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The present paper further develops the boundary element technique to provide an efficient and accurate
method of analysing the crack propagation processes in 2-D linear elastic structures. Based on both the
direct boundary integral equations, for source points located on the external boundary of the plane elastic
region, and the indirect boundary integral equations, for the resultant forces acting on one side of the crack
surfaces, this technique allows to avoid problems associated with other numerical methods for fracture
mechanics computation. In the first part of this paper, the proposed boundary element technique and
also the strain energy density criterion, which determines the crack increment in a mixed-mode loading
situations, are described. In the second part, two numerical examples are enclosed to demonstrate the
capabilities of the boundary element technique as a tool for modelling an arbitrary crack, predicting its
growth and updating the model geometry to simulate the next crack increment.

1. INTRODUCTION

The boundary element method (BEM), namely a general discretization procedure of continuum
problems posed by the boundary integral equation method (BIE), is now firmly established in
many engineering disciplines as an alternative numerical technique to “domain”-type solutions,
such as the finite element method (FEM) and the finite difference method (FDM). The boundary
element method has some important advantages over the finite element method, in particular for
a boundary element analysis only surface meshes are required. This fact leads to more efficient
computer codes and a more convenient preparation of the input data. If a finite element analysis
is performed, the volume of the model must also be discretized (see [4]). One of the fields, where
the BIE formulations were applied successfully, is linear elastic fracture mechanics.

Linear elastic fracture mechanics (LEFM) provides a theoretical basis (see [2]) for the prediction
of fracture processes and the fracture-resistant design of many structures. The key feature, which
was recognized by Irwin [21] and became the foundation of LEFM, is the fact that for limited
plasticity the stress intensity factor k& (SIF) characterizes the state of singular material loading over
a sufficient size volume in the region around the crack tip. The most difficult problem in boundary
and finite fracture modelling is the need to approximate the size of the elastic singular field near
the crack tip, which is not known a priori for a particular problem. The extent of the singular fields
is set by using special crack tip elements in the automatic selection of the modelling grid.

In modelling of crack propagation trajectories numerical complications arise resulting not only
from the need to capture the singularities at the crack tips, but also from nonlinear responses
caused by the opening/closing of fractures. When crack propagation is modelled, the changing crack
geometry requires the element mesh of the crack model to be continuously modified. Automatic
local re-meshing is used to simulate crack growth. Such re-meshing, at every propagation step,
renders the “domain”-type solutions inefficient.

Straightforward application of the boundary element method to crack problems leads to a math-
ematical degeneration in the numerical formulation (i.e. the singular matrix) Wcause the BIE for-
mulations degenerate for a body with two surfaces occupying the same location in the form of a
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crack. To avoid this difficulty, several modelling strategies have been suggested. The first widely
applicable strategy, of dealing with two coplanar crack surfaces, was devised by Blandford, Ingraffea
and Liggett [5]. Their approach, known as the multi-domain formulation, is based on cutting the
finite medium along the crack surfaces occupying the same location into two subregions. Then these
subregions can be added, utilizing continuity and equilibrium relations at the cut interfaces. Note
that the multi-domain formulation is, as yet, the most general. It can be applied to both sym-
metrical and non-symmetrical crack problems in both two- and three-dimensional configurations.
However, this approach becomes inefficient when there are two or more cracks, or even for a single
crack that propagates under mixed-mode loading. In addition, it introduces along the cut new
unknowns that can significantly increase the size of the problem to be solved. Snyder and Cruse
[33] developed the second strategy for dealing with two coplanar crack surfaces, which is called the
special Green’s function formulation. The fundamental solution (i.e. the Green’s function) contains
the exact form of the traction—free crack in an infinite medium, hence no modelling of the crack
surfaces is required. In spite of the fact that the special Green’s function technique is accurate, this
technique is only restricted to the 2-D (two-dimensional) straight cracks approximations. Therefore,
it cannot be applied to modelling the crack propagation trajectories. The third strategy of elim-
inating the problem of the crack BIE degeneration is the displacement discontinuity method. An
extensive consideration of the displacement discontinuity method was given by Crouch and Starfield
[9]. In this manner, the crack is directly treated as a single surface across which the displacements
are discontinuous. Therefore, additional integral expressions for the crack surface stresses must be
derived. Such expressions can be obtained by means of the Hooke’s law. It must be noted that
these integral expressions contain high singularities termed hyper-singularities. Hyper-singularities
are very difficult to handle in numerical calculations. So far, for crack propagation problems the
displacement discontinuity method seems to be very promising. Recently, the displacement dis-
continuity method was modified to the dual boundary element method (DBEM). This approach,
which is based on two different types of equations (i.e. the displacement and traction equations)
for coincident crack nodes, was introduced in [27,28,29] to account for 2-D and 3-D static fracture
problems.

In this paper the application of the boundary element method to modelling of crack propagation
trajectories is presented. The analysis, considered here, embraces two levels, i.e. the elementary
crack growth increment in the direction of the minimum strain energy density factor and the crack
propagation into the solid. The models of crack propagation trajectories have been determined using
an incremental description. Numerical examples for the computation of crack paths are included.

2. STRAIN ENERGY DENSITY CRITERION

In many practical situations structures are subjected to shear and tensile loads, which will lead
to mixed-mode cracking. So far, mixed—mode crack propagation criteria are concerned under the
LEFM assumptions. Three commonly known criteria can be summarized as follows:

e the maximum tensile stress factor (see [12]),
e the maximum energy release rate (see [20]),
e the minimum strain energy density factor (see [32]).

Based on a survey of experimental and numerical results (see [4,8]), all the three methods have
been found to be satisfactory for crack trajectory prediction. However, there is no preferred choice
for critical load prediction. Within the general framework of the variational principles, a physical
interpretation of the strain energy density criterion can be formulated.

It is natural to explore the energy balance relation for an elastic cracked body. According to the
conservation law, energy can be converted from one form to another, but the total quantity stays
the same, i.e.

E =D + Ex + E, = const, (1)
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where D is the energy dissipated in the material, Fy is the kinetic energy and E, is the potential
energy. For limited plasticity D — 0. The total potential energy of the mechanical system consists
of the potential energy of the internal loads, U, and the potential energy of the external loads, W,

Ey,=U+W. (2)

The potential energy of the internal loads is also termed the strain energy. If the simplified physical
model of quasi-static crack growth is employed, then Ex = 0 and equation (1) takes on the form

E=E,=U+W =const. (3)

Moreover, the potential energy of the external loads is equal to the negative of the strain energy.
Obviously, for the displacements corresponding to the state of equilibrium, the variation of the
total potential energy is

SE, =6(U+W)=0. (4)

The above statement means that for the equilibrium to be ensured, the total potential energy
must be stationary for variations of admissible displacements. In general, any change of total
potential energy caused by an arbitrary deviation from the state of equilibrium can be expressed
mathematically as the sum of variations

AE, =0E, +6’Ep + 8Ep + ... . (5)

Assume that the external loads are independent of geometrically permissible displacements,
such that the potential energy of the external loads is a linear function of displacements and the
variations of this potential energy do not occur in powers exceeding one. Therefore, equation (5)
due to the principle of a stationary value of the total potential energy (i.e. 6 E, = 0) reduces to the
form

AE, =8U +.... (6)

In stable elastic situations, the total potential energy is not only stationary but is a minimum by
reason of the following relations

E,=min if 6E,=0 A AE, =6U > 0. (7)

Let a deformable cracked body, which is in equilibrium, be subdivided arbitrarily. Let one of
these divisions near the crack tip fill out volume V', which is bounded by surface S. Then the
division, the same as the entire body, is also in equilibrium. Irwin [22] showed that the stress and
displacement states in close neighbourhood of the smooth internal boundary of a plane crack in
a linearly elastic solid under most general loading conditions, may be expressed in terms of three
stress intensity factors ky, ko and k3 associated with the symmetric opening, in-plane and anti-plane
shear modes of deformation, respectively. If the displacements for the whole surface S of the division
are specified and no volume forces are present, then the strain energy assumes a stationary value
in the class of geometrically permissible displacements for the true displacements corresponding to
the state of equilibrium. When applied to Hooke’s bodies, the stationary value of the strain energy
is especially a minimum. For an elastic material the local strain energy dU, which is stored in a
volume element dV/, can be written in terms of the stress field components o;; as

U 1
dvV = 2E
where F is the Young’s modulus and v is the Poisson’s ratio. From the expressions for the asymptotic

stress fields given in [14], the strain energy per unit volume near the crack tip may be expressed in
the following form
5(6)

dU = i 9 9 9 4
W = ; (aukl + 2a19k1ke + 022k2 + a33k3) + = = + .., (9)

v 1+v
( %1 + 0’%2 S 0’%3) - E (0’110‘22 + 099033 + 0330’11) -+ —E-— (0’%2 + 0%3 + G%l) ; (8)
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in which r¢ is the distance from the crack tip and the coefficients, a;j, can be found in [32]. The
strain energy density function, dU/dV, becomes singular as r, — 0. Consequently, the strain energy
density factor S(6), which varies with the polar angle 6, is defined only if 7, # 0.

The strain energy density criterion states that quasi-static crack growth takes place in the
direction of minimum strain energy density factor S(0). The necessary and sufficient conditions for
S(6) to be a minimum are given by

95(6) _, , 95%(0)

06 06

>0 at 6=86 (—%505%). (10)

3. ANALYTICAL FORMULATION AND NUMERICAL PROCEDURE
3.1. Basic boundary integral equations

Before turning to the specification of the boundary integral equations, for clarity some notations
will first be introduced (see Fig. 1). Let I'y, denote the positively oriented external boundary of

0 x1, &)

Fig. 1. Notations

the plane elastic region Q2. Let the region {2 contain a negatively oriented internal crack line I'c. The
upper crack line is denoted by 'Y and the lower one is denoted by I';. The part of I' = I'y, + I,
where the displacements u; are known, is marked by I'; and the one, where the tractions 7; are
known, is marked by I's. 7 = r(p, q) is the distance between the two points p and g. In the following,
the lower case symbols p = (z1,z2) and q = (£1,&2) represent the source and field points in the
interior of the domain §2, while the upper case symbols P = (X3, X3) and Q = (Z1,Z5) represent
the source and field points located on the boundary I'. Further, the components of a unit outward
normal to I', at a point on it, are denoted by n;, and s is the distance measured along I' from some
fixed point on it.

The usual 2-D BIE for the geometry in Fig. 1, in the absence of body forces, takes on the form

PET = Cy(Phuy(P)= § Us(P.QI(@NQ - § T5(P.Qw(@dr@ ()

in which Cj; are the coefficients depending on the local geometry of dI' at P. U;j(p, q) is called
the fundamental (or Kelvin’s) solution and represents the displacement u}(p,q) in the direction i
at any field point g caused by the unit force e;, applied at the load point p in the direction j in
an infinite elastic medium. This fundamental displacement solution may be redefined in terms of
the second-order tensor Uy;(p, q) as u}(p,q) = Ui;(p, q)e;. The fundamental solution T;;(p, g) is the
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traction 77 (p, q) (or, owing to the fact that 7; = o;;n;, the stress vector related to the normal vector
n;) in the direction i at any field point ¢ due to the unit force e;, applied at the load point p in the
direction j, i.e. 7;*(p,q) = Ti;j(p, q)e;j. Explicit expressions corresponding to the Kelvin’s solution
(see [6,26]) of elastostatics are given for 2-D plane strain conditions by

-1
Vg = 8mu(l —v)
-1 or
Tij=————— |=[(1
Y 4n(1 —v)r [On [(
where u = E/[2(1 + v)] is the shear modulus of elasticity and d;; is the Kronecker delta.

The fundamental problem in using equation (11), for fracture mechanics applications, is seen
as I't — T'7. If the tractions on the two crack lines, I't and 'y, are equal and opposite (i.e.
7:(Q%) = 7(Q™) ), then from expressions (12) it can be shown that T;;(P, Q") = —T;;(P,Q~) and

Uij(P,Q") = U;;(P, Q™) for Q € I'c. Owing to these facts, equation (11) for P € I'y, can be written
in the form

Pely — C,;ju]' = f}‘ Uij’rjdl-‘b —-ﬁ T%j'u,jdrb + /I“ T,]Au; dFC_, (13)
bl b2 c

(3 —4v)n(r) 6ij — 7] , (12a)

— )05 + 2ryr 5] — (1= 2v)(rinj —rjng) | (12b)

where Auj = u;(QF) — u;(Q). Equation (13) is commonly referred to as the displacement dis-
continuity method for crack problems. In equation (13) the unknown functions on I'; are the
displacement differences between the upper and lower crack lines. However, if the source point P
is located on the crack line 'y, equation (13) is obviously indeterminate. In this case, there are
two unknown displacement variables on I'c’, namely Au$ and uj. Therefore, an additional integral
expression for the crack line must be derived.

Assume that I', and I'; have no the common point. For an isotropic medium the stresses at the
internal point p can be calculated by differentiating u and using the Hooke’s law, written in the
form

_ 2vp o Oy Ou;  Ou;

After differentiation, expression (14) becomes

L 0 2vp . Uk OUir | OUj
peEf. . au j{bl{l—2u S +u<8mj+8x,- Tedl

2up 3Tzk 0Ty, 0T
}gbz {1 — 21/5” oz T ( 0z g oz; uk dL'y

2vp o 0Ty T | Tk g
or
peEN — Oij = fi“ D,;jk'rk dl’y —f} Sijkulc dl’y + /F_ SijkAui dFC_, (16)
bl b2 c
where
1
Dk = e oy [(1 = 2v)(dikr 5 + Bjkri — Bigr k) + 2rar 57 k] (17a)

2 or
Sijk = m {2(9_71 [(1 - 2V)5ij"',k + V((Sik'r‘,j + 5jk"",i) — 47‘,1'7',]"!";9]

+2v(nirjr g +njrire) + (1 — 2u)(2nkr,ir,j + n;dik + nifsjk) -(1- 4I/)nk(5i]} . (17b)
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Let the outer boundary T, in Fig. 1 be remote and unloaded. Then, expression (16) reduces to
the form

peR o ofp) = /F  Sijk(p, Q) AUE(QT) T (Q7), (18)

which leads to setting the crack problems in an infinite plane elastic region. For p — P € I'C
(i.e. r — 0) the integral kernel S;jx(p, @) in expression (18) has a fundamental singularity, which
is generally called hyper-singularity of the order O(r~2). This hyper-singularity renders the use
of expression (18) as a boundary integral equation difficult. However, Cruse [10], Guidera and
Lardner [16], Bui [7], Weaver [37], Balas and Sladek [3], Theocaris [36], and Putot [30] showed
that the hyper-singularity in expression (18) can be reduced by one order by means of integration
by parts. Takakuda, Koizumi and Shibuya [34] proposed a technique of integration based on the
Taylor’s series expansion of Aug(Q) about the point @ on the crack surface. They treated the
resulting integrals in Hadamard’s [18] finite part sense. More recently, by using also the Taylor’s
series expansion, Krishnasamy, Rizzo, Rudolphi and Schmerr [25,31] developed another method for
the treatment of hyper-singular integrals. They subtracted and added a number of terms of the
Taylor’s series expansion of the integrand at the singular point in the manner proposed by Davis
and Rabinowitz [11], and Guiggiani and Casalini [17].

It is worthwhile to stress that there is the possibility of coupling the two equations (13) and (16)
in order to attain the numerical solution, which allows us to determine the unknown displacements
u$ on the upper and lower crack lines (see [19]). If the crack problem in an infinite medium is
considered, then different boundary integral equations on either smooth crack line are given by

1

Pers = zui(P")+5ui(P)+ [ Ty(P.Q"(@") are(@”)

- [, Us(P.Q*)r5(@") dre(@*) =0, (192)
PeTs = guPT) = 5P + [ Gu(PQ Q) dr(Q)

- [T EQ @) (@) =0, (19b)

where G;j = nqSaij and T{‘; = noUyij. The kernel U;; is weakly singular of the order O(In(r)), the
kernels T;; and TZ; are strongly singular of the order O(r~!), and the kernel Gj; is hyper-singular

of the order O(r—2).
Taking into account the ideas developed by Ghosh et al. [15] and Zang [38], the author concen-
trates on the following boundary integral equations

0
Pely - Cijuj = ?g‘ UijTj dl'y —ﬁ Tiju;j dl'y + /I‘_ Wijbs__ [Auﬂ ds™, (20a)
bl b2 ¢

PeT; — F :f FigT,-drb+f Fil;ujdrb+/ 47 [Aug] dsm+Ci. (20b)
Pyi b2 (9

where F;~ are the resultant forces acting along the lower side of the crack lines (i.e. I'7), 0/0s~[Auf]

are the dislocation densities along I';, C; are arbitrary constants and Wi, Fj;, Fjj, Fd are the in-

tegral kernels. Explicit representations of W;;, F};, Fj; and Fd are given by
1

Wi i)

[2(1 — v)¢dij + €jkrir i + (1 — 2v)eijln(r)] (21)
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1

Fj = —47r(1__ ) (2(1 = v)dy; + eixr Tk — (1 — 2v)eijln(r)] (22a)
Py =t [, k(ri€jk + 7 j€ik) + (ran1 — 7,1m2) 04 (22b)
o 27r(1 —v)r [On " o ’ ’ 1]
d
Fy = 2,r(1 —py dr)dig = rarsl (22¢)

in which tan ¢ = ({2 —23)/(€§1—z1) and ¢;; is the e-tensor. The kernels W;;, F, and F‘Jl are weakly
singular of the order O(In(r)), and the kernel F}; is strongly singular of the order O(r~ 1). Applica-
tion of equations (20) makes it possible to avoid the numerical difficulties with the hyper-singular
integrals.

In general, a contour of the crack line I'; may be closed or open. Thus, two types of cracks may

be distinguished, i.e.

e an internal crack with a closed contour of T,

e an edge crack with an open contour of T'.

For an internal crack, the following constraint equation must be fulfilled

/ af [Au] ds™ =0, (23)

Straightforward application of equations (20) to edge crack problems gives invalid results. For
this reason, there were attempts at using these equations with integral kernels formulated on the
basis of the half-plane fundamental solutions (see [38]). The integral kernels formulated in that
way contain two parts. The first one is the same as that based on the infinite plane fundamental
solutions. The other is a complementary part to the first one due to the presence of the half-plane.
In addition, the boundary conditions on a straight line, which is the part of the external boundary
Iy and represents the surface of the half-plane, are automatically satisfied with these kinds of
kernels. Thus, this line has not to be discretized in the numerical calculations, thus considerably
reducing the amount of numerical work involved in the solution of the problem. However, the
approach based on the half-plane fundamental solution is rather limited to surface crack problems,
e.g. an edge crack originating from the straight linear boundary or an internal sub-surface crack
close to the straight linear boundary with prescribed tractions. Note that using this approach, the
additional constraint equation (23) is invalid for edge crack problems.

A more general method of edge crack modelling is the method based on the point symmetry
conditions for the region very close to an edge crack. Such point symmetry conditions are established
in the numerical way and satisfied the continuity and equilibrium relations for the introduced
additional part of the external boundary I',. A simple example of the edge crack problem, shown
in Fig. 2, illustrates the idea of the author’s approach. This approach will be explained in the next
author’s paper.

Fig. 2. Discretization of an edge cracked plate under tension
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3.2. Numerical treatment

Analytical solution of the BIE formulation in the form of equations (20) is not generally possible.
Therefore, a numerical solution is required. A simple numerical treatment of equations (20) is
presented here, in which the external boundary is approximated by NV}, straight elements, and the
crack line I'; by N straight elements (note that N; = N + N;), as shown in Fig. 1. Then
equations (20) can be written as

Nb 2 Nb+Nc_ 8
Pely, — CGCiuj= Z f [Uij’rj — Tiju]'] dr'y, + Z / Wij-és—_ [Au;] dlyil; (24a)
n=1/Tn n=Np+1/Tn
Ny Nup+N¢ b
Pel; » F =Y f[ [Fim + Fiu;| dTa+ Y / F—— [Auf| dTy +Ci,  (24b)
n=17Tn n=Np+1 In s

Np+N&
where I' = Z Ty.

n=1
On each element the displacement field u;, the traction field 7; and the dislocation densities
Gj = 0/0s™[Au$] can be approximated by interpolation functions in the following manner:

m
U= Z N%u*, (25a)
a=1
m
T=) N%%, (25Db)
a=1
m
G =) N°G°, (25¢)
a=1

in which N® are called shape functions. The shape functions are polynomials of degree m — 1
and have the property that they are equal to one at node a and zero at all other nodes. u®, 7%,
and G* are the values of the functions at node a. The shape functions are defined in terms of
the non-dimensional coordinate ¢ (—1 < ¢ < 1). For boundary elements I',, the shape functions
approximated linearly (i.e. m = 2) become
Ui
N =155, (26a)
1
N*(Q) = L. (26)
However, for the elements which contain the crack tip at node @ = 1 or a@ = 2, the following
interpolation has to be used for the dislocation densities

Goe=1/a=2) ¢y = Ti—g (N6} + N*()63] o

Current BEM codes rely almost entirely on the standard Gauss-Legendre integration scheme to
perform regular integrals (see [6]). When the source point is located within the boundary element
limits, element integrals of BIE formulations become singular. General application of equations (24)
requires computation of integrals with the integrands N*U;;, N*W;;, N®F;, N "‘F'z-‘;- which are sin-
gular of the order O(In(r)) and computation of integrals with the integrands N°T;;, N®F}} which
are singular of the order O(r~!). Moreover, if the boundary elements I, contain the crack tip, then
the integrand N O‘F{j- is singular of the order O(In(r)r~'/2). The basic question to be answered is
how should we integrate the singular integrals with respect to 7 The singular integrals for linear
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elements may be computed analytically or numerically. The numerical calculation of the singular
integrals can be carried out in two different ways. The first consists in separating the integral ker-
nel into a regular finite part (to be integrated by the Gauss-Legendre integration scheme) and a
dependent part, which can be integrated by a special numerical scheme with weighting coefficients
(see [6]). Because of a boundary element partition, such procedure can be too cumbersome in some
cases. The second alternative relies on a suitable coordinate transformation, its Jacobian smoothing
out the singularity. The nonlinear coordinate transformation, which was developed by Telles [35],
automatically lumps the integration points towards the minimum source distance position without
the disadvantage of subdividing the boundary element. Therefore, this scheme of numerical inte-
gration can easily be set up into existing BEM codes which use the Gauss-Legendre integration.
This scheme can be explained as follows.
Consider the integral

1
I=/_1f(n)dn, (28)
in which f(n) is singular at a point 7. If a second-degree relation
n(7) = ay* +by +c (29)
satisfies the following requirements
d
| _
dvlj
n(l) = 1 (30)
7(-1) = -1
then for |7j| = 1 expression (28) takes on the form
1 —
1= [ rla=-mE+r|a-mer. @)

The above transformation can be used to calculate integrals with a logarithmic singularity at one
of the extremities. Application of a third-degree polynomial transformation allows to improve the
accuracy of this integration scheme within-the near-singularity range. The results, obtained by the
author [23], show that the Gauss-Legendre integration with the self-adaptive coordinate transfor-
mation can be used to solve equations (24). Note that other methods based on numerical quadrature
are also available for crack BIE formulations, e.g. Gauss—Chebyshev quadrature developed by Er-
dogan, Gupta, and Cook [13], and Labotto-Chebyshev method (see [24]).

In this approach, straight boundary elements are used. Consequently, curved boundaries can be
approximated by a series of straight elements.

3.3. SIF COMPUTATION

Using the 2-D BEM technique, which was described in Section 3.2, it is possible to evaluate the
dislocation densities G; at each crack nodal point. The dislocation densities normal and tangent to
the crack surfaces at the nodal point are given by

Gn = Giny + Gang, ) (32a)
Gt = G2n1 = G1n2 ) (32b)
Thus, the non-dimensional stress intensity factors can be found from
_ 2 e
Ky = o 2nd G, (33a)

_ 2 "
Kiy = —— V2rd GE, (33b)
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where d is the length of the element close to the crack tip, G§, and Gf are the nodal values at the
crack tip, k = (3 —4v) for plane strain condition and k = (3 —v)/(1 + v) for plane stress condition.

4. APPLICATION EXAMPLES

The ideas and formulations given in the previous sections have been incorporated into the computer
code developed by the author. Various case studies have been performed to verify and test the
capability of the computer program (see [23]). Two examples from these case studies are presented
in the following sections. The presented numerical results were carried out on the IBM AT 386
computer.

4.1. Modelling of crack propagation originating from a sub-surface crack in a rectan-
gular plate

The problem of development of a planar crack propagating from an initially straight sub-surface
crack in a rectangular plate is considered. Fig. 3 shows the model of the rectangular plate containing

o-oe.
P i W
. te,

5 1]

Fig. 3. Discretization of the plate with the sub-surface crack

the sub-surface crack. The external boundary element mesh consists of 74 linear elements. Moreover,
the initial lower crack line is discretized into 28 linear elements. The sub-surface crack is subjected
to a uniform pressure pg, which is normal to its surfaces. In Fig. 3 the dashed line represents the
deformed external boundary element mesh. Displacements of the deformed element mesh are mag-
nified by a factor 2. Note that the material parameters are determined by v = 0.3 and E/py = 205.

In Figs. 4 and 5 the relative crack surface displacements Au; and Aup are plotted along the
initial crack profile. Readers can compare the present results, which are shown in Figs. 4 and 5, to
the BEM results determined by Zang [38].
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Fig. 4. Relative crack surface displacement Au; Fig. 5. Relative crack surface displacement Awus
along the sub-surface crack line along the sub-surface crack line
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Figure 6 depicts the comparison between two boundary element meshes: the undeformed external
mesh with the deformed one (displacements magnified by a factor of 2), which is influenced by the
normal pressure pg distributed along both the initial crack line and the predicted crack trajectories.
The magnified part of the expected crack trajectory is shown in Fig. 7.

Area shown

I X in Fig.7

Xy

Fig. 6. Discretization of the plate with the sub-surface crack and predicted crack trajectories

-

L]

Fig. 7. Magnified near-kink mesh, of predicted crack trajectories, from Fig. 6

4.2. Modelling of crack propagation in a plate containing a rectangular slot

The problem of crack propagation modelling in a plate containing a rectangular slot is considered.
The model of the plate is given in Fig. 8. The geometry and load are symmetric with respect to the

X

- 1400
=

Xy

Fig. 8. Discretization of the plate with the rectangular slot and predicted crack trajectory
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line bisecting the width of the plate. Due to this symmetry, only one half of the plate is modelled.
The external boundary element mesh consists of 110 linear elements. The geometry and material
characterization for this example are taken from [4]. Therefore, the depth of the slot is A = 260 mm
and its width is 2ag = 57 mm. The traction 7 is distributed on its sides, over the distance ly =50 mm
from its bottom. The resultant force F' of the traction 7 is inclined at an angle of 63.5° with respect
to z2. Another traction 7’ is applied to the bottom of the slot in the z,- direction. The resultant
force of the traction 7’ is denoted by F'. Owing to the fact that an overall force equilibrium exists
in the plate, F' = F cos 63.5°. The results of the BEM calculations are summarized in the form of
the predicted crack trajectory. In Fig. 8 the predicted crack trajectory is represented by the dashed
line. Readers can compare the present results to the FEM results determined by Bergkvist and
Guex [4].

5. CONCLUSIONS

The boundary element method provided general-purpose numerical solutions of the 2-D elastic
fracture mechanics problems, has been presented. This method has been applied to modelling of
crack propagation trajectories.

The examples described in the previous section illustrate the capabilities of the 2-D BEM tech-
nique as a tool for modelling an arbitrary crack, predicting its growth and refining the model
geometry to simulate the next crack increment. The obtained results show that this technique en-
ables an automatic selection of the modelling grid of a deformable cracked body to follow the shape
development of a planar crack starting from its initially arbitrary irregular profile.

Future papers will address more complex case studies and engineering applications. Among other
problems, the nonlinear responses caused by the opening/closing of fractures will be considered.
Additionally, since adaptive procedures represent one of the most promising paths for the improve-
ment of the results (see [1]), the r-adaptive method, which relocates the nodes, will be implemented
into the computer code developed by the author.
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