Computer Assisted Mechanics and Engineering Sciences, 3: 1-8, 1996.
Copyright @ 1996 by Polska Akademia Nauk

Optimization of direct domain decomposition methods

Yves Escaig and Gilbert Touzot
INSA de Rouen, Place Emile Blondel, BP 8, 76131 Mont Saint Aignan, France

(Received July 21, 1995)

In this paper, the problem of parallelizing the finite element method for distributed memory computers
using domain decomposition methods is addressed. We focus on direct domain decomposition methods
because they are robust and well adapted to multi-level decompositions. Two important problems con-
cerning these methods are studied: the condensation of subdomains and the resolution of the interface
problem. Finally, results are presented which show that, in sequential implementation, direct domain de-
composition methods are more efficient than standard LDL!-skyline solvers, and compare favorably with
state-of-the-art LDL'-sparse solvers.

1. INTRODUCTION

In this paper, we focus on the solving of large scale problems of structural mechanics, using the
finite element method. One of the major challenges for this method is its efficient implementation
on parallel computers. The most common approach to parallelization is the use of domain decom-
position methods. However, any advocated parallel processing method has to be competitive with
the best sequential algorithm. It is the purpose of this paper to study the domain decomposition
method and compare its performance with state-of-the-art sequential methods.

Basically, domain decomposition methods solve the initial problem independently on each sub-
domain, and add constraints to fit the local solutions at the interfaces between the subdomains.

These constraints can be:

e equality of the forces, which leads to the well-known Schur complement method

¢ equality of the displacements, which leads to the FETI (Finite Element Tearing and Intercon-
necting) method

e hybrid combinations of the two previous techniques

Detailed references can be found in [8]. For the Schur complement method, the decomposition
algorithm can be written in the case of two subdomains as follows:

1. Renumber equations so that the internal degrees of freedom (d.o.f.) of each subdomain appear
first

kiin 0 ki3 Uy h
k] (w) =(f) <= | 0 kao ka3 ug | =| f2
k31 kaz kas u3 f3

2. Eliminate all internal d.o.f.

ki 0 ki3 Uy h
0 ko kas ug | =1 fa (1)
0 0 ks u3 f3



2 Y. Escaig and G. Touzot

where
Kaz = kas — ka1kT] k13 — kaok3y kaa (2)
fa = fa = karki) fi = kaskg, fa (3)

3. Solve the interface problem

k3s — karky kis — kagky, kzs] (u3) = (f3 — kartkt f1 — k32k;21f2) (4)
4. back-substitute the interface solution on the internal d.o.f.
Uy kit fi + kit kisus
ug | = | kyg fot+ kg kosus
us us

It is possible to satisfy these constraints iteratively, i.e. solving the linear system (4) using iter-
ative methods [12, 14]. This strategy has the advantage that it does not require the construction
of the matrix k33, which saves computational time and reduces memory usage. However, each it-
eration at the interface level requires the resolution on each subdomain of the linear system (2)
corresponding to the internal d.o.f. This is best achieved if these linear systems are factorized. But
even in this case, the number of iterations at the interface level must be kept to a minimum. There-
fore, many researches have been allured to develop very efficient preconditioners (see proceedings
of the conferences on domain decomposition methods, for example [10]). But the performances of
these preconditioners are strongly problem dependent (linear, nonlinear, 3D, shells, ...).

It is also possible to solve the linear system (4) using a direct method. This strategy is robust, well
adapted to multi-level (or hierarchical) decomposition. It can be used for ill-conditioned problems
and for solving of several problems corresponding to different right hand sides (especially useful for
multiple load cases or parametric design).

In this case, domain decomposition can be seen as a block LU factorization. But domain decom-
position methods (direct or iterative) offer additional advantages:

e possibility of local modifications of one subdomain without recalculating the whole problem;
e re-use of subdomains, possibly with geometrical transformations;

e independent definitions of subdomains, provided that a method for dealing with non-conforming
interfaces is available;

e possibility of limitating mesh refinements to a subset of subdomains when using auto-adaptive
methods.

Because of the vital importance of direct solvers for industrial applications, we chose to concen-
trate on direct methods for solving the interface problem. This choice implies two major difficulties.
First, it is necessary to build the stiffness matrix of the interface problem, which requires inver-
sion of the subdomains stiffness matrices and not only factoring them (see Eq. (4)). One way to
overcome this difficulty is to use a frontal elimination method inside each subdomain (see the next
section). The second difficulty involves solving of the interface problem itself, which means storing
and factorizing the matrix k33 . This matrix is often considered to be full, which implies a significant
increase of memory usage and solution time when the number of subdomains grows. Fortunately,
it will be shown in Section 3 that this matrix is sparse, and that its sparsity increases with the
number of subdomains.

In the first part of the article, an efficient algorithm will be presented for building the interface
problem matrix. Then the solving of the interface problem will be studied, and comparisons with
standard skyline or sparse solvers will be given.
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2. CONDENSATION METHOD

To create the interface problem matrix, Eq. (4), it is necessary to condense the stiffness matrix of
each subdomain, that is to calculate ky;k;; Yea (where indices i refer to internal d.o.f. and indices b
refer to subdomain boundary d.o.f.). The explicit calculation of k;; 1k requires 2 x nbdof triangular
system resolutions, where nbdof is the number of subdomain boundary d.o.f. This step can be
interpreted in the following way: each internal d.o.f. brings its contribution to the stiffness of each
boundary d.o.f., so that the behavior of the condensed boundary is equivalent to the behavior of
the entire subdomain. This step is very time consuming because the calculations are not local, i.e.
restricted not only to the neighbour d.o.f. It would be much more efficient if this process could be
executed step by step, so that only the internal d.o.f. connected to the boundary d.o.f. updated
the boundary stiffness matrix. This requires that the internal d.o.f. appear at the bottom of the
internal stiffness matrix k;; , so that they are modified by the elimination of all other internal d.o.f.
This constraint is unfortunately incompatible with the bandwidth reduction of the matrix k;; .

To overcome this difficulty, a frontal method [11] can be used. The frontal method has the advan-
tage of allowing very flexible strategies concerning the sequence of elimination of equations. When
applying the frontal method to subdomains condensation, it is necessary to assemble the boundary
d.o.f. in the frontal matrix, and to retain them until all internal d.o.f. have been eliminated. At the
end of the frontal elimination process, the frontal matrix is exactly the condensed matrix kyik;; Yk s
Eq. (2).

In order to study the performance of this condensation method, two sets of tests were run.
In the first set, the frontal method is compared to the classical LDL'-skyline method for the
non-decomposed problem. This test should assume that the choice of the frontal method is not
penalizing. When implementing the frontal algorithm, some care must be taken. During the
assembly—elimination process, equations which are to be eliminated are located somewhere in the
middle of the frontal matrix. Usually, elimination is performed both for the lines above the pivot
line and for the lines below it. We found it more efficient to move the pivot lines to the beginning of
the frontal matrix before proceeding with the elimination. The number of operations performed is
the same, but it is possible to avoid some tests and to use optimized dense linear algebra routines.
It is obviously very difficult to state in the general case that one factorization algorithm is better
than another one, because it is problem dependent. Therefore, we only give here results for 2D
and 3D test cases (Fig. 1), for growing number of d.o.f., which show that both methods (frontal
and skyline) are equivalent. Other tests, not reported here, lead to the same conclusion.

All numerical tests reported in this paper have been conducted using the finite element software
SIC [15, 1, 3], and were run on a SGI Challenge L R4400 150 MHz sequential system.

Execution time in sec. Execution time in sec.

1200 T T T T T T T T 1800 T T T T T T T

1600 3D test case
1400
1200 f LDLt (ﬂkylme)

1000 | Frontal method
| without permutation

.k 2D test case

LDLt (skyling
method

~"

800 Frontal method
without permutation

600 |
800

400 | 600

Frontal methoaﬁ

Frontal method a0 f with p SISO

with permutation’|

200
200 F

0 1 L 1 L 1 ! L 1 0 L 1 L | ! L !
5 10 15 20 25 30 35 40 45 50 6 7 8 9 10 1 12 1

x 1000 dof x 1000 dof

Fig. 1. Comparison of the frontal method and an LDL'-skyline method for growing number of d.o.f.
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The second set of tests aims at quantifying the overhead of condensation with respect to fac-
torization, that is the overhead of calculating k:b,-k:i;lkib compared to only factorizing k;; . As in the
previous set of tests, execution time depends on the problem itself, and on the number of boundary
d.o.f. of the subdomains which are condensed. In order to make the comparison possible, we con-
sider a 2D beam (resp. 3D cube) to be decomposed into 4 (resp. 8) subdomains. Then, we compare
the condensation time of one subdomain with the factorization time of a global problem made of
one subdomain (see Fig. 2).

The results obtained (see Fig. 3) show that condensation time is not much greater than fac-
torization time (about 25%). This result is achieved by renumbering the elements for the frontal
method, so that boundary d.o.f. are grouped at the end of the assembly-elimination process.

In this section, we showed that the condensation algorithm which has been implemented is
competitive with the standard factorization method on a sequential machine. But, as shown for
example in [5, 7], the decomposition into subdomains usually reduces the bandwidth (or frontwidth)
of the stiffness matrix of the subdomains. Therefore, one can expect an overall execution time
improvement. However, this depends on the time spent in the solution of the interface problem.

3. INTERFACE PROBLEM

In the finite element method, element stiffness matrices are usually full. Because all the nodes in the
mesh are not connected together, the global stiffness matrix is very sparse. If we now consider each
subdomain as a very high order finite element, then the condensed matrices of the subdomains are
full, but the interface problem matrix is sparse. And, as in the case of finite elements, this sparsity
increases with the number of subdomains. Figures 4 and 5 plot the interface matrix of a beam
decomposed into 9 and 25 subdomains. The matrices show a typical banded profile.

To obtain this sparsity, it is necessary to reorder the interface nodes. Thus, each interface node
has a different number in the condensation phase and in the interface problem solution phase.
Moreover, if multilevel decomposition is used, each node has one number per level. It is therefore
necessary to have a data structure able to handle the multi-level numbering scheme [6].

In order to renumber the interface nodes, the algorithm proposed by Sloan [13] was adapted
to our case. The only modification is the creation of the adjacency list. In our case, this list must
refer to the interface nodes of the subdomains. Figure 6 shows the change of the sparsity of the
interface matrix for growing number of subdomains. Test cases are a 2D beam decomposed into
regular square subdomains and 3D cube decomposed into sub-cubes. As it can be noticed from
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Fig. 5. Interface problem matrix with 25 subdomains, before and after factorization for a 2D problem with
5642 d.o.f.

Figs. 4 and 5, the reordering of the equations could be further optimized, in order to reduce the
number of zero entries inside the profile.

The sparsity of the interface matrix makes it possible to partition the initial problem into a large
number of subdomains. As shown in [7], decomposition generally reduces the bandwidth (or the
frontwidth) of the stiffness matrix of each subdomain. Because the number of operations involved in
the factorization of this matrix is O(n - bw?)(where bw is the bandwidth of this matrix), the global
number of operations in the condensation phase decreases with the number of subdomains. On the
other hand, the size of the interface matrix grows with the number of subdomains, but the number
of non-zero entries does not grow very fast, because of the matrix sparsity. The interface problem
is solved using a standard LDL'-skyline solver. This solver is chosen because it is better suited
to parallel processing than a frontal solver or a LDL!-sparse solver. However, in order to reduce
the memory requirements of the interface matrix, it is planned to use a parallel sparse solver. The
results presented in this paper were obtained using a sequential LDL¢-skyline solver. We now study
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Fig. 6. Change of the sparsity of the interface matrix with the number of subdomains

the shape of the execution time curve when the number of subdomains grows. There are two limit
cases for the number of subdomains: (a) only one subdomain, and (b) as many subdomains as finite
elements. In these two cases, the execution time is the same: in one case, there are no interface
d.o.f., and in the other case all d.o.f. are interface d.o.f., which are renumbered and assembled
in the same way as in the standard finite element method. Therefore, the execution time curve,
having the same value at both ends, has one (or more) extremum. The characteristics of this (these)
extremum (minimum or maximum, location, value) depends essentially on geometrical shapes of
subdomains: the shapes should provide the maximum bandwidth reduction and introduce the
minimum number of interface d.o.f. Although it is impossible to find the optimal shape in general, we
found that subdomains with an aspect ratio close to one offer generally the best efficiency. It should
be noted that automatic decomposition tools often produce such balanced subdomains [8]. However,
particular decompositions may give better results when taking particular geometrical characteristics
into account (narrow parts, holes, ...). Because the intent of this paper is not to test the quality
of automatic decomposition tools, we only present simple test cases where the decomposition has
been made by hand (the 2D cantilever beam and 3D cube presented previously). The execution
time curve of the domain decomposition method, reported on Fig. 7, is of a convex shape.
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Fig. 7. Change of the execution time with the number of subdomains
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The reduction of execution time, for the domain decomposition method, is due to reduction
of the total number of operations performed, and not to better use of the hardware resources
(processor, vectorization, memory, cache). This means that the matrices involved in the algorithm
are stored in a sparser way when the number of subdomains is close to the extremum.

It can be noticed that the minimum execution time is achieved for a relatively low number of
subdomains. This is usually advantageous because it is easier to decompose a mesh into a few
subdomains than into many. Moreover, the execution time curve grows slowly with the number of
subdomains. It allows the efficient use of a large number of processors when running on a parallel
machine.

On Fig. 7, a comparison of the execution time is provided with a standard LDL! solver where
the matrix is stored in a skyline profile. For any number of subdomains, the domain decomposition
method is much more efficient. As mentioned before, this is due to the smaller number of operations
to be performed.

Since several years, sparse direct solvers [4, 9] have often outperformed skyline solvers due to
storing the minimum number of zero entries. However, performance is limited by the indirections
introduced in the algorithm when referencing matrix elements, which does not lead to optimal
performance on vector or cache machines. This is not the case for the frontal method where the
frontal matrices are dense. Therefore, despite the greater number of operations performed, execution
time for the domain decomposition method can be smaller than for sparse solvers (see Fig. 7).
Comparisons are made with the sparse solver implemented in the software SIC [2].

4. CONCLUSION

In the paper, an enhanced version of a direct domain decomposition method has been presented.
The matrix of the interface problem is assembled as a skyline matrix, and factorized using the
direct method. Skyline storage is here preferred to frontal storage because it leads to an easier
and more efficient parallelization. Results showed, for two particular but representative 2D and
3D test cases, that this strategy leads to an efficient method. The method always performs better
than a standard LDL'-skyline method and often better than a LDL!-sparse solver, depending on
the number of subdomains. Results also showed that the method allows the partition of the initial
domain into a large number of subdomains (until 900 in our examples) without increasing drastically
the execution time. It is important for the efficient use of massively parallel machines.

Obviously, the results have to be validated on actual industrial problems. However, this implies
the utilization of an efficient automatic decomposition tool. Collaboration with research teams
developing such tools are planned.

It is also necessary to compare the direct method with iterative domain decomposition methods
in order to establish the domain of validity of each method.

One of the major advantages of domain decomposition methods is the parallel implementation.
To obtain good results, it is necessary to condense the subdomains in parallel and to factorize the
interface problem matrix also in parallel. Such an implementation has been made. Results will be
presented in a forthcoming paper.

The use of this direct decomposition method for problems with local nonlinearities is currently
under investigation. Only subdomains with nonlinear elements need to be recondensed at each step
of a Newton-Raphson algorithm, which saves a large amount of computation time.
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