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Calculation of Weibull life expectancy parameters
from fracture data using the maximum likelihood criterion
and a Nelder-Mead simplex minimisation algorithm
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This paper describes a mathematical technique to calculate the model parameters for a classical Weibull
statistic. This type of statistic can be applied in a number of life time expectancy problems. A typical
example is the brittle behaviour of components produced from technical ceramics. A Nelder-Mead simplex
algorithm is introduced to obtain the Weibull parameters using the maximum likelihood criterion. Program
code for a Matlab for Windows environment is presented.

1. INTRODUCTION

The prediction of the life expectancy of structural components is important, especially in the
specific case of a component produced from a technical ceramic. It is well known that ceramic
materials behave in a brittle way and, in general, show no ability to deform plastically as metals
do. As a result of the occurrence of defects such as residual porosity or sintering flaws induced
by e.g. contaminants, the nominal stress will be amplified in the vicinity of these defects by crack
tip stress intensification mechanisms. These defects, being distributed at random throughout the
volume of the component, will cause a series of test specimens to break at different nominal stress
values: the failure stress thus shows a probability distribution.

The problem of life expectancy prediction for a ceramic component can be solved by first mea-
suring the properties of the material on a large series of normalised specimens under normalised
testing conditions. The measured values can be treated further in a statistical way to be able to
extrapolate these data to the geometry of the actual component. In general a failure probability
distribution can be described successfully following a model introduced by Weibull, involving a
two parameter probability function. The estimation of these Weibull parameters from the data
of mechanical tests on a large number of specimens can be obtained through several mathemat-
ical calculation techniques. In this paper it is explained how to calculate these two parameters
by a Nelder-Mead simplex algorithm for function minimisation and using the maximum likelihood
criterion.

2. LIFE PREDICTION AND THE WEIBULL APPROACH

Weibull (cf. [1,4]) derived the following two parameter probability equation of fracture

P=1-exp [——;_o/v (é)m dV] (1)

with

P : probability of failure of the component,
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V' : volume of the component,
Vo : arbitrary scaling volume (mostly taken as 1 mm?),
o : tensile stress at a given position in the volume,

og: first Weibull distribution parameter, associated with the material and indicated as the
Weibull scale parameter, corresponding to the stress level where 63.2% of specimens with
unit volume would fail,

m : second Weibull distribution parameter, also associated with the material and indicated
as the volume Weibull modulus.

The Weibull parameter m is related to the homogeneity of the distribution of flaws: a low m
modulus corresponds to a material in which the flaws are distributed nonuniformly giving rise to
a broad failure stress distribution. A series of test specimens from a low m material statistically
will show specimens failing at a high stress but also specimens failing at a low stress, depending
on the statistical occurrence of a critical flaw in a critical stress zone. High m materials show a
very homogeneous distribution of flaws giving rise to a reproducible failure stress corresponding to
a sharp steplike failure stress distribution curve. Steel at room temperature typically has a Weibull
modulus of m = 60. It should be noted that low- density porous materials may also show high
m-values since the pores are distributed very homogeneously throughout the volume.

For a component the risk of failure can be calculated according to Eq. (1) by an integration
over the entire volume of the component. De Salvo presented this for geometries such as tension
specimens or bending specimens of rectangular or circular cross section (centre point loading, third
point loading, fourth point loading, ...) in [1].

3. WEIBULL PARAMETERS FROM DESTRUCTIVE MECHANICAL BENDING TESTS

For a specific material the values of m and o5 can be determined by measuring the bending
failure stress of each specimen in a large series of standardised bending specimens. For such simple
geometry test specimens, the integration over the volume in the failure probability equation (1) is
straightforward resulting in simple equations (cf. [1]). To illustrate this we consider a rectangular
beam-like sample (height H parallel to the y-axis, width W, length L parallel to the z-axis) being
subjected to a constant bending moment over its length. Along the z-axis a neutral fibre exists,
giving rise to tensile stresses at one side of this neutral fibre and compressive stresses at the other
side. Since tensile stresses cause the brittle material to fail as a result of crack propagation from
defect sites, it is sufficient to integrate Eq. (1) over the tensile stress region within half of the volume
of the bending specimen. In this case the tensile stress varies linearly with the distance from the
neutral fibre (at the specimen centre y = 0)

oc=0 at y=0

and
o= MOR at y= —I;,
MOR : the extreme fibre fracture stress or Modulus Of Rupture.
Thus,
a:(MOR-z)-y. (2)
H

For an infinitesimal volume dV one can also write the following equation
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Substituting Eqs. (2) and (3) in (1), one obtains

1 (% (MOR-2-y\"
— -_ —_—— e ¥ 'L~d . 4
P=1 exp[ V()/() ( O'ﬁ'H ) W ?/] (4)

After integration, Eq. (4) results in

1% MOR\"™
PZl_exP[_Q-(m+1)-Vo< o5 ) ] ©)

or, by simplification to the classic Weibull equation, introducing oy,

P=1-exp [— (MOR)"‘] R (6)

)

0y : volume specimen characteristic strength or the characteristic modulus of rupture.

For bending test conditions (centre-point loading, third-point loading, ...) on simple specimen
geometries, equations analogous to (5) and (6) can be derived (cf. [1]). As seen from Egs. (5) and (6)
in these cases it is straightforward to recalculate the Weibull scale parameter o4 from o, m and the
specimen geometry (volume). It has to be noticed that there is a specific relation o5 = f(og,m,V)
for each loading configuration and specimen type (cf. [2]).

4. DETERMINATION OF M AND 0, USING THE MAXIMUM LIKELIHOOD CRITERION AND
A NELDER-MEAD OPTIMISATION ALGORITHM

Using Eq. (6) one can obtain the Weibull modulus m and the characteristic modulus of rupture o,
of a specific material from the population of fracture data, resulting from destructive bending tests
on a large number of test specimens.

In the case of N specimens the specimens are first ranked in increasing order of fracture stress.
In this way each specimen obtains a ranking number ¢ with 2 = 1,..., N. It is common practice that
the probability of failure P; for each specimen with rank ¢ is calculated from a specific equation
including the specimen ranking number and the total number of specimens. As an example for
median rank regression analysis the probability of failure of the specimen with rank i is given by
Nemeth (cf. [2]) by

1—0.3

Poie st =Y
N+04 (7)

The probability of failure P; for each specimen is then related to MOR; as obtained from the
bending test on that specific specimen and a set of N pairs of (MOR;, P;) values are obtained. It
should be remarked that in practice a number of equations, slightly different from Eq. (7), are used
to calculate P;.

A Weibull probability graph is obtained by plotting the (MOR;, P;) values as Ln Ln [1/(1 — P})]
versus Ln (MOR;). Such a graph should show a linear relation since it is in fact possible to transform
Eq. (6) into a linear one by taking twice the natural logarithm:

1
LnLn (1 P> =m-Ln(MOR) — m - Ln (o,). (8)
When using Eq. (8) it seems straightforward to apply an ordinary linear regression technique based
on the Gauss least-squares criterion to obtain estimates for o, and m. This technique however
supposes a normal distribution of errors. Since this assumption is not valid, the maximum likeli-
hood method has to be applied [2]. An estimate of the parameters oy, and m is obtained by the
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maximisation of the likelihood function L for the two “variables” oy and m using the MOR,; values
from the N specimens

r= 112 (08) el (2] ©

One observes that the P; values, calculated from an equation such as (7) based on a ranking, do
not appear in Eq. (9). Only the MOR; values are relevant to the maximum likelihood approach.
A number of iterative mathematical techniques exist to determine the values for o, and m giving
the maximum value for L. In this paper it is shown that the maximisation of L can be done by a
Nelder-Mead simplex method (cf. [3]) for the minimisation of a function. It is trivial that in this
case — L will be minimised which of course equals to the maximisation of +L. The simplex method
is readily available as a subroutine in standard software packages. In this way, programming the
problem on a personal computer is very straightforward and o, and m are calculated fast as a result
of the simplex algorithm. The reader is referred to the article by Nelder and Mead [3] stressing the
specific development purpose of the simplex technique for statistical problems and involving the
maximisation of a likelihood function, in which the unknown parameters enter non-linearly.

5. IMPLEMENTATION OF THE SIMPLEX ALGORITHM
5.1. Program

To demonstrate the simplex algorithm Matlab for Windows was used. Matlab is considered as a
standard in the scientific environment since most of the software routines evolved from the scientific
users themselves. In this software, specific m-files are readily available as subroutines. The file
fmins.m contains the simplex algorithm calculating the parameter values to minimise a function
F with j parameters a; . According to the Weibull parameters a; = m and a; = 0, the number j
of parameters a; equals 2 in this case; F(a1,az) = —L. To be able to use fmins.m to calculate the
optimum values for o, and m an additional function file max1hfun.m was created representing the
maximum likelihood function L from Eq. (9). An additional m-file weibull2.m was created as the
main routine. The main routine weibull2.m and function file maxlhfun.m are shown in the next
page. These files can readily be added to the Matlab m-file environment for general use.

When activating the main module weibull2.m, the program requests the name of the ASCII-file
holding the data from the series of test specimens. This file should have N lines, each line showing
the MOR; and P; value for the ¢-th specimen. After specifying the name of the data-file, the program
will load the fracture data and start the simplex. The progress of the simplex can be controlled on
the computer screen since each iteration is plotted. After reaching the specified accuracy for the
parameter values the numerical results for oy and m will be added to the plot (see Section 5.2 for
an example).

5.2. Numerical examples and tests

Two sets of data from the literature were used to test the program.

Table 1 shows the extreme fibre fracture stresses MOR; as taken from Table IX in [2] and the
probability of failure values P; calculated from Eq. (7) for a series of 80 bending test specimens.
Based on the maximum likelihood criterion Nemeth [2] obtained o, = 556 MPa and m = 6.48.

To control the simplex algorithm and the Matlab program as described in Section 5.1 the data
from Table 1 were used. Figure 1 shows the results as produced by the simplex algorithm. The
maximum likelihood estimates of o, and m are identical to those obtained in [2].

The second test was made using the extreme fibre fracture stresses (MOR;) and probability of
failure values P; extracted from Table G.2 in [5] and shown in Table 2. These MOR; and P; values
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Main routine file weibull2.m:

% WEIBULL: calculation of Weibull parameters using a simplex algorithm and

% the maximum likelihood criterion for N specimens

% Datafile with N rows is in ASCII-format and has obligatory the extension .dat
% First number in a row holds MOR_i and second number holds prob. of failure P_i
echo off

global data MOR P Plothandle

% Input of (MOR, Failure Probability) data set

disp(’ Input file (filename.dat) is in ASCII-format’)

fname = input(’ Name of data-file 7 (without extension .dat !) ’,’s’);
filein = [fname ’.dat’];

% Control of the existence of the filename

if “exist(filein) , disp(’ Filename does not exist ! Try again ’),break,end ;
% Transfer of data from the input file into the variables

eval([’load ’ filein]);

data = eval(fname);

n = length(data);

MOR = data(:,1);

P = data(:,2);

% Start of calculations

LnM = log(MOR); LnLnP=log(-log(1-P));

xlmin = floor(min(LnM)) ; xlmax = ceil(max(LnM));

ylmin = floor(min(LnLnP)) ; ylmax = ceil(max(LnLnP));

tekstx = xIlmin + 0.02 ; teksty = ylmax - 0.2 ;

% Plotting of test results - drawing characteristics

hold on

axis([xlmin xlmax ylmin ylmax]);

xlabel(’Ln(MOR)’), ylabel(’LnLn[1/(1-P)]’);

set(gca, ’Xgrid’,’on’, ’Ygrid’, ’on’);

plot (LnM,LnLnP, ’ow’, ’Erasemode’, none’) ;

% Start of Nelder-Mead curvefitting (function : maxlhfun.m)

% Vector [a(1) a(2)] holds the Weibull parameters.

% a(1) holds the Weibull modulus m and (2) holds the characteristic modulus of
% rupture sigmao. One should put starting values in vector [a(1) a(2)]

a = [10 600];

Plothandle = plot(LnM,LnLnP,’EraseMode’, ’xor’);

% Define accuracy :

accuracy=1.0e-3

a = fmins(’maxlhfun’,a,0,accuracy);

% Displaying the results on the plot

text (tekstx,teksty ,[’ m =’ num2str(a(1))]);
text (tekstx,teksty-0.5 ,[’sigmao = ’ num2str(a(2))]);
title([’Datafile : ’ fname],’FontSize’,16);

hold off;

Function file maxlhfun.m :

function MAXLHF = MAXLHFUN(a)
global data MOR P Plothandle
for i = 1:size(MOR)

z(i) = exp(-(MOR(i)/a(2))"a(1));
end

z=z";

LnLnz = log(-log(z));

MAXLHF=1;

for i = 1:size(MOR)

MAXLHF = MAXLHF*(a(1)/a(2))*((MOR(i)/a(2))"~(a(1)-1))*exp(-(MOR(i)/a(2))"a(1));
end

MAXLHF = -MAXLHF;
set(Plothandle,’ydata’,LnLnz) ;
drawnow
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Table 1

¢t | MOR P ¢t | MOR P t | MOR i ¢t | MOR P

1 | 281.2 | 0.0087 | 21 | 446.2 | 0.2575 | 41 | 516.2 | 0.5062 | 61 | 588.6 | 0.7550
2 | 291 0.0211 | 22 | 451.5 | 0.2699 | 42 | 519.8 | 0.5187 | 62 | 591 0.7674
3 | 358.2 | 0.0336 | 23 | 452.1 | 0.2823 | 43 | 527.6 | 0.5311 | 63 | 591 0.7799
4 | 385.4 | 0.0460 | 24 | 452.7 | 0.2948 | 44 | 530.7 | 0.5435 | 64 | 593.3 | 0.7923
5 | 389 0.0585 | 25 | 470.4 | 0.3072 | 45 | 530.7 | 0.5560 | 65 | 598.7 | 0.8047
6 | 390.8 | 0.0709 | 26 | 474.1 | 0.3197 | 46 | 545.7 | 0.5684 | 66 | 599.6 | 0.8172
7 | 391.8 | 0.0833 | 27 | 475.5 | 0.3321 | 47 | 548.8 | 0.5808 | 67 | 610 0.8296
8 | 402.8 | 0.0958 | 28 | 475.5 | 0.3445 | 48 | 552.7 | 0.5933 | 68 | 612.7 | 0.8420
9 | 412.5 | 0.1082 | 29 | 479.2 | 0.3570 | 49 | 559.6 | 0.6057 | 69 | 619.9 | 0.8545
10 | 413.3 | 0.1206 | 30 | 483.5 | 0.3694 | 50 | 562.4 | 0.6182 | 70 | 619.9 | 0.8669
11 | 413.9 | 0.1331 | 31 | 484.8 | 0.3818 | 51 | 563.3 | 0.6306 | 71 | 622.2 | 0.8794
12 | 417.8 | 0.1455 | 32 | 486.2 | 0.3943 | 52 | 566.1 | 0.6430 | 72 | 622.3 | 0.8918
13 | 418.2 | 0.1580 | 33 | 488.6 | 0.4067 | 53 | 566.5 | 0.6555 | 73 | 640.5 | 0.9042
14 | 426.9 | 0.1704 | 34 | 492.5 | 0.4192 | 54 | 570.1 | 0.6679 | 74 | 649 0.9167
15 | 437.6 | 0.1828 | 35 | 493.2 | 0.4316 | 55 | 572.8 | 0.6803 | 75 | 657.2 | 0.9291
16 | 440 0.1953 | 36 | 496 0.4440 | 56 | 575 0.6928 | 76 | 660 0.9415
17 | 441 0.2077 | 37 | 505.7 | 0.4565 | 57 | 576.1 | 0.7052 | 77 | 664.3 | 0.9540
18 | 442.5 | 0.2201 | 38 | 511.9 | 0.4689 | 58 | 580 0.7177 | 78 | 673.5 | 0.9664
19 | 443.8 | 0.2326 | 39 | 512.5 | 0.4813 | 59 | 582.6 | 0.7301 | 79 | 673.9 | 0.9789
20 | 444.9 | 0.2450 | 40 | 513.8 | 0.4938 | 60 | 588 0.7425 | 80 | 725.3 | 0.9913

LnLn[1/(1-P)]

2

Datafile : Cares.dat

: E. Brauns J. Patyn
+ VITO .
E Nelder - Mead simplex |

6 6.5
Ln(MOR)

Fig. 1. Regression by Nelder-Mead simplex
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Table 2

MOR P ¢t | MOR P ¢t | MOR P t | MOR P

;
1| 190 | 0.0167 | 9 | 246 | 0.2833 | 17 | 267 | 0.5500 | 25 | 287 | 0.8167
2 | 210 | 0.0500 | 10 | 247 | 0.3167 | 18 | 274 | 0.5833 | 26 | 288 | 0.8500
3| 227 |0.0833 | 11 | 252 | 0.3500 | 19 | 277 | 0.6167 | 27 | 296 | 0.8833
4 232 | 0.1167 | 12| 257 | 0.3833 | 20 | 279 | 0.6500 | 28 | 297 | 0.9167
5| 237 | 0.1500 | 13 | 258 | 0.4167 | 21 | 280 | 0.6833 | 20 | 310 | 0.9500
6 | 239 | 0.1833 | 14 | 262 | 0.4500 | 22 | 280 | 0.7167 | 30 | 322 | 0.9833
7 | 242 | 0.2167 | 15 | 264 | 0.4833 | 23 | 281 | 0.7500
8| 243 | 0.2500 | 16 | 267 | 0.5167 | 24 | 281 | 0.7833
Table 3

Number of |0 140 | 60 | 80 | 100

specimens

Unblasing | o 031 | 0.966 | 0.978 | 0.984 | 0.987

factor

for a series of 30 specimens are to be considered as a reference in the near future since (5] will
be announced as an European Pre-standard. The simplex algorithm and the Matlab program as
described in Section 5.1 resulted in oy = 275.5 MPa and m = 10.51 being identical to the maximum
likelihood values o, = 276 MPa and m = 10.51 reported in [5].

It should be stressed that the maximum likelihood estimate of m is a biased estimate, depending
on the number of specimens [5]. Its value still has to be multiplied by an unbiasing correction factor
(e.g. Table 3).

6. CONCLUSIONS

A Nelder-Mead simplex algorithm efficiently calculates the Weibull parameters from the fracture
data of a series of test specimens. These parameter values are important with respect to life predic-
tion of components produced from technical ceramics. Weibull probability statistics however can
also be applied in other domains of reliability analysis. The proposed Nelder-Mead approach is also
useful in these cases.
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