Computer Assisted Mechanics and Engineering Sciences, 3: 9-21, 1996.
Copyright © 1996 by Polska Akademia Nauk

Homogenization in elastic random media

Marcin Kaminski
Technical University of £od%, Faculty of Civil, Architecture
and Environmental Engineering, Al. Politechniki 6, 93-590 £6d%, Poland

(Received January 30, 1995)

The theoretical foundation and a numerical procedure of deriving stochastic effective properties of
linear-elastic periodic fibre composite are presented. Using Monte-Carlo method, a Fortran program based
on the deterministic rectangular plane strain element of the Finite Element Method has been worked out
to evaluate probabilistic density functions of these properties. The expected values of elastic effective
characteristics thus obtained are compared with deterministic results of COSAN modelling.

1. INTRODUCTION

The homogenization theory [11,18] is one of the main mathematical methods of modelling ma-
terials and multi-component (composite) structures. It consists in replacing a real medium or a
structure made of many materials with an effective (homogenized) medium with properly averaged
characteristics. Considering the character of material properties variations it is possible to treat
them as deterministic or random media.

In the 1980’s scientists finally derived, with appropriate numerical models, the methods
of homogenization of composites with various deterministic properties: linear-elastic [7,30,42],
elasto-plastic continuous [4,44] and with cavities [33] as well as visco-plastic [14,20]. Dynami-
cal problems were also considered in [13]. A comprehensive review of literature dealing with these
problems, and especially with the application of the finite element method (FEM), can be found
in [15, 36].

The idea of a composite material with random elastic properties appeared for the first time
over 25 years ago, see Beran [9], Hashin and Shtrikman [21], for instance. Among the present
probabilistic models of composite materials, it is possible to distinguish, for example, meth-
ods of upper-lower bounds of effective properties [3], direct estimation of these properties with
the use of definition of limit density [2], stochastic dynamical systems [8,43] or planar Delau-
nay networks [37]. These problems are usually connected with methods of composite optimiza-
tion [29,38]; literature dealing with stochastic methods in the homogenization theory can be
found in [28,41] and [2,3,8]. However, the probabilistic models obtained there are independent
of the geometry. of the considered composite and too ‘complicated for computational implementa-
tion.

In this paper, a theoretical-numerical realization of the idea of randomizing elastic properties of
component materials of a fibre-reinforced composite is presented. The mathematical basis has been
derived by extending the deterministic model (7,30,42,44] to the stochastic case. The necessary
elements of the probability theory and statistical methods have been taken from (6,35,40]. The
numerical code MCCEFF based on the POLSAP program [5,22,27] makes it possible to compute
the probabilistic distribution of effective properties and their upper and lower bounds. In this case,
the classical structure of the deterministic plane strain problem in the FEM context has been
used with a specially adapted random number generator realizing the Gaussian distribution [39)].
The expectations of elastic effective characteristics thus obtained are compared with the results of
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deterministic modelling with the COSAN code [16]; additional tests have been made with the use
of ABAQUS [1]. The applied method of Monte-Carlo simulation has been used in other static and
dynamic problems [10, 32, 41].

2. MATHEMATICAL MODEL

Let us suppose that Y C R? is occupied by a periodic random two-phase linear-elastic composite
structure in the undeformed and the unstressed state [47]; Q is a periodicity cell of Y, 0% is its
external boundary, 0 is a fibre region, 2, is a matrix region and 9Q;2 is a boundary between these
regions (see Fig. 1). We assume that  is a bounded coherent region uniplanar with z3 = 0 plane
(square with centre placed fibre with a round section). Let ; and Q3 be disjoint coherent regions
such as Q = Q; U Q5 and let them contain transversely isotropic homogeneous media.
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Fig. 1. Geometry of periodic composite structure and periodicity cell

Let the ratio ¢ relate the “microscopic” length scale connected with the periodicity cell §2 to the
“macroscopic” one, connected with the composite structure Y.
We can observe that:

(i) if Q is a stationary stochastic variable, then Y is a random composite;

(ii) Y is periodic in the stochastic sense if, for an additional w belonging to a suitable probability
space, there exists a translation of @ which covers the whole region occupied by Y (this
translation is assumed to be ergodic, so that ensemble averaging is equivalent to spatial
averaging);

(iii) the tensor of effective moduli C(il) is a constitutive tensor which represents the behaviour of

the composite as ¢ — 0, which means that for any e-independent load Q the displacement
field u(®) satisfying the fundamental elasticity theory equations
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converges to u® — the solution of the corresponding system with C’f- 11 Teplaced by C E;Z,)

as € — 0.
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We shall find the first two moments of effective elasticity tensors C 1(;:,) stated by (iii) by means

of homogenization of the periodicity cell .

For this purpose, we assume that the Young modulus function is a Gaussian field e(x) = e(x,w),
where x € Q and w runs over some probability space. We also assume that random variables
e1(x,w), ea(x,w), x € Q, are uncorrelated. Next, let E[e(x,w)] and Var (e(x;w)) denote the vector
of expected values and the variances, respectively, defined as

= | 5o Yo

and

(1)

Var (e(x;w)) = [ Xzi EZ:% ] : (2)

It is well known that these vectors determine uniquely the Young modulus random field.
We assume that Poisson ratios are deterministic, i.e.

v1; X€E
vy, XEQZ ’

y(x) = [ 3)

We shall consider the random elasticity tensor field Cjjxi(x;w) by extending the deterministic
case to the random one given by

u(x) ¢ i ¢ 1o )
A o)1~ 2wy T Gl ¥ 8abin) s |
i kl=1,2. (4)

Cijri(x;w) = e(x;w) [5ij5kl

Because of linear dependence between elasticity tensor components and the Young modulus (4),
these components have Gaussian distribution so they can be derived uniquely from their first two
moments.

From the definition of expected values and the variance of a random variable [40], and with the
notation

Y v(x) Y 1
Aijri(x) = 5115“(1 o)1 — () + (6ikbji + 6115]k)m (5)
we obtain
E(Ciju(x;w)) = Aijii(x) E(e(x;w)) (6)
and
Var (Cijri(x;w)) = (Aijri(x))? Var (e(x;w)) (no sum on 1, j,k,1). . (7

In order to derive the first two moments of the effective elasticity tensors we use the classical
definition [30, 44]

C§,’-Z?(w) = Ilﬁl /ﬂ [Ukl(Xij(xaw)) + Cijkl(x,w)] dQ, (8)

where x%(x,w) are displacement fields with periodic boundary displacement terms on the cell
boundaries and random boundary forces on the phase boundary. Expectations and variations of
the boundary forces can be expressed by the following Egs. [16, 31]

E(F (@) = E{~[\w)&ijng — [1(w))(ni8jq + n;6i0)} , (9)
Var (Fy’(w)) = Var {~[A@)]6ijng — [u(w)](nibsq + nj6ig)} , (10)
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where operator [-] denotes the difference of function values on the fibre-matrix boundary

[F(x)] = F% — Fh (11)
and
Al ) = Be{) e(x;w) (12)
’ (I+p(x)(1-2v(x)
1
p(x;w) = me(x;w)- ' (13)

Finally we obtain expected values of boundary forces by splitting the r.h.s. of Eq. (9) into fibre and
matrix parts and via certain algebraic operations

E(F;'(w)) = Bijo(n1) E(e1) + Bijo(v2) E(ea), (14)
where operator B;j,(v(x)) [44] is defined by
v(x) 1

Bij?(u(x)) = —'6‘ijnq (1 + V(X))(l — QV(X)) - (niéjq * njéiQ)m (15)
and the variances
Var (F,;j(w)) = (Bijq(11))?* Var (e1) + (Bijq(v2))? Var (e3), (no sum on 1, j, k,1). (16)
By using the definition of the averaging function F(x) on the region Q2
1
L 1
() = g7 | FGo) i (17)

we can derive the expectations of the effective characteristics from (8), i.e.

E(CSR(w)) = E((om(x(x:9)))a) + E (Ciju(x;0))q) - (18)

It should be noted that the expressions for the variances have a more complicated form than
the expectations given by (18) because the averaged stresses and elasticity tensor are correlated
variables [40,45]. We obtain

Var (CER()) = Var ((ou(x(x;w)))a) + Cov ((om(x" (x;0))a» (Cism(x;w))a)
+ Var ((Cijr(x;w))q) - (19)

As we know, the displacement fields x*(x;w), similarly to the deterministic ones (16, 30], are
calculated numerically. Therefore, considering the constitutive relation from (iii) and Eq. (19), the
variance of the effective property tensor may be obtained as a result of computer simulation. It will
be done by means of statistical estimation methods [6, 10, 23], according to which expected values
and the respective variances (the unbiased estimator [6]) of effective elasticity tensor components
are calculated as

e 1 M € m
ECGHW) = = ogm, (20)
m=1
(eff) 1 ¥ (eff)m (eff)
Var (Cii (W) = 371 (Cijkl ; E(Cz’jkl)) , (21)
m=1

ff . . . 3 5
where Cz(.;-kl)M are given random series of desired tensor components obtained as a result of numerical
random values generation.
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3. COMPUTATIONAL IMPLEMENTATION
3.1. Homogenization finite element model

Let us introduce the following approximation of homogenization displacement functions x?? at any
point of the considered continuum 2 by the finite number of generalized coordinates ¢?? and shape
functions ¢;,

X\ = iadh? Lpg=12 a=1,..,N. (22)
The strain €;;(xP?) and stress tensors 0;;(x??) can be rewritten in the same way

eij(X*) = Bijadd’, (23)
0i;(x") = Cijuen(x??) = CijuiBriad??, (24)

where Bjj, is a typical FEM strain-displacement operator. Introducing Eqgs. (23-24) into the virtual
work equation we obtain

oty [ Canglide = 60 [ [F74(09), (25)

where [F}] are the boundary forces given by Eqs. (9-10). Further, let us define the global stiffness
matrix

E E
I(ag = E I(ieg = Z/ﬂ Cz’jleijaBklﬂdQ " (26)
e=1 e=1 .

By introducing this matrix into Eq. (25) and minimizing it we obtain
Kaﬁng = Q% (27)

where Q77 is the external load vector including [FF?], which is defined by Egs. (14-16). In the
three numerical tests we obtain the homogenization function x? for p,q = 1,2. In order to provide
symmetry conditions on the periodicity cell quarter we fix vertical displacements on its external
boundaries and rotations for every nodal point belonging to these boundaries. For the resulting
functions x*? we compute the stresses 0i;(x??) and average the tensor numerically on €. Finally,
we obtain the effective properties from Eqs. (18-19) using the Monte-Carlo method described below.

3.2. Monte-Carlo simulation

The Monte-Carlo simulation is, in fact, a numerical method based on random sampling via a
random number generator. In our problem of homogenization we define the Young modulus as an
input Gaussian variable. In order to obtain random sequences of this variable we have to produce
a numerically uniform distribution first. There is a sequuence of random numbers which lie within
a specified range ([0,1] typically), and each number is as likely to occur as any other in the range.
Generating uniform distributions is performed by means of a FORTRAN library routine which is
a linear congruential generator. It generates a sequence of integer numbers Iy, I,. . ., each between
0 and m — 1, by the recurrence relation

Iiti=alj+c (mod m), (28)

where m is called the modulus and a, ¢ are positive integers called the multiplier and the increment,
respectively. The recurrence (28) will eventually repeat, with a period that is obviously no greater
than m. If m, a and ¢ are properly chosen, then the period of recurrence (28) is of the maximum
length m. The sequence of real numbers between 0 and 1 is returned by dividing ;41 by m, so
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that it is strictly less than 1, but occasionally (once in m calls) exactly equal to 0. The linear
congruential method is very fast, it requires only a few operations per call, but it is not free of
sequential correlation on successive calls. A special shuffling routine has to be added to eliminate
this disadvantage [39]. Next, we use the Box-Muller method for generating random variables with
a Gaussian distribution

p(y)dy = \/];7 exp (—%i) dy. (29)

Let us consider the transformation between two uniform deviates on (0,1), z1, z2, and two quantities
Y1, Y2 given as follows

y1 = V—2lnz, cos2rzy,

30
Y2 = V/—2lnz; sin 2wz, . (20}
We can write equivalently
1
2y = exp [~5 (yi"+y§)],
1
1 Y2 (31)
To = — arctan —,
2 U1
and the Jacobian determinant has the form
(9(.’171,1‘2) g_zll %%‘ 1 [ 1 2 2 ]
ol e =——exp|—=|\¥+Y (32)
Oy, v2) | 32 F2 21 2 (4 +43)

since this is a product of functions of y; and y, separately. Finally, each y is independently dis-
tributed according to the Gaussian distribution.

4. NUMERICAL RESULTS

Computer simulation has been done by means of the MCCEFF numerical procedure based on a
4-node 2D rectangular element of the POLSAP system [5,22] (stress—strain analysis with mem-
brane elements) written in FORTRAN 77. On the basis of a given cell geometry and a random
number sequence of the Young modulus, this code calculates the component sequences of the ef-
fective property tensor according to the formulas obtained before. Generation of necessary random
variables with sample volume of 10000 has been done with the use of the D7R6 program; its code
can be found in [39] (generation of input data as well as statistical processing of the results can be
done with the use of Microsoft Excel Spreadsheet).

Numerical example of searching effective properties of a composite has been tested earlier for the
deterministic case in [16,31]. with the assumed expected values of the Young modulus e; = 86.0 GPa
for the fibre and e; = 4.0 GPa for the matrix (Poisson ratios v; = 0.22, v, = 0.34, respectively),
four numerical tests have been conducted for different combinations of variation coefficients of the
moduli for both materials (Table 1).

In each cell the upper number represents the coefficient of variation a given by

_ [Var[X]
and the lower — standard deviation (in GPa) by

o[X] = y/Var [X]. (34)

The purpose of those tests was to state which of the random Young moduli influenced the com-
ponents of the effective properties tensor Cf;zl)(w) of the composite and how it influenced those



Homogenization in elastic random media 15

Table 1. Coefficients of variation (and standard
deviations) for numerical tests
test number ey e
: 0.1
1 0.1
8.6 0.4
9 0.1 0.05
8.6 0.2
3 0.05 0.1
4.3 0.4
4 0.05 0.05
4.3 0.2

Fig. 2. FEM discretization of periodicity cell

components. The assumed values of variance coefficients were considered, in numerical analysis, to
be their lower and upper bounds, respectively [22,27]. In all the cases, calculations were done on
a PC-486/50 computer and one test took approximately 31 hours. Discretization of a composite
periodicity cell subjected to the tests is shown in Fig. 2 (180 finite elements and 527 degrees of
freedom).

In Figs. 3 to 7, the probability density function (PDF) of the occurence of a given value in a
population is marked on the vertical axis, while values obtained as a result of generation are marked
on the horizontal axis (in GPa). Figures 3 and 4 show input random distributions of the Young
modulus in a fibre region and in a matrix, respectively. On these charts, series 1 is equivalent
to random distribution with greater variance (@ = 0.1), and series 2 — with smaller variance
(a = 0.05).

A graphic illustration of the effective properties PDFs has been shown in Figs. 5-7, and random
distribution parameters can be found in Table 2.

Table 2. Expectations, variances and variation coefficients in individual tests

Test number Ciit(w) Ciiza(w) Clrta(w)

14.77 4.94 18.07

1 1.29 0.47 1.74
0.087 0.094 0.096

14.78 4.95 18.07

2 0.66 0.23 1.74
0.045 0.047 0.096

14.78 4.95 18.06

3 1.27 0.46 0.87
0.086 0.094 0.048

14.79 4.95 18.06

4 0.64 0.23 0.87
0.043 0.047 0.048

COSAN 14.66 4.95 18.38
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Fig. 7. Probability density function of C5%) (w)

Probabilistic distributions of the components C{5})(w) and C{{9,(w), shown in Figs. 5 and 6,
respectively, prove that random character of Young modulus changes in the matrix has a dominant
influence on these distributions. The bell-shaped curve for test 1 agrees with the one for test 3
(analogically for tests 2 and 4). Variation coefficients of the component C{57, (w), specified in Table 2,
show that a random character of fibre elastic properties tends to influence the component very
weakly. For both of these values we may therefore write

a[C{5(w)] ¥ a[ Ey] (35)
a[C{T(w)] = o ] . (36)

In the case of the component C{57,(w), cf. Fig. 7, we can observe the influence of the Gaussian
distribution of fibre elastic properties on the random character of the component. Analogically, we
have

a[Ci31(w)] = ol Ey]. (37)

The expected values of effective properties, obtained by means of the MCCEFF code, are
specified in Table 2 together with the deterministic values of these properties computed with
COSAN [16]. This second program, which uses an automatic mesh generator for triangular ele-
ments only (COMESH), computes individual components of the fibre composite effective elasticity
tensor. The present version of the COSAN code makes it possible to compute the effective prop-
erties for a composite with a rectangular and hexagonal periodicity cell only. Differences in the
results obtained from both programs are negligibly small, from 0% in the case of E[C{$,(w)] to
approximately 2% for E[C{$%)(w)]. These results allow us to state that in numerical analysis, ef-
fective properties of fibre composites are values with low sensitivity to the way of periodicity cell
discretization.

When comparing the coefficients of variation of individual components C(;kl obtained as a result
of simulation with the coefficients of variation of given random functions, the biggest difference can
be seen in the case of the component Ci"lﬁl)l(w) (10%). For the other components, it is half as big.
Therefore, we can find out that the random character of the Young modulus in the component
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materials of the considered composite has the smallest influence on the random character of the
component C'ﬁﬁl)l(w) of the effective properties tensor.

5. CONCLUSIONS

1. As it is proved by the results obtained, effective properties are values with low sensitivity to
discretization of a composite cell. Despite the use of various elements (quadrilateral and trian-
gular) as well as manual discretization (MCCEFF) and automatic mesh generation (COSAN)
differences are negligibly small.

2. It can be observed from the analysis of the results of individual tests that the random distribution
of the Young moduli of the weaker material (matrix? has an essential influence on the probability

distributions of the components C\{5%(w) and C{5%,(w). The components Cis(w) and — to a

(very) small degree — C{?,(w) are dependent on the randomness of fibre elastic properties.

3. It seems important for verifying the correctness of the homogenization idea to make comparative
tests by subjecting a quarter or the whole of the composite structure to uniaxial compression or
tension. It is possible to compare displacement and stress fields obtained before homogenization
with analogical results for orthotropic homogenized material [1]. In the stochastic case, there
is also an additional problem of determining the influence of random fluctuations of input
parameters on the output of such analysis.

4. In order to increase the precision of computing the distribution of composite effective values,
the composite should be homogenized with assumed periodicity conditions for a structure of
more than one cell. For such a large scale system, larger computers are required because of too
many degrees of freedom in such a system.

5. It would be useful to implement homogenization equations for the Stochastic Finite Element
Method (SFEM) [22,25-27] to increase the efficiency of computations (most of all by shortening
the time necessary for making iteration). Attempts at deriving basic mathematical formulas have
been made earlier in [24]. The basic problem which occurs when SFEM is used is the complicated
formulas describing covariances between stress tensor and constitutive tensor components. In
order to find the value of the covariance in relation to the remaining components of equation
(19), it is necessary to make numerical tests for various expected values of fibre and matrix
elastic properties for different shapes of the periodicity cell and various volume fractions of
both materials. Depending on the results, the covariance can be either avoided or replaced with
deterministic correctors of averaged stress variances and an averaged elasticity tensor in the
same equation.

6. It seems interesting to compare the computed random parameters of composite effective prop-
erties with analogical parameters of their upper and lower bounds [3, 34,46]. In the context of
such a comparison, it is essential to make a numerical analysis of composite effective property
sensitivity with respect to the fibre shape. The algorithm of such an analysis could be based on
the consideration included in [12,19]. As we know from [34], the relationship between effective
properties and their lower bounds depends mainly on the fibre shape.

7. On the basis of the existing deterministic models, it would be interesting to create numerical
procedures for analysing the problems of composites with anisotropic as well as non-linear
materials. In the anisotropic case, it would be interesting to state the influence of random
distribution changes of elastic properties in individual directions on effective characteristics.



20 M. Kaminski

ACKNOWLEDGEMENT

This paper has been supported by the State Committee for Scientific Research, project number
8 T11F 010 09.

REFERENCES

[1] ABAQUS, v. 5.2., User’s Manuals. Hibbitt, Karlsson & Sorensen, Inc., Pawtucket, 1992.

[2] M. Arminjon. Limit distributions of the states and homogenization in random media. Acta Mech., 88: 27-59,
1991.

[3] M. Avellaneda. Optimal bounds and microgeometries for elastic two-phase composites. SIAM J. Appl. Math.,
47(6): 1216-1228, 1987.

[4] W.S. Baraiiski. Microstresses in homogenization. Arch. Mech., 38(4): 369-382, 1986.

[5] K.J. Bathe, E.L. Wilson, F.E. Peterson. SAP IV — A Structural Analysis Program for Static and Dynamic
Response of Linear Systems. Technical Report. California, 1973.

[6] J.S. Bendat, A.G. Piersol. Random data: analysis and measurement procedures. Wiley, 1971.

[7] A. Bensoussan, J.L. Lions, G. Papanicolaou. Asymptotic Analysis for Periodic Structures. North-Holland,
Amsterdam, 1978.

[8] A. Bensoussan, L. Boccardo, F. Murat. Homogenization of elliptic equations with principal part not in divergence
form and Hamiltonian with quadratic growth. Comm. Pure Appl. Math., 39: 769-805, 1986.

[9] M.J. Beran. Statistical Continuum Theories. Wiley, 1968.

[10] E. Bielewicz, J. Gérski, H. Walukiewicz. Random fields. Digital simulation and applications in structural me-
chanics. In: P.D. Spanos, C.A. Brebbia, eds., Computational Stochastics Mechanics, 557-568. Elsevier, New
York, 1991.

[11] R.M. Christensen. Mechanics of Composite Materials. Wiley, 1979.

[12] K. Dems, R.T. Haftka. Two approaches to sensitivity analysis for shape variation of structures. Mech. Struct.
and Mach. 16(4): 501-522, 1988-89.

[13] G. Duvaut. Wave propagation in fine periodic structures. In: J.T. Oden, ed., Computational Methods in Nonlinear
Mechanics, 239-244, North-Holland, Amsterdam, 1980.

[14] O. Gajl. Effective Composite Characteristics Considering Viscoelastic Properties of Components (in Polish).
PhD Thesis, Lédz, 1979.

[15] O. Gajl. Finite element analysis of composite materials. In: Proc. Conf.: Mechanics of Composites. Theory and
Computer Simulation, 52-82, Technical University of E8dz, 1991.

[16] O. Gajl, T.D. Hien, G. Krzesifiski, E. Postek, A. Radomski, J. Rojek. Numerical Analysis of Composite Materials
Elastic Characteristics (in Polish). KBN Report, 23-47, Warsaw, 1991.

[17] S. Ghosh, K. Lee, S. Moorthy. Multiple scale analysis of heterogeneous elastic structures using homogenization
theory and Voronoi cell finite element method. Int. J. Sol. Struct., 32(1): 27-62, 1995.

[18] M. Grayson, ed. Encyclopedia of Composite Materials and Components. Wiley, 1983.

(19] R.T. Haftka, Z. Giirdal. Elements of Structural Optimization. Kluwer Academic Publishers, 1992.

[20] Z. Hashin. Complex moduli of viscoelastic composites. Int. J. Sol. Struct., 6: 797-808, 1970.

(21] Z. Hashin, S. Shtrikman. A variational approach to the theory of the elastic behaviour of multiphase materials.
J. Mech. Phys. Sol., 11: 127-140, 1963.

(22] T.D. Hien. Deterministic and Stochastic Sensitivity in Computational Structural Mechanics. Habilitation Thesis,
IFTR PAS 46(90), Warsaw, 1990.

(23] M. Kaminski. Probabilistic estimation of effort state in shell structures under degradation processes. Comput.
Meth. Civ. Eng., 2: 17-28, 1994.

[24] M. Kamiiiski. Stochastic properties of composite materials (in Polish). In: Proc. of CCE PAS & SC PACET
Conf., 83-91, Krynica, 1993 (in Polish).

[25] M. Kaminiski. Stochastic contact effects in periodic fibre composites. J. Theor. Appl. Mech., 33(2): 415-441,
1995.

(26] M. Kamiiiski, O. Gajl. Numerical modelling of fibre composites with random-elastic components. CAMES, 2(1):
41-50, 1995.

[27] M. Kleiber, T.D. Hien. The Stochastic Finite Element Method, Basic Perturbation Technique and Computer
Implementation. Wiley, 1992.

[28] R.V. Kohn. Recent progress in the mathematical modeling of composite materials. In: G. Sih et al., eds.,
Composite Materials Response. Constitutive Relations and Damage Mechanisms, 155-177, Elsevier, 1988.

[29] R.V. Kohn, G. Strang. Optimal design and relaxation of variational problems, I, II, III. Comm. Pure Appl.
Math., 39: 113-137, 139-182, 353-377, 1986.

[30] F. Lene. Contribution a l’étude des matériauz composites et de leur endommagement. These de Doctorat d’Etat,
Paris, 1984.



Homogenization in elastic random media 21

[31] F. Lene, D. Leguillon. Etude de Pinfluence d’un glissement entre les constituants d’un matériau composite sur
ses coefficients de comportement effectifs. J. de Méc., 20(3): 509-536, 1981.

[32] W.K. Liu, T. Belytschko, A. Mani. Random field finite elements. Int. J. Num. Meth. Eng., 23: 1831-1845, 1986.

[33] J.C. Michel. Homogénéisation de matériauz élastoplastiques avec cavités. Thése de Doctorat, Paris, 1984.

[34] G.W. Milton, R.V. Kohn. Variational bounds on the effective moduli of anisotropic composites. J. Mech. Phys.
Sol., 36(6): 597630, 1988.

[35] D.F. Morrison. Multivariate Statistical Methods. McGraw-Hill, 1976.

[36] A.K. Noor, R.S. Shah. Effective thermoelastic and thermal properties of unidirectional fiber-reinforced compos-
ites and their sensitivity coefficients. Comp. Struct., 26: 7-23, 1993.

[37] M. Ostoja-Starzewski, C. Wang. Linear elasticity of planar Delaunay networks: random field characterization
of effective moduli. Acta Mech., 80: 61-80, 1989.

[38] P. Pedersen, ed. Optimal Design with Advanced Materials. Elsevier, 1993.

[39] W.II. Press, B.P. Flannery, S.A. Teukolsky, W.T. Vetterling. Numerical Recipes in FORTRAN. The Art of
Scientific Computing. Cambridge University Press, 1986.

[40] M. Rosenblatt. Random Processes. Oxford University Press, New York, 1962.

[41] K. Sab. On the homogenization and the simulation of random materials. Eur. J. Mech. Sol., 11(5): 585-607,
1992.

[42] E. Sanchez-Palencia. Non-homogenous Media and Vibration Theory. Springer-Verl:. ., Berlin, 1980.

(43] K. Sobczyk. Stochastic Wave Propagation. PWN, Warsaw, 1982 (in Polish).

[44] P. Suquet. Plasticité et homogénéisation. These de Doctorat d’Etat, Universite Paris VI, Paris 1982.

[45] N.G. Van Kampen. Stochastic Processes in Physics and Chemistry. North-Holland, 1981.

[46] Z. Wigckowski. Dual finite element methods in mechanics of composite materials. J. Theor. Appl. Mech., 33(2):
233-252, 1995.

[47] Cz. Woiniak. Heterogeneity in mechanics of composite structures. J. Theor. Appl. Mech., 3(30): 519-533, 1992.





