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On the basis of the paper [1] two topics are discussed. Firstly, exact formulae for the homogenized coeffi-
cients of a layered thermopiezoelectric composite are derived. Secondly, by applying the Ritz method, the
local problems are solved approximately. Specific cases are also examined and illustrated.

1. INTRODUCTION

The first published results on homogenization of piezoelectric composites with periodic structure
are due to the second author [2]. This author used the method of I'-convergence. Next, Bloch
expansion techniques were applied in [3] to the dynamic equations. As could be expected, the
homogenized coefficients coincide with those derived in [2]. Different techniques of prediction of the
effective moduli of piezoelectric composites were used in Refs. [4-13].

Homogenization of the equations of thermoelasticity with periodic coefficients was performed by
Francfort [14,15]. Mathematically very elegant setting, without the assumption of periodicity was
proposed in [16]. In the last paper, correctors were also introduced and investigated. If the initial
conditions for the equations of thermoelasticity are nonhomogeneous, then the initial condition for
the temperature of the homogenized system changes, somewhat surprising result. Homogenization
of the equations of thermopiezoelectricity with periodic coefficients was performed by us in [1]. The
formula for the initial temperature of the homogenized body reduces to that primarily derived by
Francfort [14] in the absence of an electric field. Similar phenomenon was observed for the equations
of thermodiffusion with not necessarily periodic structure [17].

It is worth noting that piezoelectric and thermopiezoelectric composite materials are receiving
interest in the developing field of “smart” materials, cf. also [18,19]. They are also useful in modelling
the behaviour of biological materials exhibiting piezo- and pyro-electric effects, cf. [2].

The aim of the present contribution is mainly twofold. Firstly, for a thermopiezoelectric layered
composite with a microperiodic structure, analytical formulae for the homogenized coefficients
are specified. This is a one-dimensional homogenization and the local problems involve ordinary
derivatives only. Secondly, in order to find solutions of the local problems, general procedure of
applying the Ritz method is outlined and next used in the two-dimensional case. To illustrate our
procedure specific cases are solved and the results presented in the form of figures. In particular, we
treat a composite made of two phases: quartz and lithium niobate. To make our paper self-contained
as far as possible, we provide also the most important results of [1].

We observe that numerical methods for much simpler physical situations were developed in
[20-25].
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2. BASIC EQUATIONS

Let © ¢ R? be a bounded, sufficiently regular domain and (0,7) (7 > 0) — a time interval. The
elastic, thermoelastic, piezoelectric, dielectric and pyroelectric moduli are denoted by ¢;jxi, 7ij; gijk,
€ij and A;, respectively, cf. [26,27]. Throughout this paper small Latin indices take values 1, 2 and 3.
Next, k;; stands for the heat conductivity, p is the density and g = %; C. is the specific heat at
constant strain per unit volume and Ty is the reference (absolute) temperature. We identify Q with
the underformed state of the thermopiezoelectric composite with a microperiodic structure. Thus
for € > 0, the material functions just introduced are €Y -periodic, where Y = (0,Y7) x (0, Y3) x (0, Y3)
is the so-called basic cell, ¢f. [28-31]. More precisely, we write

xT H i
Ciik(®) = Cijkl (E) 95(®) = giji (g)

G@ = (2) K@ =k(3) @ =% (3) ()
x@ =x(%),  r@ =8(%),  r@ =(3),

where z € (2 and the functions ngkt’ gfjk, etc. are Y -periodic, where € > 0 is a small parameter.
For a fixed € > 0 the basic relations describing a linear, thermopiezoelectric solid with the
microperiodic structure are, cf. [1,26,27]

(i) Field equations

o5 + b = pfif in Qx(0,7),
(2)
Di; =0 in Qx(0,7).
(i1) Heat equation
§ = (.ocfjﬂ:‘;-),j +r€ in Qx(0,7). (3)
(iii) Constitutive equations
U'fj - Cf‘jkgek!(us) = 'Tfjss B giijEk((pE),
0° = —fyeis(u) + 55 — XEi(*), (@
Df = g5eri(u®) + Ajs® + €5 B (¢°).
(iv) Geometrical relations
ext(u®) = uyy = 3 (ufy +ufy), Ei(¢°) = —¢%. (5)

Here of;, uj, bj, p°, Ef, Df, 6° and s® are the stress tensor, the displacement vector, the body
force vector, the mass density, the electric field vector, the electric displacement vector, the relative
» kS,
temperature and the entropy, respectively. Moreover we Illave ¢ = %:—,ﬁ;fj = 7+ and B = %,
where R® represents heat sources; b® and r® are Y -periodic.
We note that in our paper [1], the material coefficients appearing in Egs. (4) were distinguished
by a bar.
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The tensors of material functions satisfy the usual symmetry conditions

E ol — AE —
Cijmn = Cmnij = Cijnm = Cjimn>

E _ . E E __ E E __ _E
Yii = Vjis Gkij = Gkjis &5 = €5ir

We make the following assumption: there exists a constant « > 0 such that for almost every z € 2,
the following conditions are satisfied

Cijmn(T)€ijemn > a | € ke 'yfj(z)aiaj >alal? "

k;(z)aia; >alal? €;(z)aia; > o |al?, o
for each e € E? and each a € R?; here lEi is the space of symmetric 3 x 3 matrices.

Substituting (4) into Eqgs. (2) and (3) we obtain (e > 0 and fixed):

(CFjmnUm,n — V55 + Gkij ok )rj +b] = POl

(9imntin,n + ATS® — €55k )i = 0, (7)

§° = [R5 (—VimnUin.n + B8 + Xk )si |1 +7.

Obviously, u®, s, ¢°, b, and r¢ are functions of z € Q and ¢ € (0, 7).
Equations (7) represent the system of equations for finding u®, ¢* and s*. It has to be completed
by the boundary and initial conditions. We assume the homogeneous boundary conditions:

“E(I! t} =0, es(m, t) =0, ‘ps(xs t) =0 {8)

for z € 9N and t € [0, 7]; N stands for the boundary of €.

The initial conditions are

ue(mio) = U(m)a ﬁs(zﬁo) = v(m)i

(9)
6%(z,0) = T(x), ¢*(z,0) = F(z).

The functions U, V, T and F are prescribed.
Under physically reasonable assumptions, a solution (u®, ¢, s°) to the initial-boundary value
problem just formulated exists and is unique.

3. HOMOGENIZATION

In order to find the effective or macroscopic coefficients we employed the method of two-scale
asymptotic expansions, cf. [29, 30]. In our case we make the following Ansatz

ué(z,t) = u’(z,y,t) +eul(z,y,t) + e2u’(z,y,t) + ...
95 (z,t) = @Oz, y,t) + ep' (2,9, 1) + 20%(z,y, 1) + ... (10)
s¢(u,t) = s%(z,y,t) +esl(z,y,t) +e2s2(z,y,t) + ...

where y = £. The functions Wz, .;2), 0 (@, s 8)y e 0y 0225 o, £), 02 (&5 01 B)5 o+ 5 8°(Z, 1, B), 82 (24 1, 1),

etc., are Y-periodic. The main steps of the asymptotic analysis are outlined in the paper [1]. We
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shall now provide those results which are essential for our subsequent considerations. For a function
f € LY(Y) we set

1
= — dy.
(=77 [, F0)ay
The homogenized form of Egs. (3) and (7)1,2 is
%u? h %l y %90 p 00"

(p) L % Qmm - 7s‘j67j +{bi) ,
d 9%
5 () =l 5w (11)

o Py g BO 00
tkj 3:!.'3' 3.'35 3 3563'31’;' * 6Ig

We observe that the displacement field u®(z,t) and electric potential field ®°(z,#) do not depend
on the local variable y € Y. The entropy of the homogenized thermopiezoelectric solid is the
average of s%(z,y,t) over Y and thus it is equal to (s°(z,y,t)) = ]—}17[ Jy °(z,y,t)dy. The physical
interpretation of 8% (z, t) is readily inferred from (11); it is the temperature field of the homogenized
body.

The effective coefficients are given by the following expressions:

0.

B axl(nmﬂ) B ag(mn)
imn = <Cx5mﬂ + Cijipg %, + 9pij o |
N oD\ dR(k)
Gkij = \9kis + Cijmnw + gma'j—g;* )
o = (- &—gm-ﬁq—?
1] J JPq 3,yq 7 ayk !
1] ] ik ayk bl (12)
5 L )
€m = \ €im — Jipg e + €ik o /|
aQ or
h N i -
’\z <’\: Eska + Gipq ayq > )
7, aQ
h o P it 78
v E <ﬁ+7”q3 +'\k3yk>

where the local functions XE"“", gimn) @Em), [, R™) Q and ©; are Y-periodic. They are solutions
to the local problems which will now be formulated.

Let us assume that the periodic material functions c;jki(y), gijk(y), etc. are of class L*(Y’). Such
case includes layered thermopiezoelectric materials. We set

Hpee(Y) ={ve HY(Y) | v takes equal values on opposite sides of Y}, (13)
Hper (Y, Rs) ={v=(v)|vi € Hpee(Y), i=12, 3}. (14)

The unknown periodic local functions entering Eqgs. (12) are solutions to the following local prob-
lems.
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Problem P]
Find x{™™ € Hper(Y) and 8™ € Hyer(Y) such that

1

(mn)

00
[Y eiima(4) + iipa (u)ela O™ + 9455 (1) =5 — el (v)dy =0 ¥ € Hyer (¥, Y,

J

Problem Ploc

Gimn (Y) + Gipg(¥)ely (X™™) — € (y) —dy=0 Vw € Hpe(Y).

aeimﬂ) ow
Oy

Find ™ € Hyer(Y) and R™ € Hyer(Y) such that

i AR(™) -
./; gmij (y) + Qkij (y)m +: quq(y)egq (Q{ ))l B?j (V)dy =0 Vv = Hper(Ys R3):

' OR(™ ow

Problem 1:']oc
Find I'; € Hper(Y) and Q € Hper(Y) such that
0
[ [150) ~ comtuieta(®) - 915 52| Wiy =0 v € Hpu(¥, ),
Q1 ow
L {'\t(?}) + Gipq (y)egq (P) — €k a] _3dy =0 Yw € Hper(y) 1
where

1(0v; Ov,;
Y =_ =% I .
6:_1 (V) 2 (6?;’3 + 6y‘)

Moreover, 8 = (©;) is a solution to the following

Problem Pmc
Find ©; € Hpe(Y') such that

—dy=0 VYvE€ Hpu(Y,R?).

Oyi

[Y [W:k (y) + Kij (y) 68k] Sur

Remark 3.1

In fact, the two-scale asymptotic method leads directly to the strong formulation of the local
problems. Consequently, the material functions involved have to be more regular, at least of class
C'(Y). However, the point of departure can be the weak (variational) form of system (7). Then

the local problems are given above.
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Remark 3.2

Having in mind specific problems, for instance layered materials, it is convenient to introduce the
following notation:

xi:f'] _ xg:),

Cijmn = Cijmn,

C4jmn = Gjmn, XF(';:” ‘I’m
o (i7) _ p(i5)
C4jdn = —€jn, X4 = 0\,
Cijas = —Yijy X9 = RO,
C4j44 = ’\Ji X(‘M) Pk?
Caq44 = .B(y)a (44} =Q,

where o, 8,7 = 1,2,3,4 and 4, j,k,m,n = 1,2,3. _
Then the strong formulation of the local problems P} (2 = 1,2, 3) reduces to finding Y-periodic

functions xg,. af) satisfying the relation

] e .
e lcazwn Oyn = » Caipvy (15)

and the homogenized (effective) moduli are

paa
Cﬁﬁ_uu = (Caﬁ;w) <+ Caﬁwn?> . (16)

Thus the effective thermopiezoelectric coefficients are completely described by Caﬁ;w and H:?J-.

4. MICROPERIODIC LAYERED COMPOSITE

Now the basic cell reduces to an interval, say (0,1), ¢f. Fig. 1. We assume that the material co-
efficients of such a composite are piecewise constant; for the lamination in the direction y3 they
are

Cfxg,uu for Y3 € (01 E)a

Caﬁpu{y) — ( )
Capuv for Y3 € (E: 1)

Thus the composite is made of two materials. After lengthy, though simple calculations the local
functions can be found in a closed form; they are piecewise linear, cf. [17]; moreover

chouw = (Capur) — E(1 — &) (B~ [ersaplleuwnsl, (17)
where

(Capuw) = & + (1 = )i,
and

2 1
ﬂcﬂﬁ#b‘]] = cg,ﬁ)pv Ex,g;w‘

[Bag] =[§Cfs)ﬁa+(1 5)%363]-
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Fig. 1. Layered composite: basic cell; ¥; — material with coefficients CS;E}‘:

: (2) (2)
coefficients Coo s and & 3

5 and "‘ass Y2 — material with

These coefficients have to be completed by the heat conductivity k;;, which is also piecewise
constant. Homogenized heat conductivity coefficient reads

Kl = (kig) — €(1 — ) K [kisllsjs] (18)
where

K =&y + (1 - ).

5. RITZ METHOD
To find the effective coefficients one has to solve primarily the local problems. The Ritz method

offers a possibility of determination of the local functions in an approximate manner. Below, we
apply this method to our thermopiezoelectric problem.

5.1. General case

We shall be looking for an approximate solution of the local problems by the Ritz method. Accord-
ingly, we take

it = X ), 6™ = ©f"™ge(y),

R™ = RMgy), oM =a[Vey), (19)

Iy = Tkad®(y), R = Qag"(y)
Here ¢%(y),a = 1,2,...,a (the base functions) are prescribed Y-periodic functions and
x{;:“) e&"‘“) , (m) @i’:) s ka, Qo are unknown constants. Obviously, the summation convention still
applies.

The local problems Pfoc (i=1,2,3) should now be satisfied for test functions of the form

vi = 0% (y),  w=w.p*(y). (20)



140 A. Galka, J.J. Telega and R. Wojnar

To determine the unknown constants one has to solve the following algebraic equations:
X Acla, b, k, 1] + O™ Agla, b,i] = Belb,i,m,n],
x}m )Ag[b a, k] — @gmn)Ae[a b] = Bg[b,m,n],

m)Ag[a b,1] + (D(m)Ac[a, k,b,i] = Bga[m,1,b],

(21)
R™ Aefa, b] — ®™ Ag[b, a, k] = Be[b, m],
['roAcla, k,b,1) + Q. Agla, b, i) = —Bgm[b, i),
[raAglb, a, k] — QqAe[a, b] = Blm/[b],
where
Ada,jbnl = [ cimdithd¥,  Adabn] = [ gundidha,
Ada,l] = /Y et ehdy, Bela, j,m,n] = — /Y Cijmnd2dY,
Bgla,m,n] = —[Ygimnqb:}dl’, Bgali,m,a] = —/Yggmﬂqb:‘nd}’, (22)
Bela,m] = - fy eimd%dY, Bimla] =~ /,, Nedy,
Bgmla,m] = —/Y'y,-quf‘,-dY
with ¢ = ?;‘i and

Ala,j,b,1] = Acla,j,b,i] + AB[d,a,j]Ag[d,b,1],

Blb, 1) = —Bgmlb,i] + AB[d,b,iBlm[d],

Bl[j,m,a] = Bgalj,m,a] — AB[d,a,m|Be[d, j],

Bla, j,m,n] = Bcla, j, m,n] — AB[d, a, j]Bg[d, m,n|
with

ABl[d,a, j] = (Ae)'[c, d]Ag[c, a, j].

The solution of the system of equations (21) is given by
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Xia" = (A)7'[d,i,a,k]Bld,i,m,n],
O™ = —(Ae)~'[b,a]Bg[b,m,n] + (A)'[d,i,c, k}B[d, i, m,n]AB[a,c, k],
(™) = (Ae)~'[b,a]Be[b,m] + (A)~*[d,i,c, k|B[m,i,d|AB]a, c, k],
o™ = (A)7'[d,i,a,k]Blm,i,d), v
Tra = (A)7'[d,4,a,k]B[d, i,
Qa —(Ae) ' [b,a] Bim[b] + (A)~'[d, i, c, k| B[d,i|ABla,c, k],

Symbols (Ae)~! and (4) ™" denote inverse matrices of (Ae) and (A), defined in this order by
(Ae)~1[b, a)Aefa, c] = 2 (Ae) ' [b, a) Aefa, ¢] = Gpe
and

(A)~'[b,n,a,m]Ala,m,c, k] = Z Z ~1b,n,a,m]A[a, m, ¢, k] = SpcOkn -

a=1m=

Finally, the homogenized coefficients can be written as follows:
chixt = (cijmt) + (Ae) ' [b,a] Bg[b, k, 1] Bg[a, i, ]
—(A)~'[b,n,a,m]B[b,n, k,l|Bla,m, i, j],
gli; = (grij) — (Ae) ™" [b,a]Be[b, k| Bgla, i, j]
—(A)~'[b,n,a, m] B[k, n,b|Bla, m,i, ],
v = (%) — (Ae) ™' [b, a] Bim[b] Bg[a, i, j]
+(A) " [b,n, a,m]B[b, n, 1, j]Bla, m],
= (e;j) — (Ae)~1[b, a] Be[b, i| Be[a, j]
A)~'[b,n, a,m]B[i,n, b B[j,m,al,
A= (\) — (Ae)~![b, a) Blm[b) Be[a, 1]
—(A)~![b,n,a, m]Bi,n,b|Bla,m],
B = (B) — (Ae)”'[b,a]Bim[b]Bimla]

+(A)~'[b,n, a,m]B[b,n]Bla, m).
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5.2. Specific two-dimensional problem: two-phase composite

To illustrate the outlined general procedure we consider a two-phase composite material with piece-
wise constant coefficients, provided that they do not depend on y3 (two-dimensional homogeniza-
tion):
c&lgw for yeM,
Caﬁ_u.u(y) = «, ﬁ,,u,v =1,2,3,4. (25)

2
cfm)!w for yeYs,

7
7 # > )
%

Fig. 2. Basic cell of two-dimensional composite

a
Fig. 2 describes the basic cell; now qbf‘ = % = 0 while (22) simply takes the form
3

Acla,k,b,i] = 2, Fla,b, L, J] + [cresid flas b, L, J),

Agla,b,k] = ¢\2 Fla,b,L,J] + [gkJ]f[a,b, L, J],
Aela, b] = A Fla,b, L, J] + [es]f[a, b, L, J),

(26)
Bcla,i,m,n] = [ckimn]fla, K], Bgla,m,n] = [gkmn]f[a, K],

Bga[kai!a‘] = lgkiK]]f[arK]v BB[G, m] = [EKm].f[a} K]:
Bim/a] = [Mk]f[a, K], Bgmla,i] = [ykilfla, K].
Here
B a¢a ‘a_?_a B aqba 8¢a
fla,b,L,J] = v O B dy, Fla,b,L,J] = v B ay}dY,

9g°
f[a,K]zf dY and K,J,...=1,2.
vi Oyk
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5.2.1. Base functions

We take the following base functions

[ § (_l _i)
o' (yy2) =8 —(1—8y for y € (—gg) (27)
L& (§ 1) .
| fyl 2 for Y1 € 2! 2 1
i n _1 _2)
ny2 + D) for Y2 € ( 2: 2 1
$*(y1,32) =S —(1—n)y2 for yo € (_31 g) § (28)
_n n 1\,
| nya 2 for y2€ (2:2) )
¢53(y1,y2) = cos(myy) sin(27y2), (29)

6" (y1,42) = cos(myz) sin(2my1). (30)

Next, we calculate

~(1-9) for e (-
¢! (y1,12) =
& for yle(—

¢,12 (yluy:.’) =0, ¢,21 (yla ?)‘2) =0,
_(1 _7?) for Y2 € (_gs 2) ’
1 79 n 1\
n for 926( 2 Z)U(ﬁ’ﬁ)’

¢% (y1,2) = —msin(myy) sin(2my2),  ¢° (¥1,y2) = 27 cos(my1) cos(2mys),

o2 (y1,92) =

% (y1,92) = 2mcos(2my1) cos(myz), % (y1,42) = —7sin(2my; ) sin(mys).

6. EXAMPLE: COMPOSITE MADE OF QUARTZ AND LITHIUM NIOBATE

In this section we examine a two-phase composite for which the basic cell is two-dimensional, cf.
Fig. 2. The material of the inclusion Y] is quartz, while the matrix ¥ = Y'\Y] is made of lithium
niobate.

Prior to solving such two-dimensional homogenization problem, we specify the material coeffi-
cients characterizing these two components.
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6.1. Material coefficients

Quartz, cf. [27,32,33]

. ) kg
: p=2.65-10°—=.
(i) Density: p 65-10 3
(ii) Heat capacity
cal J 6 J 0
ce = 0.188 ﬁ = 07871'@, Ce = pc. = 2.086 - 10 W, To = 300°K,

271042
B = s 6.953 - 103 B! =0.1438 - 10-3“;%—)—.

Ty m?(10)%’
The indices used here take the following values, cf. [17]:
(i7) » (11)  (22) (33) (23)=(32) (13)=(1) (12)=(21)

K — 1 2 3 4 ) 6
(iii) Elastic moduli (units: 10“’%)
| €11 Ci2 €13 Ci4 0 0 i
ciz2 e c3 —cig 0 0
a3 c3 cz3 0 0 0
{eiion = P} = cia —cg4 0 cyqg O 0
0 0 0 0 caq C14
[0 0 0 0 e4 jzlen—ca) |

Ci1 = 8.674, .Cl1a = 0.599, Clg = 1.191, Cil4 = —1.791,
ca3 = 10.72, cas = 5.794, ces = 3.988.

(iv) Piezoelectric coefficients (units: —05)
m

gu —gn 0 guu O 0

(9ije) =(gix)=| 0 0 0 0 —g14 —gn

0 0 0 0 0 0
g11 = 0.171, g14 = —0.04.

(v) Dielectric coefficients (units: 10'102)
m
€11 0 0
(€ij)=| 0 en O
0 0 €33
e = 0.392, €33 = 0.41.

(vi) Heat conductivity (units: ;a.l )
s?cm
ki 0 O
(ki) = l 0 ki O ]
0 0 ks

ki1 = 0.016, k33 = 0.030.
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1

(vii) Thermal expansion coefficients (units: 10'61—0)
11 0 0
(@ij)=10 an 0
0 0 as3

ap = 13.37, a3z = 7.97, Yij = CijmnQmn-

Lithium niobate (Li Nb O3), cf. [32]:
i) Elasti duli (units: 10'°—;

(i) Elastic moduli (units m2)

[c11 ci2 ¢33 cig O
ci2 c1 c3 —cig4 0
ci3 c3 ¢33 0 0
cig —c4 0 cyg O
0 0 0 0 cas C14

L0 0 0 0 e ien—c)l

c11 =203, c¢12=953, c3=75, c;4=09,

(cijkm) = (ckL) =

[ I o B e [ s

ca3s = 23.5, c4q4 = 6.0.

C

(ii) Piezoelectric coefficients (units: 3

0 0 0 0 gi5 —g»
(9ijk) = (gix) = | —g22 g22 0 g5 0 0
931 g3 g3 0 O 0

915 =37, g2=25, g3=02 g5=13.

F
108
=)

(iii) Dielectric coefficients (units: 10~

en 0 0
(65)=| 0 en O
0 0 €33

€11 = 3.89, €33 = 2.57.

6.2. Numerical results

We have examined both the one-dimensional and two-dimensional problems. In the first case exact
homogenization formulae specified in Section 4 were used.
The superscript “(1)” in the material coefficients corresponds now to the layer made of quartz.

(i) One-dimensional case

On the basis of formula (17) we have computed elastic, piezoelectric and dielectric homogenized
coefficients. We have considered three laminations determined by three Cartesian axes {y;}, (i =
1,2,3). Some of our calculations are depicted in Figs. 3-5. An interesting conclusion can be drawn
from the upper and lower parts of Fig. 4. In the case of the lamination determined by y3, for a

certain range of the volume ratio v the coefficient g%, is negative, though both g:(,ll)l and gg)l are

nonnegative. Also, the coefficient gy, for the lamination determined by y; is larger than g{ll)l and

9&21)1 in certain interval of v, see the lower part of Fig. 4.
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21 -
19 +
17 +
=5 ch3(1,1,1,1)
w® 434 TR S e, e ch2(1,1,1,1)
ﬁ 11 4 —'—'Ch1(1.1.1.1)
g e
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Fig. 8. Selected homogenized elastic coefficients as a function of volume ratio v = £; chk(i, j,m,n) = c::fmn
— lamination in the direction of y; for instance, chl(i,j, m,n) denotes homogenized coefficient ci}m“ for
lamination in the direction y;
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Fig. 4. Selected homogenized piezoelectric coefficients as a function of volume ratio v = §; ghk(m,1,j) =
9:.'-..-}- — lamination in the direction of yx; for instance, ghl(m,1,j) denotes homogenized coefficient g:'m-j for

lamination in the direction y;
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Fig. 5. Selected homogenized dielectric coefficients as a function of volume ratio v = £; ehk(4,j) = E:; —
lamination in the direction of yy; for instance, eh1(i, j) denotes homogenized coefficient E:}- for lamination in

the direction ¥
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(ii) Two-dimensional case
In this case the homogenized coefficients were obtained on the basis of formulae (21). The

calculations were performed for two, Eqgs. (27) and (28), and for four, Egs. (27)—(30), base functions.
Some of our results are summarized in Figs. 6-9. In Figs. 6 and 8 the homogenized coefficients are
functions of the volume fraction v = €7, where the inclusion has a quadratic section (¢ = 7).

In Figs. 7 and 9 the homogenized coefficients are now functions of 7 provided that v = —;— Thus
the inclusion is a variable rectangle. If n — 1 and n — 1, the two-dimensional problems reduce to
the corresponding one-dimensional lamination problems in the direction of y3 and y;, respectively.
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(=]
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Sost T e gh2(3,3,3)
(=]

v

Fig. 6. Selected homogenized piezoelectric coefficients as a function of volume fraction
v=§£n,€ =n;gh2(m,i,j) = 92;;; — two base functions; ghd(m,1,j) = g",;,-,- — four base functions
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Fig. 7. Selected homogenized piezoelectric coefficients as a function of 7 for v = 1/2; gh2(m, i,5) = gk, e
two base functions; ghd(m,i,j) = gﬁ,—_,- — four base functions
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Fig. 8. Selected homogenized dielectric coefficients as a function of v = £n,¢ = n;eh2(i,7) = ef} — two base

functions; ehd(m, i, j) = €y — four base functions
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Fig. 9. Selected homogenized dielectric coefficients as a function of 5 for v = 1/2;eh2(i, j) = ef} — two base
functions; ehd(m,i,j) = e?j — four base functions
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The exact one-dimensional results (v = ) for lamination in the corresponding direction were
compared with approximate two-dimensional results obtained for = 0.551 = % andn =0.999 =1,
for dielectric and piezo-electric coefficicients. Good agreement (within 1% of error) of the results
was observed for all components.
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