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Distributed programming paradigm in key stages of CAD process is proposed, as an alternative to the con-
ventional single-computer-single-user approach. Object-oriented technology is suggested for cooperative
design and implementation of large scale engineering computations. Complex ideas concerning specifica-
tion and design of the new system are presented. In addition, an example of the transformation of the old
CAD system to the new environment is described.

1. WHY A NEW CONCEPT IN CAD PROCESSING?

1.1. General needs in CAD

There are three general needs which have not been met by CAD processing since the beginning of
this technology:

e Computational performance requirement. Still greater and more complicated structures are going
to be analyzed, thus huge RAM space and CPU time are necessary.

e Cooperative work requirement. Each large scale engineering activity is conducted by many de-
signers and expert groups which rarely work in the same place. Comfortable communication
media and safe management of common data are strongly desired.

e Compatibility requirement. Easy collaboration of different CAD applications (computer pro-
grams) as well as running of old fashioned codes (so called “dusty decks”) together with modern
ones make possible multivariate design analysis and economic code exploitation.

The main objective of this paper is to propose the initial design of a system which can satisfy
all the above needs taking into account progress in hardware and software engineering as well as
major drawbacks of existing CAD systems. As an explication of the concept, the example of an
existing system transformation to the proposed standard will be presented.

1.2. Progress in hardware and basic software technology

We have observed a significant progress in hardware and basic software in the last several years.
Single CPU (Central Processor Unit) computers have achieved their limits, however. Decreasing
of the processor clock cycle down to 5ns (e.g. CRAY-C90) increases its cost so rapidly that we
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should not expect much faster processors in the near future. The vector processors which are very
comfortable for CAE computations also progress slowly due to their great price/performance ratio.

Huge performance computing may be achieved by multiprocessor installations (massively par-
allel, superscalar or distributed ones). First teraflop computer (105 MFLOPS) is expected in the
range of 100-10000 processors (see Fig. 1) (cf. [19, 6]).

Fast computer networks, basic network programming and communication tools change the hu-
man/computer relationship from the old user queue ++ mainframe computer to the user +
powerful graphic terminal + queue of offers coming from the heterogeneous computer
environment (see Fig. 2).

Advanced distributed programming tools, such as databases and their mulfimedial extensions
(the so called “virtual reality systems”) can support multimedial communication of many users
as well as safe management of and access to the common data (see e.g. [1]). Object-oriented pro-
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gramming and software design paradigm increases compatibility of internal and external modules
and data, due to the unified message passing interface. Therefore, they simplify the development
of large scale CAD systems and may be helpful in “dusty decks” adaptation.

1.3. CAD software crisis

Unfortunately, there are only a few CAD codes which can be applied within new programming en-
vironments mentioned above. Therefore, present day CAD systems usually exhibit some significant
drawbacks:

e They are based on the sequential algorithms, can be run on a single computer, allow only a
single user and consequently inhibit the computational performance and designers’ cooperation.

e They are difficult to rebuild and adapt to new applications.
The situation described above results from at least two reasons:

e Vendors want to protect their systems against illegal use (discordant to the license agreement)
which is quite impossible in the case of distributed systems.

e Present day CAD systems are based often on frontal (or similar to frontal) technique which is
strongly coupled and impossible to parallelize.

2. MODERN CAD SYSTEM REQUIREMENTS

The creation of a new concept of a CAD system should to be preceded by defining a detailed list
of requirements to which the system has to conform. The paper presents them as divided into
engineer-oriented and computer-oriented groups.

2.1. Engineering oriented needs

The engineering oriented needs have been arbitrarily divided into three groups according to the
special requirements of computer resources necessary for their implementation. The following list,
which exhausts the present CAD technology demands, is partially covered by the existing old
fashioned codes completed in our group (see e.g. [7, 8, 10, 12, 13, 23, 25, 26, 27]) during the last
15 years.

2.1.1. Basic physical model requirements

e reference frame: total Lagrangian, updated Lagrangian, Euler description, combined Euler-
ian-Lagrangian and convective description,

e type of mathematical formulation: problems formulated by simultaneous differential equations
(local description) or by variational principles (global approach); generally, problems formulated
by sets of algebraic, differential and integral equations with non-equality boundary conditions
(differential and variational inclusions),

e constitutive models: linear elastic, anisotropic, nonhomogeneous; nonlinear hyper- and hypo-elas-
tic; elastic-perfectly plastic, elasto-plastic with hardening or softening: isotropic, anisotropic
or mixed, visco-elastic, visco-plastic, high temperature creep, cracking: visco-elasto-cracking,
visco-plastic-cracking, visco-elasto-plastic-cracking, others (composite cases),

e type of structure behaviors: static, dynamic, stepwise etc.,
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type of loading: concentrated loads, distributed loads with arbitrary distribution of density,
axisymmetric loads, gravity loads, initial stresses and strains, initial velocity of stresses and
strains, initial velocity (of generalized displacements) and accelerations, imposed non-stationary
fields of strains and stresses, temperature (or shrinkage) loading, deformation dependent loading,
live loading and non-conservative loading, cyclic, random, gyroscopic, non-proportional and
contact loading,

support and/or boundary conditions and constraints: at boundaries, axisymmetric, at internal
points, prescribed displacements, sliding surfaces, support at contact points, elastic foundation,
frictional supports.

2.1.2. Methodological requirements

methods of problem discretization: FEM, FDM - local formulation, FDM - variational approach,
mixed FEM/FDM schemes: simultaneous discretization of domain by FEM and FDM, postpro-
cessing of FEM results by FDM formula, generation of finite elements characteristics by FDM,
generation of finite difference characteristics by FEM, flexible mixing of both local and global
approaches,

symbolic problem definitions and shape of mathematical model,

types of elements (here, “element” means finite element or finite difference star): line elements,
flat elements, flat or curved elements in space (formulation on a manifold), three dimensional
elements, axisymmetric solid elements, axisymmetric line elements, gap elements, discrete ele-
ments, group of discrete points,

symbolic generation of FD and FE operators.

2.1.3. Special requirements

adoption: methods of a posteriori error estimation: interpolation types of estimators, estimators
based on duality theory, residual element- or subdomain-estimators, postprocessing type esti-
mators, estimators based on solution obtained by other methods; strategies of new mesh density
determination (definition of new diameters of elements and stars), methods of mesh refinement
and/or enrichment, methods of postprocessing refinement of solution, methods of mapping of
history dependent (or independent) variables from the old to the new mesh, adoptions with
regard to changes of number of DOF's in nodes, number of support points, constraints etc.,

variable mesh in calculation process: changes in mesh topology caused by domain modification
during the simulated process, appearance and disappearance of nodes, appearance and disap-
pearance of elements, partial or full mesh rebuilding because of strong local degeneration,

multilevel and multigrid approach,

stepwise techniques and bifurcation analysis (stepwise simulation, reverse loading in plasticity,
viscoplasticity etc.): incremental (non-iterative), incremental iterative with constant or variable
metric (Newton or quasi Newton), Newton or quasi Newton type of methods with additional
constraints, e.g. different types of arch methods (with line searches) with a possibility to jump
(pass by) limit and bifurcation points; like the above, but with a possibility to analyse problems
in special reference subspaces (bases) — modal analysis plus ‘response system’ analysis; direct
integration methods, etc.,

ill posed optimization and inverse problems: earthen dam stability analysis and monitoring,
defectoscopy, etc.,
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e substructuring: repeated use of identical substructures, mixing linear and nonlinear substruc-
tures, mixing substructures with different types of nonlinearities,

e restart possibility and possibility to return to last or required equilibrium configuration.

2.2. Computer-oriented needs

The engineering requirements enumerated in the previous chapter should be supplemented by
additional demands concerning the computer implementation of the new CAD systems [14]. We
present them in the form of an external specification, as used in a first step of computer program
design. The list below often refers to the engineering requirements previously specified. From our
point of view, the major issues are as follows:

2.2.1. Data management and performance-increasing methods

e Distributed and heterogeneous environment — the experience of many computer centers shows
that distributed systems will dominate in the next decade as more efficient and flexible than
traditional supercomputer architectures.

e Metacomputing — a user of the system should not be aware of the existence of a network.
The system should be seen as a single computer with a great amount of memory and software
resources (necessary to cope with computing-intensive applications, see Section 2.1).

e Parallel application — the system must allow the programmer to increase performance by using
parallel algorithms. Many engineering problems can be solved with divide-and-conquer technique
(mesh generation, multigrid, stepwise technique, domain decomposition solver, see Sections 2.1.2
and 2.1.3).

e [sers’ cooperation — contemporary research requires involvement of many various specialists
in one project. The system must be able to use the same data and applications concurrently in
order to allow multiple users to work together.

e Optimization of distributed processes — the system should automatically decide where to run
each application to assure optimal load balance for all computers (especially important in the
case of parallel applications mentioned in Sections 2.1.2 and 2.1.3).

e Project management — simultaneous work on the same project may by difficult without ad-
vanced management. We are convinced that each CAD system must also include workflow tools
to organize work in an efficient way.

2.2.2. Technical requirements

e Environment independence — system cannot be bound to one hardware and software environ-
ment. Rapid development of software and hardware platforms may require substantial changes
of those environments in the future.

e User interfaces — users of the system may have different terminals. The system must provide
suitable communication methods for users of graphics consoles as well as simple terminals both
in the interactive and batch mode. (In particular, important in on-line control of simulation
processes, e.g. adoption, stepwise techniques, see Section 2.2.3)

e Data security — data ought to be accessible only to authorized users. The system must support
user accounts with access levels associated with specific projects.



174 J. Krok et al.

e Fault tolerant — the system should support data and process mirroring which is used when
reliable results are required. Additionally, transactions and roll-back mechanisms allow to keep
computations running even after some nodes have crashed.

e Plug & play — adding new components to the system by the user should be very simple, usually
limited to a registration process of a new application.

2.2.3. Multivariant analysis

e Revision control — a mechanism for keeping track of multiple versions of project computation;
it is especially helpful in stepwise techniques and in cases of bifurcation (see Section 2.1.3).

e Common graphics pre- and post-processing — the same type of interface to pre- and post-pro-
cessing must be designed to allow easy data exchange within the system.

e Reusing of existing applications — there are many very good CAD applications, usually written
in old-fashioned style, which should be usable in the new system automatically, possibly without
any interference with to the source code.

e Multiple applications — contrary to the “general solver” approach, we suggest building a system
consisting of many separate applications, each fine tuned to a small range of problems, e.g.
applications specialized to different physical features, different types of formulation, etc. (see
Section 2.1.1).

3. BASIC DESIGN CONCEPT

In the light of the requirements enumerated above, the task of creating such a system seems to be
extremely complex. Indeed, it is not simple both to design and implement, but, fortunately, the
new methods of developing software make the task possible.

Nowadays, the most promising software development technology is the object-oriented approach.
Contrary to the general opinion, it is a very powerful tool for problem analysis and software design,
not only a method of programming. Object-Oriented Analysis (OOA), Object-Oriented Design
(OOD), and Object-Oriented Programming (OOP) may constitute the most efficient instruments
for large systems development [2].

Object-oriented technology is also considered to be the only solution for creation of reliable het-
erogeneous distributed systems. The activity of OMG (Object Management Group) which supports
the standard of transparent message passing mechanism for remote objects — CORBA [20] (The
Common Object Request Broker Architecture and Specification) in our opinion fully confirms this
statement.

Therefore, we believe that the system has to be designed with the use of object-oriented method-
ology. It makes possible to satisfy the requirements of openness, reuse, and multivariant analysis,
and allows us to prepare a well-documented project and base its realization on existing tools for
distributed programming (e.g. Arjuna [29], ORBeline [21], Emerald [5], etc.).

The most popular Booch notation [2] for object-oriented analysis will be widely used in the
following parts of the paper, due to its compactness.

3.1. Object-oriented software design

The main feature of the O-O technology in software design and development is encapsulation of data
and adjoining methods which implement operations on the data into a union called object (see [18]).
Objects are active entities which can communicate with each other using messages containing data
and commands.
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That mechanism is called a message passing technique. In object-oriented distributed systems
there are no programs in the traditional meaning of the word, that is entities which start, read
input data, process it, and return results (Fig. 3). Instead, input data and a requests to process
it are supplied in a message to an active object. When results are ready, the object sends an
acknowledgement message to confirm completion of the calculations.

g I Message with
Input Data E input data

_ Object with
results

Output Data : o i ¥
Structural programming Object-oriented programming

Fig. 3. A comparison of traditional and object-oriented programming

Objects can be “born” and “die” and their “parents” are called classes. Objects derive data
structure (record type and length, etc.) and methods from their classes. Classes may be derived
from metaclasses or other classes and this procedure may be repeated iteratively. Many O-O systems
have a specific motherclass from which all the others may be derived. This important feature of
0O-0 design has been called inheritance.

The objects (or classes) which are derived from another class are called instances of this class.
Instantiation is perhaps the most basic object-oriented software reusability mechanism. Objects
may be instantiated either statically or dynamically. Statically instantiated objects are allocated at
compile-time and cease to exist after the program execution is stopped. Dynamically instantiated
objects require run-time support for allocation, and also for explicit deallocation or some form of
garbage collection.

As a natural realization of object-oriented technology, object-oriented systems were invented.
They provide resources through objects, sometimes all the way down to the machine level (O-O
architectures are found at the bottom). They are almost always distributed systems, allowing
objects to be passed freely between machines.

In parallel to O-O systems, object-oriented databases were developed [30]. OODBs provide all the
benefits of object-orientation, as well as the ability to have a strong equivalence with object-oriented
programs. An equivalence would be lost if an alternative were chosen like in a purely relational
databases.

3.2. Class “Generalized Element” as a basic class in discrete structure analysis

The idea of generalized element plays central role in the discrete analysis of boundary value prob-
lems. It takes its origin in earlier works of our group [11,10] and covers features of both finite
element and finite difference approaches. The object-oriented technology allows us to encapsulate
data that describe the element with all the essential operations used in the FEM and FDM im-
plementation [4]. Contrary to the structural programming which strictly separates data (usually
represented as arrays or structures) and operations (represents as procedures and functions) the
object-oriented approach binds them into one class.
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Fig. 4. The diagram of the class “Generalized Element” in the Booch notation [2]

The class “Generalized Element” (see Fig. 4) is a base (abstract) class for special, dedicated
classes which consist of the following attributes and methods:

Methods Attributes

e Class of geometrical transformations Geometrical data,

(affine, polynomial etc.),

Nodes,
e Shape functions,

2 ] ) Data that define degrees of freedom,
e Calculations of matrices (geometrical

Jacobian, stiffness, capacity, lumped
mass, consistent mass, dumping, phys-
ical nonlinearities, etc.),

Matrices and right hand sides,

Results,

e Right hand sides (initial loading vec- Indicators of solution and physical
tor, vector of reactions, vector of resid- post-processing values
ual forces, vector of lumped mass, vec-
tor of heat loading, etc.),

e Calculation of postprocessing values
(local error indicator of approxima-
tion, local error indicator of violation
of physical laws, physical quantities de-
pending on derivative or integral of the
solution (e.g. stresses)).

3.3. O-0O paradigm as a homogenous environment for CAD data/method managing

Although the object-oriented programming have been used successfully in engineering analysis of
structures for solving significant particular problems (see e.g. [16,4]), the modern object-oriented
technology leads to an optimal solution of CAD processing in heterogeneous computer network.
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3.3.1. Basic concept

The whole CAD system may be designed as a class collection. Each class represents a significant
group of data and tasks, such as geometry modeling, FE/FD grid generation, solid structure anal-
ysis, graphical postprocessing etc. Main abstract classes contain basic common data features and
methods for a whole group of applications. Metaclasses or classes derived from the abstract class
(see Figs. 5 and 6) specify the methods and data structures for different kind of applications of the
same type (e.g. Delaunay’s triangle generator class and Lagrange rectangle generator class are the
instances of basic grid generation metaclass).

3.3.2. Object-oriented structure

In this chapter we present the basic class structure of the system. The definition is divided into
two levels. First (Fig. 5), we present the local part of the system which will allow us to define our
engineering problem locally in space and time; second (Fig. 6), the global part of the system is
presented. The global part is responsible for computation and task distribution control as well as
persistence of the designed system.
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Fig. 5. Local description part

3.8.2.1. Local part of the system

e Generalized Element — basic class in discrete structure analysis (see Fig. 4).
e Abstract Matrix — template for any matrix.

e Physic Matrix — collection of instances of Abstract Matrix template. These classes are designed
for definition of element physics.
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e Element Postprocessing — a class which stores methods for any kind of postprocessing needed
for the designed element.

e Element — main class, multiply inherited from App + Elem + Physics class and Element
Postproc class. This class is a core of the definition (local) part of the system.

e Classes: Finite Element, Triangular Element, Six Nodes Triangular Element, Approximation +
Element, App + Elem + Physics exemplify the definition process of discrete local description
in the case of FEM. The element collection in FDM may be derived similarly from its proper
metaclasses.

3.3.2.2. Global part of the system

e Element — class which defines one particular element.
e Geometry Description — definition of problem geometry.

e Database Access — a class which supports persistency of the system (see Section 3.3.4) and
defines access to a distributed database.

e Abstract MeshGen — base class for any mesh generator.

e Abstract Application — base class for classes which have to be synchronized and ought to
communicate by the network (see Section 3.3.4). This class supports access to distributed queue
and message passing.

e Mesh — mesh generator, inherited from Abstract MeshGen has a collection of Elements, uses
Geometry Description, has access to database (inherited from Database Access) and can be
synchronized by the network (inherited from Abstract Application).

e Abstract Solver — base class for any solver.
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e Abstract Matrix — (see Section 3.3.2.1)
e Global Matrix — class which supports matrix operations needed by the solver.

e Solver — main class of the global part of the system. Class Solver, which uses class Global Matrix
and class Mesh, is derived from Abstract Solver and has distribution ability by inheritance from
Abstract Application.

The example in Fig. 6 shows that creating a new application means simply proposing a scheme
of inheritance and adding some problem-oriented methods.

All objects instantiated from class Solver (or another application classes) are simple elementary
computational tasks in our system. Each of them may be persistent and distributed because it is
inherited from class Database Access and class Abstract Application.

3.8.8. Application creation methods

The previous definition of the system is rich in methods to create different kinds of engineering
applications. We try to show three possible ways to derive object-oriented applications from the
introduced structure.

3.8.3.1. Simple sequential application

Simple sequential application which may, for example, solve elastostatic problems for massive struc-
tures may be derived from the following metaclasses:

e class Generalized Element (and its subclasses) — for local approximation and physical features
of material,

o class Mesh (and its ancestors) — for tasks of mesh generation and refinement,
e class Abstract Solver — for strategies of solving numerical problems under consideration,

o classes Abstract Matrix and Global Matrix — for methods using algebraic computations on the
global data,

e class Global PostProc and class Element — in order to provide prescribed adoption technique,

e class Database Access — in order to keep, store and deliver all necessary data during solver
object activity.

At least one object has to be derived from the instantiated solver class. Such an object will be
put into the network in order to execute its methods.

3.8.8.2. Distributed application supported by low level programming tools

All inheritance schemes are the same as those in the previous case. Abstract Solver class may
additionally provide methods for task distribution using low level distributed programming tools
(e.g. PVM). Single object may be also created.

3.8.3.3. Distributed application supported by object dislocation

Also, all inheritance schemes are the same as in the first case but multiple objects constituting
elementary computational tasks have to be created. The object-oriented management system (see
Section 3.3.4) is responsible for optimal object relocation in a computer network.
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3.8.4. The design of a distribution mechanism

Considering requirements presented previously we propose a distribution mechanism of an
object-oriented system which satisfies the majority of described demands and may be implemented
using one of the existing distributed programming environments.

Usually distributed systems assume that objects are stored on homogenous computers connected
through very fast LAN network. Unfortunately, the CAD system proposed here differs essentially
from these postulates, so it has to cope with the following additional problems:

e data transmission rates between machines may be very different and may radically change with
time;

e the system may contain computers dedicated to particular tasks (vector computers for big
numerical computations or graphics workstations for visualization processes);

e there are machines that can execute only a subset of all the methods found in application objects;

e tasks distribution process must be optimal, which means that system must consider the type of
task to run, present transmission rate of the network, and actual and predicted load distribution
over the machines.

From our point of view, the system is seen as a distributed database with a few additional
mechanisms which enable message passing, process synchronisation, and optimal distribution. The
proposed extension to the database is a distributed queue which may be compared to the tuple
space found in e.g. Linda [31]. All calculation requests are put in a queue, and because of its
distributed nature they are seen at every site.

The project provides a task manager process on each machine connected to the system. The
task manager is responsible for monitoring the distributed queue and deciding which request can
be handled by the site occupied by the task manager. To make the proper decision it has to know
the present transmission rate of the network and the load balance of the machine as well as the
possibility to invoke the requested method (the task may be dedicated to vector supercomputer,
graphics workstation, or the source code of the method cannot be compiled on some machines).

The simplest object-oriented description of the distribution mechanism contains two classes:

e Database Access — a class which should be the ancestor of every persistent class. It provides
the persistence property by direct link to the distributed database.
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Fig. 7. Basis components of the system
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e Abstract Application — a class from which every application must be derived including user
interface (shell). It implements basic inter-process communication facilities.

The relationship between the Queue, the Database and all other objects is expressed in Fig. 7.
The structure of the system may provide all kinds of task distribution. It can be done by low level
algorithms [24], dedicated to a task as well as by special tools which support process distribution
(e.g. PVM). Additionally, the system may be connected to modern object-oriented databases which
provide the object migration mechanism (e.g. EMERALD [5,31]). Migration mechanism allows
to create each object virtually (without initial allocation) and then move it to a more suitable
computer. This mechanism provides very advantageous conditions for optimal load balancing which
may be done globally for all objects (elementary tasks) created by the system, not only for the
objects derived from the single distributed application class (e.g. distributed Solver Class).

3.3.5. Advantages of the system

The fundamental advantages of the approach described above are the following:

e extreme level of reusability and easy application building: only the control method has to be
chosen or created, the other methods are derived form the proper metaclasses according to the
presented scheme,

e many methods of data creation and conversion (e.g., collection of metaclasses and classes “Ele-
ment”) may be defined only once,

e objects which constitute the elementary computational tasks have the same status with respect
to the O-O managing system for both sequential and distributed applications,

e the optimal persistence degree may be achieved,

e adaptation of an old application can be achieved by object-wrapping technique which is very
easy to apply in a message passing environment. It is simply done by changing a main program
into a method of the class derived from the Abstract Application. The method is invoked when
a message with an input file comes and, after processing, a message with output file is sent.

4. TECHNICAL ASPECTS OF REALIZATION OF THE SYSTEM

Object-oriented systems are very popular nowadays, so a process of creating a new one has to be
preceded by a thorough study of achievements made by other research groups. We indicate here
which parts of modern systems can be applied in our project and what we have to take care of
during the design process.

The most important operating systems which we have been acquainted with are:

e Chorus Micro-kernel is a distributed real-time microkernel that can be combined with the
CHORUS/MiX subsystem, which is a modular, fully compatible UNIX System. There is also an
0-O subsystem named COOL (CHORUS Object Oriented Layer) which provides a distributed
0-O programming environment for C++. COOL supports a set of system calls that allow the
creation of dynamic objects. These objects can send messages in a location transparent way,
they can migrate between address spaces and sites and they can be stored in a persistent store;
this is done in a transparent way, as an extension of the C++ language. Micro-kernel strategy
seems to conform well with our system, especially for heterogeneous environments.

e Spring (Sun) [17] — is a highly-modular, object-oriented, microkernel system, with transparent
remote object invocation. It is enriched by fault-tolerant and replication mechanisms. It can
also emulate the UNIX system. This system is one of the most advanced future object-oriented
operating systems and that is why we have to consider it in our project.
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e Apertos — (formerly MUSE) project at Sony Researches is a meta-object based distributed OS
for turning portable wireless hand-held computers into fully-connected Dynabook-like terminals;
good example of computer for engineers.

So far we focused on relational databases as a database layer of our system, because of good qual-
ity and high speed of them (ORACLE, INFOMIX, etc.). But now, we are going to base our project
on one or many of the object-oriented distributed databases. Existing distributed object-oriented
databases as well as programming environments may radically accelerate the progress of design
and implementation. Especially, we consider as important for us the work of The Object Man-
agement Group (OMG) which has defined The Common Object Request Broker: Architecture and
Specification (CORBA).

The CORBA, as defined by the OMG’s Object Request Broker (ORB), provides the mech-
anisms by which objects transparently make requests and receive responses. The ORB provides
interpretability between applications on different machines in heterogeneous distributed environ-
ments and seamlessly interconnects multiple object systems. The Common Object Request Broker
Architecture and Specification is a self-contained response to the Request for Proposals (RFP)
issued by the ORB Task Force of the OMG.

From our point of view the most interesting distributed databases and programming environ-
ments possible to adopt for our system are:

® Arjuna is a programming tool which supports nested atomic actions (atomic transactions) for
controlling operations on objects (instances of C++ classes) which can potentially be persistent.
Arjuna has been implemented in C++. The software available includes a C++ stub generator
which hides much of the details of client—server based programming. Arjuna can be used to
build fault-tolerant distributed applications [29].

e ORBeline is a complete implementation of OMG’s Common Object Request Broker Architec-
ture (CORBA). ORBeline goes beyond the standard specification to provide a SMART com-
munication framework allowing you to easily develop large distributed applications that are
robust, scalable, flexible and maintainable. ORBeline automatically picks the best communica-
tion mechanism as soon as you try to access an object and ORBeline’s SMART Agent monitors
communication between objects and their clients. In case of a failure, the SMART agent and
ORBeline cooperate to reestablish connections between processes or their replicas.

¢ The ITASCA Distributed ODBMS is a language neutral, full-featured, active object database
that supports data access from various object languages. The ITASCA database management
system has features that can be found in most database systems. This includes persistent storage
for data and schemas, concurrency control and locking, transaction management, multiple secu-
rity levels, and logging and recovery for both CPU and disk media failure. Additional features of
ITASCA include dynamic schema modification, long-duration transactions, shared and private
databases, distributed version control, distributed transaction management, distributed query
management, distributed change notification, object migration, and an extensible architecture.

e MATISSE is a distributed ODBMS based on symmetric, fine grain, multi-threaded archi-
tecture, which includes media fault tolerance (object replication), transparent on-line recovery,
consistent database reads without locking, historical versioning (both schema and data objects),
scalability (from few bytes to four Gigabytes for each object and up to four Giga-objects per
database).

e Objectivity /DB has a fully distributed client/server architecture that transparently manages
"objects distributed across heterogeneous environments and multiple databases. It provides an
application interface that uses transparent indirection to ensure integrity and provides a single
logical view of all information, with all operations working transparently on any database on the
network, with scalable performance as the number of users and objects increase. A higher-level
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Object Definition Language (ODL) is available as well as a C functional interface, integrated
C++ interface, and SQL++.

e Versant is a client/server object database management system (ODBMS) targeted at dis-
tributed (with full object migration features), multi-user applications. The Versant system has
features belonging to typical object-oriented databases, like versioning, checkin/out, object-level
locking for fine granularity concurrency control and server-based query processing to reduce net-
work I/0.

e Odapter is object/relational adapter which enables object-oriented developers to share a com-
mon object model stored in the ORACLEY relational database management system (RDBMS).

5. EXAMPLE TRANSFORMATION OF EXISTING PROCEDURAL ORIENTED CAD SYSTEM
NAFDEM TO OBJECT-ORIENTED TERMS

Well tested and already prepared CAD codes have a big value as a computational tool but are
not ready to adopt them into modern, distributed systems. We have to redesign some parts of the
project (designed with procedural mode) according to object-oriented technology. The computa-
tional kernel of structure analysis programs consisting usually of high quality element libraries,
integration procedures etc. may be utilized now due to the “object wrapping” technique. Here, we
present the example transformation of existing, working system to new technology.

The system under consideration which covers FE/FD model was implemented as a program
package called NAFDEM — “Nonlinear Analysis by the Finite Difference and Element Methods”.
NAFDEM is aided by a preprocessor JKJK providing the automatic execution of all needed sym-
bolic computations (Fig. 8) like formal differentiation, derivation of various formulas or generation
of source code subroutines for stiffness matrices (see [7, 10, 22, 23] for more details). Consequently,
the user has only to define the form of the functional or the virtual work principle applied, to spec-
ify boundary conditions, and to describe the domain of the problem considered. The core of the
NAFDEM system is a special element called DUMMY. It uses subroutines automatically generated
by the preprocessor JKJK, and provides implementation of all considered FE/FD combinations in
one computer program for a wide class of boundary value problems, given in the variational formu-
lation. In that way, both the discretization of variational principles and linearization of nonlinear
problems are fully automatic. All programs were implemented on a mainframe computer, and also
on IBMPC AT compatibles.

5.1. Main ideas of NAFDEM transformation

e We intend to create many solvers (classes) for problem set instead of the “general” one. On-line
compilation and linking is not necessary, as we may ignore blocks B1 and B2.

e We omit transformation of the JKJK symbolic preprocessor. It is not necessary to make sym-
bolic operations on-line with computation, therefore well known modern symbolic tools (Maple,
Mathematica) seem to be more comfortable.

e All the subroutines and local data structures collected in element library will wrap-in to the
proper levels of General Element class.

e All possible strategies expressed in block-diagram C (iterations, adoption), will be put into the
methods of proper solver classes (generated accordingly to the designed structure)

Wrapping-in process details can be expressed in Table 1.
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Fig. 8. Scheme of the NAFDEM system
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Table 1. Scheme of the NAFDEM transformation to the O-O environment

Class of proposed object-oriented
Block | Function to be transformed structure (see. Fig. 6) which
covers current function
C1 Mesh Generation class Mesh
C2 Evaluation of local matrices in | class Element
element
C3 Assembling class Global Matrix
C4 Solution class Abstract Matrix,
class Abstract Solver
Ch Return to element, evaluation class Element
of residuals, stresses, ..., use
of stage A of subroutines
C6 A posteriori error analysis class Global Postproc, class Element
Cc7 Interpretation class Abstract Application

6. FINAL REMARKS

e The object-oriented approach to complicated CAD processing (mechanical analysis of struc-
tures) constitutes a big step towards easy creation of new applications. It can be done due to
the effective object-oriented analysis and software design as well as the maximal degree of code
reusing, including old fashioned codes.

The presented proposal of object-oriented environment and applications are based not only on
a theoretical study, but most are the results of our research carried out in the Institute of
Computer Sciences, Jagiellonian University and Computational Mechanics Department, Cra-
cow University of Technology. The set of object-oriented tools and subsystems (e.g. graphic
user interface, animation system) is called OCTOPUS [15]. The external codes created earlier
by our group, NAFDEM (7, 23] and MUBS [27] are going to be adapted to the OCTOPUS
standards. The obtained software system seems to be unique because of the simultaneous use of
several discrete methods like FEM, FDM-local, FDM-variational together with object-oriented
approach. The methods to be applied take into consideration multigridness, adaptability and
ability of parallelization which constitute current directions of discrete method development.

The environment created is a powerful tool for engineering applications design, because of ex-
treme level of reusability, many methods of data creation and conversion, tools for persistence
and distribution, and easy adaptation of old applications.

The system has an ability for parallel and distributed processing in heterogeneous computer
network. It lets users share resources and work together in one or multiple projects.

The concept presented in this paper offers a homogenous technology to solve complicated engi-
neering problems without any loss of efficiency in standard computer implementation.
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