ... =&/ — —— ... — 22
M/Ml= - T T4 T+ 41 ()
(i) If k =0,1,2,..., then
M +1/M]x41 = Cz + [M/M]j. . (23)
Here the coefficients g; and G;
g; >0 (7 ='1,25.004D), G;>0 (1=0,1,...,k) (24)
are positive, whilst s = 1/z.
The recurrence formula for computing [M/M]y is given by:
0, if k odd,
s=1/z, Q¥ =
gk-18, if k even,
Q¥ = gepns/(1+ Q) n=0,1,...,k =3,
(25)

. QW +Goz, if k odd,
B QW/s, if k even,
Q(p—n) = gp—nm/(l + Q(p+1—n)) ) n= 0’ 1, D — 1’ [M/M]’C = Q(l) ?

where p, k and z are the input data for (25). It is convenient to rewrite the continued fractions
(21) and (22) in terms of s = 1/z:
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(i) if k is odd, then

9 92 9p Gis Gas Gg-15
M/M], = & . b Aol 2
MM = T 4 454G+ 1T + 1 + 7+ 1 (26)

(ii) If k is even, then

9 9 -1 9 Gi Gis Gygs
M/M, = = o = 27
M= S T s R 141+ T4 (27)
More details on relations (19)-(27) the reader will find in our paper [22]. Expressions (19)—(24)
and (26)—(27) are indispensable for deriving an exact recurrence formulae for the determination of

coefficients g; (j =1,2,...,p) and G (j =0,1,...,k) appearing in (21)-(22).

4. AUXILIARY RECURRENCE FORMULAE

Before the construction of an exact algorithm for the determination of coefficients g; (7 = 1,2,...,p)
and G (j = 0,1,...,k) of continued fractions (21)-(22), some auxiliary recurrence formulae for
infinite power expansions of Stieltjes functions will be proposed.

Let us introduce the two Stieltjes series: Rpt+i(z) (p = 1,3,...) and Rpyi(z) (p = 0,2,...)
defined by:

oom o m g
s+ 1+ 4+ s+Rpu(s)’ B P=5Se ey
R(s) = (28)
a1 g2 gp—-1 9p .
= , if p=0,2,...,
s+1+ "+ s +1+Rps’ = P
where
o0
R(s) = ZC](I)sj, 3= 1f% (29)
=0

is a power series (5) with C = 0, while R(,,1)(s) takes the form
o0
Y CPts, it p=1,3,...,
=
Rpi1(s) = (30)
Z cPVsi  if p=0,2,....

From (28) one can easily derive the following recurrence formulae interrelating the coefficients C](.l)
with C{?):

¢ =g /c(” (31)
Z e, (6 + o)

c? = —6y, j=12,... (32)

J Cél) J
and C\*) with C{”

Gy = g2 /0‘2’ (33)
Z C? (C + bor)

¥ = - —boj, j=1,2,... (34)

e



126 S. Tokarzewski and J.J. Telega

Here we have introduced d5(p) =1 (d5(p) = 0), if s = p (if s # p). By starting from the C’J(-a) given

by (34) we obtain C\” via (31)~(32), and then O\ via (33)~(34), etc.
Motivated by a special continued fraction representation of [M/M] given by (26)—(27), we can
reformulate (28) in a slightly different form

=, Ip if p=1,3
s+ 1+ " 4+5+Go+sRpya(s)’ O Sl b abt

R(s) = (35)
g1 92 gp-1 dp

if p iseven.

S +T+ T+ s +1+R1;+18 '
Note that according to (35); and (30);:

Go=CP™V | if p=1,3,...; (36)

while on account of (5) with C'= 0 and due to (30);2 we have:

o0

Riz) =00z, if p=12,..., (37)
j=1
w .

Rpials) =Y. CPVsi | it p=1,3,..., (38)
Jj=1
w .

sRyri(s) =3 CP s, if p=0,2,.... (39)
Jj=1

Now we can construct S-continued fractions [M/M] to Stieltjes functions (4.10), (4.11), (4.12) from:

(i) p terms of a Stieltjes series (37)

QT gt T
R = BE . ST 20} =1/z; 40
@ =TT+ + 5+ TRyi1(5) s=1/z (40)

(ii) (k — 1) terms of Stieltjes expansion (38)

_ G'ls st Gk_ls . . X
,Rp+2($)—— 1 + 1 ++m, if k—1,3,..., (41)

(iii) k£ terms of the power series (39)

@ G2S Gks

i L . . S i . 42
T 1+ T rafhal): T ¢ leeven )

sRpy1(s) =
The problem of finding two-point Padé approximants [M/M]; to power series R(z) = 372, ¢z,
R(z) = 332, Cjs’, s = 1/z has been reduced, via (31)-(34) and (40)-(42), to the determination
of the S-continued fractions from power series (37), (38) and (39) respectively. Hence the following
recurrence formula

m=12,..., Dnp=d™,
>4y (9
j—
(m+1) _ (m+1) _ k=1 .
dO —1, d_] ——T, ]—1,2,...,
1

for finding Dy, from 322, d;l)mj , proposed in [22], can be applied directly to (37), (38) and (39).

Here D,, represents g, Gy, while dgl) the coefficients cg-l), C'J(.’H'l) (=18, CJ(-TI'I) (p=0,2;...)
respectively.
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5. EXACT RECURRENCE FORMULAE

Now we are in position to demonstrate the exact algorithm for the determination of the parameters
gn, Gn of a continued fraction [M/M], given by (21) and (22). We start from p coefficients of a
power series (3) with C = 0 and k coefficients of a power expansion (5) also with C' = 0, where
p+k = 2M. In the first step we compute the coefficients g, (n = 1,2,...,p) of a S-continued
fraction to a Stieltjes expansion (3). On the basis of (43) we have

( m=1a2)"'ap’ gm:cg_m)a

n=12,...,p—m,

1 1
C(() +m) =1 ) c$11+m TS m) (Z ( ) n+1‘°]) )

where c{) (m=1,2,...,p) given by (3) are the input data for (44).
The auxiliary formulae (31)—(35) with g, (n = 1,2,...,p) determined by (44); take, for the data
m) Cm (m=0,1,2,...,k — 1) given by (5), the following exact form:

(44)

\

( 0,2,...,(p—1), if p odd
m= { 5 C(gn+2) = gn+1/0(§n+1) ,

0,2,...,(p—2), if p even

n=12...k-1,

j—-1
Z 01(1_1:;1) (C,(,',‘“) + 51m)

C(()n+3) = gn+2/c(gn+2) ,
n=12,...,k—1,
j-1
> C2 (Ot + Gom)
n+3 m=
o) = —m=0 ) — doj

\

If p is odd then (45)4, if p is even then (45)7 determines the coefficients C(p+ ) (1=0,1,...,k-1)
for recurrence relations (46) and (47) below:

(i) if p odd, then

=0PtY, j=0,1,...k -1, Go=6,

(m=1,2,...,k—=1, Gpm=C™,
J n=12,...,k—1-m, (46)
Z C’(1+m)Cl(-Tl) y
o <1, g
1 C{( )
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(ii) If k is even, then

Ghops= OFY, G D loni Rl 4

mo=1,2 .0k =1 ;0 G =G,
n=12,....k—1-m., (47)
ﬁ Z Cl(l+m) Cl(m
n+l—j
1(1+m) _ (14m) _
G =1, G = R

By starting from p terms of the power series expansion (3) and k terms of the series (5), where
p + k = 2M, the recurrence relations (44)—(47) allow us to determine uniquely the coefficients gn
and G, for continued fractions (21) or (22).

6. NUMERICAL TEST

For testing the basic formulae given by (44)—(47), the following two Stieltjes series expanded at
z =0,

— 1

— — n —
R(z) = +1 00 n; ~(1 1000™)(—z)" , (48)
and at £ = o©
RE) =1+ —— 3 11— 0.001")(~a)" (49)
~ 7 In1000 Z n ' ’

corresponding to the Stieltjes function

1000 1 1
R(x)=x/ du 1, L+ 1000z
1

l1+zu In1000 . 1+=z (50)
have been used as the input data. Numerical results are shown in Figs. 1,2,3 and in Tables 1,2. Figs.
1,2 and 3 present the sequences of two-point Padé approximants forming, for odd k, upper and for
even k — lower bounds on the Stieltjes function given by (50). The monotone sequences of [M/M],
and [M/M]s (M = 7,8,9,10) converging to function (50) are evaluated and gathered in Table 1.
Table 2 presents the positive continued fractions coefficients g, and G, for Padé approximant [3/3]
to the Stieltjes function (6.3). All numerical calculations performed by us confirm the theoretical
predictions of Theorems 3.1.

7. BOUNDS ON THE EFFECTIVE MODULUS OF MICRO-INHOMOGENEOUS MEDIA

As an example, the effective conductivity of microheterogeneous material consisting of equally-sized
cylinders arranged in a square array has been examined. For such a composite the bulk conductivity
Xe(z)is defined by the linear relationship between the volume-averaged temperature gradient (V')
and heat flux (J)

(J) = Ae(z) (VT) . (51)

The averaging (.) is performed over the unit square cell. The temperature appearing in (51)
satisfies the conductivity equation of the form

V- (1+28)VT =0, (52)
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Fig. 1. Monotone sequences of two-point Padé approximants uniformly converging to Stieltjes function (6.3)
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Fig. 2. Monotone sequences of two-point Padé approximants uniformly converging to Stieltjes function (6.3)
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Fig. 3. Monotone sequences of two-point Padé approximants uniformly converging to Stieltjes function (6.3)
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Table 2. Positive coefficients g», Gn» of continued fraction (3.3) (k=1,3,5) and (3.4) (k=0,2,4,6) representing

Table 1. Sequences of two-point Padé approximants to Stieltjes function (6.3)

[M/M] i g ¥ 107! 10° 10!

[7/7]s | 0.1001986 0.3452931 0.6470104 0.8995192 0.9862167
[8/8]4 | 0.1001986 0.3455764 0.6495113 0.8995655 0.9862168
[9/9]4 | 0.1001986 0.3456577 0.6511535 0.8996041 0.9862168
[10/10]4 | 0.1001986 0.3456810 0.6522331 0.8996364 0.9862168
ex. val. | 0.1001986 0.3456904 0.6543095 0.8998013 0.9862169
[10/10]5 | 0.1001986 0.3457046 0.6556835 0.8998324 0.9862169
[9/9]5 | 0.1001986 0.3457400 0.6563971 0.8998384 0.9862169
[8/8]5 | 0.1001986 0.3458638 0.6574800 0.8998456 0.9862169
[7/7)s | 0.1001986 0.3462965 0.6591207 0.8998543 0.9862169

two-point Padé approximants [3/3] to Stieltjes function (6.3)

Fig. 4. Monotone sequences of Padé approximants [M/M]o, [M/M]1, [M/M]2 uniformly converging to the
effective conductivity Ae (h = A2/A1) of the square array of cylinders for volume fraction ¢ = 0.78539. The
curves [M/M]z2, M = 2,4,6,12,18 are indistinguishable (solid line). The bounds [18/18], and [18/18]; are

very restrictive

n| gn |Guk=1|Gnk=2|Gnk=3|Gnk=4|Gnk=5|Gn k=6
0 50.3657 67.5269 144.6200
1 | 144.620 3.9512 12.0774 2.4608 19.9150 1.0000
2 | 500.500 0.2241 0.3441 0.1937 0.3737 0.1446
3 | 166.167 0.3178 0.2158 0.3559
4 | 334.332 0.2538 0.2889 0.2337
5 | 199.003 0.2668
6 | 301.496 0.2494
Ao
1000 |- ¢ =078538; ¢ = r/4=0785398163397..
a0o ~touching cylinders
800
IR e ke
§ 600 | . ?mhedr:ntaf:gaa]
g MM] 5, M=2,4,6,12,18
§ Seof MM] o, M=2,4.5,12,18
E 400
8 300 [ h-conductivity of cylinders
e} 200 | 1 —conductivity of a matrix
100 |
Of &t
T T R T R T R T: ST
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8Ae @ 0.78533 m
- 711
7'k} ; V111
| M1 Mg, M=2,4,6,8,16 | - ; i
g i M M2, M=2,4,6,8,16 ; : 4
8 6 s+ asympt. solution 11
(McPhedran et al,! 988)
N 5| —— DM, M246816 917/
E E i
gj 4 h~conduct. of a matrix
1 =-conduct. of cylinders
T 3
2
2 il Ry
- =——1" " g=w/4=07853981 63.. - touching cylinders 1,
12 345 10 2 345 102 2 345 103 2 3 45

Fig. 5. Monotone sequences of Padé approximants [M + 1/M]o, [M + 1/M], [M/M], uniformly converging
to the effective conductivity Ae(h = A2/A1) of the square array of cylinders for volume fraction ¢ = 0.78539.

where 6 is the characteristic function for cylinders. The continuity condition for the normal com-
ponent of the heat current J = (1 + z62)VT at the surfaces of the cylinders is expressed by

m-J_=m-J,. (53)

Here m is the unit vector normal to the surface of a cylinder, while J_ and J, denote the heat
currents on the inside and on the outside of the cylinder surface.

As the input data for calculation of two-point Padé approximants, the coefficients of the expan-
sion of A¢(z) in powers of z have been obtained by solving the system of equations (51)-(53). The
low order coefficients of the expansion of A¢(z) in powers of s = 1/z are reported in [15]. Starting
from these two series, we calculate via (44)—(47) the sequences of two-point Padé approximants
[M/M]y and [M +1/M]; (k = 0,1, 2) uniformly converging to the effective conductivity \e(z). The
numerical results are shown in Figs. 4,5. For comparison, the asymptotic solution reported in [15]
is also depicted.

8. SUMMARY AND DISCUSSION

By using the two-point continued fraction representation given by (21) or (22) the general algorithm
(44)-(47) for the determination of two-point Padé approximants bounds [M/M]; on the effective
transport coefficients A\¢(z) of two-component composite materials have been proposed and tested
for correctness (Figs. 1,2,3).

As an example of application to a physical problems, the set of narrowing bounds on the effective
conductivity for a square array of closely spaced cylinders has been found (Figs. 4 and 5). The
two-point Padé bounds obtained in this paper are more narrow than the corresponding one-point
Padé estimations reported in literature [13,14].

It is worth noting that our study has been limited to the real domain only. In the future we
would like to extend the two-point Padé approximants method to the complex domain as well.
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