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In this paper, the problem of parallelizing the finite element method for distributed memory computers 
using domain decomposition methods is addressed. We focus on direct domain decomposition methods 
because they are robust and well adapted to multi-level decompositions. Two important problems con
cerning these methods are studied: the condensation of subdomains and the resolution of the interface 
problem. Finally, results are presented which show that, in sequential implementation, direct domain de
composition methods are more efficient than standard LDLt-skyline solvers, and compare favorably with 
state-of-the-art LDLt-sparse solvers. 

1. INTRODUCTION 

In this paper, we focus on the solving of large scale problems of structural mechanics, using the 
finite element method. One of the major challenges for this method is its efficient implementation 
on parallel computers. The most common approach to parallelization is the use of domain decom
position methods. However, any advocated parallel processing method has to be competitive with 
the best sequential algorithm. It is the purpose of this paper to study the domain decomposition 
method and compare its performance with state-of-the-art sequential methods. 

Basically, domain decomposition methods solve the initial problem independently on each sub
domain, and add constraints to fit the local solutions at the interfaces between the subdomains. 

These constraints can be: 

• equality of the forces, which leads to the well-known Schur complement method 

• equality of the displacements, which leads to the FETI (Finite Element Tearing and Intercon
necting) method 

• hybrid combinations of the two previous techniques 

Detailed references can be found in [8J. For the Schur complement method, the decomposition 
algorithm can be written in the case of two sub domains q,s follows; 

l. Renumber equations so that the internal degrees of freedom (d.oJ.) of each subdomain appear 
first 
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2. Eliminate all internal d.oJ. 
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The reduction of execution time, for the domain decomposition method, is due to reduction 
of the total number of operations performed, and not to better use of the hardware resources 
(processor, vectorization, memory, cache). This means that the matrices involved in the algorithm 
are stored in a sparser way when the number of subdomains is close to the extremum. 

It can be noticed that the minimum execution time is achieved for a relatively low number of 
subdomains. This is usually advantageous because it is easier to decompose a mesh into a few 
sub domains than into many. Moreover, the execution time curve grows slowly with the number of 
subdomains. It allows the efficient use of a large number of processors when running on a parallel 
machine. 

On Fig. 7, a comparison of the execution time is provided with a standard LDLt solver where 
the matrix is stored in a skyline profile. For any number of subdomains, the domain decomposition 
method is much more efficient. As mentioned before, this is due to the smaller number of operations 
to be performed. 

Since several years, sparse direct solvers [4, 9] have often outperformed skyline solvers due to 
storing the minimum number of zero entries. However, performance is limited by the indirections 
introduced in the algorithm when referencing matrix elements, which does not lead to optimal 
performance on vector or cache machines. This is not the case for the frontal method where the 
frontal matrices are dense. Therefore, despite the greater number of operations performed, execution 
time for the domain decomposition method can be smaller than for sparse solvers (see Fig. 7). 
Comparisons are made with the sparse solver implemented in the software SIC [2]. 

4. CONCLUSION 

In the paper, an enhanced version of a direct domain decomposition method has been presented. 
The matrix of the interface problem is assembled as a skyline matrix, and factorized using the 
direct method. Skyline storage is here preferred to frontal storage because it leads to an easier 
and more efficient parallelization. Results showed, for two particular but representative 2D and 
3D test cases, that this strategy leads to an efficient method. The method always performs better 
than a standard LDLt-skyline method and often better than a LDLt-sparse solver, depending on 
the number of sub domains. Results also showed that the method allows the partition of the initial 
domain into a large number of sub domains (until 900 in our examples) without increasing drastically 
the execution time. It is important for the efficient use of massively parallel machines. 

Obviously, the results have to be validated on actual industrial problems. However, this implies 
the utilization of an efficient automatic decomposition tool. Collaboration with research teams 
developing such tools are planned. 

It is also necessary to compare the direct method with iterative domain decomposition methods 
in order to establish the domain of validity of each method. 

One of the major advantages of domain decomposition methods is the parallel implementation. 
To obtain good results, it is necessary to condense the sub domains in parallel and to factorize the 
interface problem matrix also in parallel. Such an implementation has been made. Results will be 
presented in a forthcoming paper. 

The use of this direct decomposition method for problems with local nonlinearities is currently 
under investigation. Only sub domains with nonlinear elements need to be recondensed at each step 
of a Newton-Raphson algorithm, which saves a large amount of computation time. 
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