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Some aspects of applying the external stabilization method to the treatment of selected cases of tibia
fractures make the subject of this paper. ZESPOL, used as an external stabilizer, was selected from among
many other methods. In order to define the state of deformations and stresses existing in a fractured tibia
stabilized with ZESPOL, an unconventional quantitative model was prepared. Finite element analysis was
applied to the strength analysis of the whole system. Some final results and computations are presented.

1. INTRODUCTION

The use of finite element analysis (FEA) in the orthopedic biomechanics was started after the FEA
method had been well established in traditional engineering applications. Rybicki et al. [15] and
Brekelmans et al. [1] were probably among the first to use FEA for stress calculation in the femur.
Since their two-dimensional analysis was made, in the last decade an enormous progress has been
achieved in applying the finite element method to the bone and joint mechanics, obtaining a high
degree of sophistication.

The structural elements that are subjected to analysis include the bone, articular cartilage, and
the intervertebral disk. These diphase biological materials are heterogeneous and anisotropic, with
time-dependent non-linear behaviours. Metals, ceramics, graphite, and polymers are commonly used
in the fixation of a bone fracture and a prosthetic joint replacement. To fix joint implants to the
bone, polymethylmethacrylate is used as a grouting agent (bone cement). Because of the structural
and material complexities, simplified assumptions must be made to obtain practical solutions.

The most common stress analysis in the orthopedic biomechanics includes the traditional
limit-value problem where body and surface forces or displacements are well defined. With elas-
todynamic problems, the ill-defined energy function associated with non-linear material properties
has created new challenges in applying the finite-element analysis to the orthopedic biomechan-
ics. Interface loosening has been a significant problem in the field of joint prosthetics. Unknown
limiting conditions and the associated failure criteria require innovative modelling and computa-
tional methods. Simple two-dimensional models, using either the technique of an effective modulus
or the approach of a reinforcing side plate (spanning element) approach, were tried to solve the
three-dimensional problem. Axial-symmetry models using ring elements have proved to be useful
for selected geometric shapes. The virtually three-dimensional model appears to be most attractive,
but its benefit must be carefully weighed in relation to the increased costs involved.

It is important to determine the amount of stress distribution in the bone; its biological remod-
elling appears to be related to the stress location [8,16]. The femur has been studied extensively
because of its common involvement in the joint disease and a full-hip replacement. Both two and
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three-dimensional finite-element models were used [1,2,10,13,15,17]. The effective FEM models
for tibia, with an external stabilizer in particular, are, however, missing.

In spite of a continuous development in the operative treatment of fractures, the treatment of
leg fractures appears to be one of the more challenging problems of the present-day traumatology.
Among numerous methods of osteosynthesis, the ZESPOL device used as the external stabilizer
has found a broad application to the treatment of such fractures [11, 12].

A tibia forms a ‘support pole’ transferring static and dynamic loads. It is the aim of a trauma-
tologist to reconstitute the main function of the tibia through an anatomic reduction and a stable
osteosynthesis. However, the type of a stabilizer used should take into account both biological and
mechanical properties of the healing bone.

The tibia fractures (Fig. 1) can be classified as follows:

— transverse fracture,
- short-oblique fracture,

— long-oblique fracture,

spiral-oblique fracture,
— multifragmental fracture.

Therefore, a need to assess a deformation of an indirect fragmental fracture and the stress distri-
bution in the system of the fractured bone with the external stabilizer installed is well motivated.
An evaluation of such a stress distribution in a ‘living’ bone is practically impossible. So far, the
research basing on models or anatomic specimens allows to describe undergoing changes in a rather
approximate way.

Fig. 1. The most frequently occurring tibia fracture: (a) transverse fraction, (b) short-oblique fraction,
(c) long-oblique fraction, (d) spiral-oblique, (e) multifragmental fraction

This paper presents a quantitative model representing a system of a fractured bone with a
stabilizer. The finite element method was chosen from among the other existing techniques. Using
this method [14, 18], a numerical simulation of the selected phase in the treatment was presented.
It is another aim of this research to make an attempt to calibrate a suitable rigidity of the ZESPOL
stabilizer according to the fracture type and the healing phase.
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2. ZESPOL AS A TIBIA FRACTURE TREATMENT METHOD

As a result of the research on optimizing the plate osteosynthesis [11], a new design of the plate
stabilizer named ZESPOL was invented (the stabilizer name, ZESPOL, is an acronym formed from
the Polish words corresponding to ‘Polish osteosynthesis’).

The core of the system is based on binding the plate connecting the bone fragments with screws
through nuts washers so that the plate is not in a direct contact with the bone. This enables to avoid
some complications related to the application of the common AQ osteosynthesis principles [11].

The elasticity of the ZESPOL device allows to conduct dynamic osteogenesis of the fracture
through inducing micromovements appropriate for each stage of healing.

The following two applications of ZESPOL were chosen from the others:

- six-hole ZESPOL plate as a clasp contact stabilizer,
— six-hole ZESPOL plate as a clasp neutralising stabilizer for the AQ single-screw osteosynthesis.

In both cases the stabilizer is placed above the skin as an external osteosynthesis. Figures 2 and 3
show both the stabilizers.

The elasticity of osteosynthesis, the lack of plate pressure on the bone lead to a fairly quick
bone consolidation of a diverse form. We may distinguish: a self-induced consolidation, forming the
so-called bone scar, and a primary consolidation, appearing in two forms — a lacunar consolidation
and a contact consolidation, the latter being based on the bone tissue growth along the vessels.
The ZESPOL stabilizer enables both the self-induced and the primary consolidation. The limited
axial mobility is a condition for forming the bone scar and this mobility is possible due to the
elasticity of the osteosynthesis. The most frequent consolidation of the bone under the plate follows
the primary consolidation scheme. This in turn has been the condition for the similarity of the
elasticity of the bone-stabilizer unit and that of a normal bone. Under the condition of numerous

Fig. 2. ZESPOL — external stabilizer placed on the tibia
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(a) (b)

Fig. 3. Examples of applying ZESPOL stabilizer in the tibia fracture treatment: (a) without pulling screw;
(b) with pulling screw

variables characterising the bone tissue, the process of fitting these two quantities is not easy. The
development of the equally elastic osteosynthesis is severely impeded by the anisotropic structure
of the bone (mainly on different levels), a variability of the bone structure induced by age and
other general conditions. The design and generating of the equally elastic osteosynthesis should
considerably facilitate the treatment. The present model of the ZESPOL stabilizer has already
improved the bone healing results. The lack of the plate pressure on the bone, non-strenuous bone
threads and the elasticity of the whole system help to avoid some common complications in the
AQ plate osteosynthesis. No osteoporosis, no cortical bone lesions and no fractures after removing
the plate were observed. The fairly small bioagressiveness of the method caused a decrease in the
rate of complications at least by 60 per cent.

In order to appropriately calibrate the elasticity of the ZESPOL stabilizer, suitable for different
stages of consolidation, a need for a strength analysis is arising.

3. QUANTITATIVE MODELS OF LONG BONES

The application of the finite element method in the area of biomechanics is an exciting part of the
present-day science. The main advantage of using FEM (Finite element method) is a possibility to
directly apply the quantitative bone model to simulate various loading stresses so as to obtain a
deformation or a stress distribution of the tibia pictured on the computer screen [14, 18]. Therefore
FEM is very highly valued among many other models of the bone behaviour under load stresses.
FEM applied to the tibia-ZESPOL stabilizer as one biomechanical unit allows to assess the strength
of this unit both by an engineer as well as by a medical doctor. Colour pictures generated by a
computer enhance a general understanding of the model.
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For long bones, the spatial model, which should accurately reflect the geometric shape of the
bone and its anisotropy as well, is the most effective.

For anisotropic materials, there are no planes of symmetry and the elastic moduli are different
in any direction. In three dimensions, the stress-strain relation for anisotropic materials involves 21
elastic constants [19,20] as shown in the equation below:

[ & [ Ey1 Evy Ei3 Eiy Eis Eg | [ €x )
oy Ey; FEy3 Eay Eys FEae Ey
o, | _ E33 FE3q FE3zs Ese ) & (1)
Tay E4y Ey45 Egs Yey
Tyz sym Ess Ese Yyz
Tzz ) L Eeg 1\ Yez )

or, in a shorter notation,

{o} = [D{e} | (2)

where
{o} — stress vector,
[D] - elasticity matrix,
{e} — strain vector.

The strength analysis of the tibia was performed by using volume units, SOLID. In the first
stage, the discrete model of the tibia was developed — see Fig. 4.

The strength calculations for the tibia model as presented in Fig. 4 will be carried out with
FEM using the COSMOS/M system.

Please note that only the first three thermal expansion coefficients can be input into the COS-
MOS/M system, the remaining three being ignored. The property names of these coefficients con-
sidered are the same as those for orthotropic coefficients. In COSMOS/M, the anisotropic mate-
rial property is currently supported for the SOLID elements only. One can input the coefficients
of either the material stiffness or a compliance matrix for anisotropic materials. All 21 mate-
rial constants have unique names so that when handled suitably (explained hereinafter), one can
describe materials with one or two planes of symmetry. If one needs to model materials which
are monoclinic, transversely isotropic or having a cubic symmetry, this feature becomes very use-
ful.

One can also input the elastic coefficients for a monoclinic material (which has one plane of
symmetry) for which there are 13 elastic constants. The stress-strain equation for a monoclinic
material is shown below:
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One needs to specify the same material names as that for a fully anisotropic material and
to input the non-zero coefficients only. In case of a transversely isotropic material, the material
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Fig. 4. Tibia: (a) general view, (b) elementary meshes of the human tibia
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exhibits a rotationally elastic symmetry round one of the coordinate axes. In this case the number

of independent constants is reduced to 5, and the stress-strain relations are shown below:
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The stress-strain equation for such a material is shown below:
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case of linearly elastic materials with a cubic symmetry, the properties along the principal
directions are identical. A material with a cubic symmetry has only 3 independent elastic constants.

)

[ By Eip Eny
En Eqgg
Eyy

sym

0 0 8 Tf &
0 0 0 £y
0 0 0 €,
E44 0 0 Yzy
Eyy 0 Yyz
Es | \ V2o

/

(5)

For a fully isotropic material, the form of the stress-strain equations is the same as that for
a transversely isotropic material, but there are only two independent constants: E — Young’s
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modulus and v — Poisson’s ratio. Therefore one can use the input format for anisotropic materials
to describe isotropic materials by properly introducing the elastic coefficients. The most general of
the isotropic stress-strain relations including thermal effects is shown below:
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Three dimensional stress-strain relations are applied by default to all solid elements, and one
does not need to use any other instruction.

The modelling of virtual material properties for the tibia would require to determine all the
twenty-one material constants for both compact and spongeous bone tissues. Since the material
properties of the tibia are strongly anisotropic, so the elasticity matrix [D] from Eq. (1) should be
applied to the discrete model. Fragmentary information only on material properties of human bones,
these being bone preparations of the deceased only, may be found in the specialistic literature. As
is known, the material properties of a living bone are diametrically opposed to those of a bone from
a preparation. The bone properties also depend on the man’s age, sex, way of nourishment and
many other factors.

The material data to simulate the tibia unit were taken from the referenced literature (3,4,5,7,9]
as follows:

— compact bone tissue: £ = 5000 + 20000 MPa and v = 0.32 + 0.35,

— spongeous bone tissue: £ = 6 + 250 MPa and v = 0.47 (simulated values vary in the referenced
literature).

The main feature of a mechanical ability of bones is their high anisotropy (Table 1), arising
from their construction and structure. It is noticed, in an accessible literature, that there is a

Table 1. Material constants obtained from the strength tests on the tibia tissue

Bone tissue Tiyer E G,z 55 Density
type [MPa) [MPa) [MPa] [kg/m?3]
a 20000 5090 3450
b 18000 5260 3500
Compact c 17900 5320 4010
bone tissue d 16300 4490 3060 1850
e 18800 5220 4620
f 20600 4690 3120
a+f 18700 4310 4310
R ey 250 100 100 800
bone tissue
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Fig. 5. Axes of a tibia from which samples for the material were taken

Table 2. Description material

. E Gy Vg Density
Material type * v i
[Pa] [Pa] [kg/m?]
. 0.50E+10 0.30E+10 .
1 | Bone tissue 0.20E+11 0.53E+10 9.3270.35 0.19E+4-04
g | Spongeous 0.25E409 | 0.10E409 0.47 | 0.80E+03
bone tissue
3 | Nickel 0.21E+12 0.79E+11 0.31 0.85E404
4 | e 0.10E+12 | 0.10E+12 0.22 | 0.25E+04
porcelain
5 | Glass 0.63E+11 0.10E+12 0.22 0.30E+4-04
6 | Rubber 0.61E407 0.29E+07 0.49 0.10E+04
7 | Nylon 6/10 0.83E+10 0.32E+10 0.28 0.14E+04

comparatively large range of the Young’s modulus of elongation and Poisson’s ratio as well as
density. The differentiation of these values results, among other things, from the fact that samples
are taken from different places and studied at a different time; the anisotropy property is not always
considered, and there is a problem of a personal physiology which influences many factors: way of
nourishment, mode of life and the like.

The material constants (Table 1) were determined, on the basis of the research made on the
tibia preparation, in many different layers, as shown in Fig. 5.

Comparison of some material characteristics of human bones with characteristics of such mate-
rials as: nickel, ceramic porcelain, rubber was made in Table 2.

It results out of material characteristics for the selected materials presented that the mechanical
properties of human bones are close to those of glass and nylon. This is why the first endoprostheses,
which were manufactured of alloy steel with a high nickel content fulfilled the strength criteria only
but their density was too high. Nowadays, owing to the materials technology, materials have been
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Fig. I. A healthy tibia under the pressure when standing on one leg — geodesic isolines of stress intensity
according to Huber-Mises, [MPa]
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Fig. II. A fractured tibia with the ZESPOL stabilizer when standing on one leg — geodesic isolines of stresses
intensity according to Huber-Mises, [MPa]
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Fig. ITI. Huber-Mises stress intensity [Pa] in a tibia with a transverse fracture
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Fig. IV. Huber-Mises stress intensity [Pa] over the longitudinal section of a tibia with the ZESPOL stabilizer
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worked out which show the same density as that of a human bone and which meet the strength
criteria.

In the tibia model the variables of the mate-
rial in different intersections were taken into con-
sideration. The differences between the compact
and the spongeous bone tissues were included
through assigning those values to the SOLID el-
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Fig. 6. Elementary meshes of a fractured tibia with
the ZESPOL stabilizer — transverse fracture

lateral standing position (approximately equal to 95% of the body weight). The extent of the forces
during walking, besides the body weight and forces of balancing muscles, depends on the gravity
centre position and inertia, varying at each stage of walking. This induces a load, acting on the
tibia, varying at each stage of walking up to six times the body weight. Moreover, during the walk,
an asymmetric load of the different knee compartments caused by a medial shift of the resultant
force onto the proximate tibia epiphysis in the horizontal plane increases.

4. THE ANALYSIS AND FINAL CONCLUSIONS

The strength analysis, both for the normal and the fractured bones with the ZESPOL stabilizer was
performed using the COSMOS/M System of the Structural Research and Analysis Corporation.
Some introductory results of this analysis are shown in Figs. I and II. The results of the calcula-
tions demonstrate that the normal tibia has the maximum stress at 1/3 of its height. This is also
confirmed by the clinical analysis showing that place as the most frequent location of fractures.
The distribution of stress geodesic isolines indicates that the bone deformation at plain loads has a
bending character. An exact analysis shows, however, a little asymmetry round the concentration
point which, in turn, indicates a small twisting tension present during loading.

The work of the tibia with the stabilizer is much more complicated. Numerous concentrations of
stresses in the plate perpendicular to the plate stabilizer indicate that the placing of the stabilizer
is critical for the behaviour of the whole system. It is also possible to observe the work of the plate
under the stresses — it usually bends. The proximity of the geodesic isolines on one side of the plate
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Fig. 7. A tibia model with the ZESPOL stabilizer; a virtual connection of the stabilizer screws to the bone:
(a) general view; (b) received degrees of freedom; (c) external load

suggests that an extra bending stress is present there. The shape of the geodesic isolines enables
to locate the place of the fracture by the discontinuity of the geodesic isolines.

The stabilizer model (Fig. 6) worked out, in which the screws were digitized by means of
BEAMS3D beam elements, turned out to be too simplified. The results obtained from the FEM
calculations at the place of connecting the screws to the bone (Fig. II) are inadequate since a spot
connection of the screw to the bone appears here. In reality, the stabilizer screws are connected
through the thread over a certain area and such a connection is provided by a model shown in
Fig. 7. The results obtained from the calculations for the model (Fig. 7) in which the stabilizer
screws are digitized with SOLID type volumetric elements are shown in a view in Fig. III as well
as in a cross-section through the stabilizer and the screws in Fig. IV. This model allows to consider
the local change in the bone geometry under the influence of a concentration of stresses in the
vicinity of metal elements (the so-called ‘bone remodelling’).

The distribution of stresses as shown in Fig. III illustrates the first stage of treating a fractured
bone. One may see exactly herein (Fig. III) how the flux of effort flows from one part of the bone
via the stabilizer and the screws onto the other part of the bone. The state of stresses is, however,
equal to zero at the place of a fracture. The nature of mating and transferring the loads from the
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screws onto the bone tissue is presented in Fig. IV. In this case the bone tissue on the other side
of the stabilizer plate at the junction place with the bolts is very strained.

Using this computational model (Fig. 7) one may perform a numerical simulation of the state
of effort of a fractured bone not only at the first stage of treatment but also for the next treatment
stages when the bone knits and at the place of a fracture the calls has been formed which, during
different treatment periods, has got from 0% up to 100% of the sound bone rigidity. The aim of
the numerical simulation of the effort of a bone treated using the ZESPOL stabilizer is to select
its rigidity for individual treatment stages so as to allow the orthopedist to adjust (to select) the
stabilizer rigidity in a continuous way. To sum up, we may state that the FEM is well suited
for simulating the biomechanical systems such as the ZESPOL stabilizer. The whole information
related to the connection allows to assess not only the rigidity of the plate but also to optimize its
mechanical properties. An appropriate selection of the plate variables depends on the evaluation of
the bone system of the patient. To do that it is necessary to study as many patients as possible in
order to further optimize the performances of the stabilizer.
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