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In the analysis of the problem the beam is modelled by hinge elements connected together by rigid bars
while the foundation is replaced by spring elements supporting the hinges. The nonlinear behaviour of the
beam and the foundation is described by specially formulated bilinear material models. The characteristics
of these models are considered to be unknown but, on the other hand, the deflections of certain points
of the beam are given. The goal of the investigation is to determine the best values of the material
characteristics by the use of a mixed variational principle based on the bilinear material model and by
the application of the identification methods.

The problem is stated in the form of constrained, nonsmooth, nonlinear mathematical programming
problem, and the identification is equivalent to finding the minima of a non-linear, multivariable functional.
The application is illustrated by the solution of an example.

1. INTRODUCTION

For analysis of nonlinear behaviour of structures, a great number of solution techniques have been
developed. The most commonly used approaches are incremental load methods which apply small
load increments, locally linearize the nonlinear force-deformation characteristics of the elements
and after each step update the stiffness matrix according to the changes in the states of stresses,
strains and geometry of the structure.

Significant savings of computation time can be achieved by approximating the nonlinear material
behaviour with bilinear relationships. An important special case of this approximation is the use of
linearly elastic-perfectly plastic material which is the basis of the elasto-plastic and limit analysis
of structures. For the analysis of elastic structures with nonlinear material characteristics Logé
and Taylor proposed a special bilinear material model [1]. In this model an idealized material with
bilinear stress—strain relation is replaced by a composite material in which one component is linearly
elastic with the material law

= Ee¢, (1)

while the other one is linearly elastic-“pseudo-plastic” following the same relations during loading
and unloading,

o = Ee, |6| — G0 < 0. (2)
By parallel connection of these two components a bilinear material model can be obtained,
o=0+ Ee, lo| -0 <0, o = Ee. (3)

The details of the corresponding stress—strain diagram are shown in Fig. 1.

Using this model, mixed extremum principles have been developed for the analysis and optimal
design of trusses and structures composed of one-dimensional elements and solution techniques
have been elaborated based on a constrained nonsmooth, nonlinear programming algorithm [1-6].
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Fig. 1. Bilinear stress-strain diagram

The bilinear model and the mixed extremum principles have also been applied to the analysis
of nonlinearly elastic beams resting on nonlinearly elastic foundation [7]. In the solution the beam
was subdivided into a series of rigid bars interconnected by hinges and the foundation was replaced
by a series of individual springs supporting the hinges. Then, after some modifications, the bilinear
material model and the mixed extremum principles have been used to the analysis of this discretized
structure.

Due to the nonlinear behaviour and a number of uncertain factors in the analysis of beams on
soil, the reliable approximation of the material characteristics is a very difficult problem. On the
basis of results of experiments with samples taken from the beam and the soil, only some very
complicated methods (e.g., the three dimensional finite element method) can provide reliable infor-
mation about the actual behaviour of the beam and the soil. In the large-scale in situ experiments,
on the other hand, one can generally measure only the deflections of the beam, from which the
material characteristics cannot be directly calculated. Applying, however, the parametric identifi-
cation methods, the most reliable values of the material characteristics can be calculated and then
applied to the analysis of various similar problems. The identification can be also based on more
accurate solutions; in this case the results can be used for determination of stiffness characteristics
for simpler approximate methods, like the method described above.

Following the above ideas, this paper presents a method where the stiffness characteristics of the
beam and the foundation are unknown, but the deflections and the internal forces at certain points
of the beam are known, as obtained from experiments. The goal of the investigation is to determine
the estimated values of the stiffness characteristics that best approximate the real ones, by the use
of a mixed variational principle based on complementary potential energy and the application of
parametric identification [8,9].

The first part of the paper shortly describes the fundamental equations and mixed extremum
principle of the discretized structure. Then the basic idea of the method, the solution techniques
and the application of the parametric identification to the present problem are presented. Finally,
the application is illustrated by the solution of an example.

2. MODELS OF THE BEAM AND THE FOUNDATION

Consider a beam on a foundation subjected to a proportional loading with load parameter m
(Fig. 2a). We assume that the nonlinear behaviour of the beam and the foundation are approximated
by bilinear models described above.

First we discretize the structure (Fig. 2b). The beam is modelled by n hinge elements connected
together by rigid bars while the foundation is modelled by n spring elements which are supporting
the hinges. We assume that the beam can lift up from the foundation and therefore the hinges can
separate from the springs. In this model all the deformations are concentrated in the hinge and
spring elements and the external loads are also reduced to the hinges.
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Fig. 2. a) Beam on foundation, b) model of the beam and foundation, c) bilinear moment-rotation
relationship, d) bilinear force-deformation relationship

3. FUNDAMENTAL EQUATIONS
3.1. Constitutive equations

Generalizing the idea of the bilinear model defined above one can describe the relationships between
the moment M; and the rotation ; of the hinge element i as follows (Fig. 2c)

M; = M; + kip; |M;| — Mo <0, M; = kip;. (4)
For the whole assembly of hinges these equations can be written in vector form
M=M+kTp, IM|-My<o0, M = kT, (5)

where in the vectors M, M, My, ¢, k and k the moments, rotations and constants of the hinges
t=1,2,...,n are collected.

Considering the spring element ¢ with the force S; and deformation U;, and making again use
of the bilinear model, we get the following relationships (Fig. 2d)

S;=8;+C;U; 3 |51| - S50 <0 ; S; = C,;U; and if U; <0, 5; =0. (6)

Here compression and shortening of the springs are assumed to be positive and the unilateral
contact between the beam and foundation is modelled by specifying zero tension capacity.
For the whole assembly of springs, Eqgs. (6) can be expressed in vector form

s=5+cTy, IS|-Se <0, S=CTU andifU;<0,85=0(i=1,2,...,n).
(7)
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Here in the column vectors S, S, Sp, U, C and C the forces, deformations and constants of the
springs ¢ = 1,2,...,n are collected. B

The constants k;, k;, Mo;, C;, C; and Sp; of the constitutive equations (4)—(7) will be the
subjects of the identification procedure described later.

3.2. Equilibrium equation

The equilibrium equation of the hinge ¢ is of the following form (Fig. 3),
1 1 1
M+ (—+——) M; — — My + 5 - mF; = 0. (8)
l; i i liya

Using this equation the equilibrium equation of the entire assembled structure can be expressed in
matrix form

G M+S-mF=0. (9)
Here F is the column vector of the external forces F; (i = 1,2,...,n) and the bound matrix G
contains the element vectors

1 1 1 1
A A R . i 10
G [ L’ (li = li+1)’ li+1] (10)

szzmzzmﬁbf{lﬂ 2)

|

N\ N\
¥ | | lis1

Fig. 3. Free-body diagrams of the beam elements

4. FORMULATION OF THE EXTREMUM PRINCIPLE

In the papers [2-5] two mixed extremum principles based on the bilinear material model and on the
potential energy and the complementary potential energy, respectively, have been presented and
applied to the analysis of trusses. Recently, the principles have been used to the analysis of nonlinear
beams on nonlinear foundation [7]. In the following the principle based on the complementary-
potential energy will be presented. The proofs and detailed description of this principle can be
found elsewhere (2, 5].

Among all states of the beam and foundation which satisfy the equilibrium and constitutive
equations and correspond to a prescribed level Il of the complementary potential energy, the
one at which the load multiplier m assumes its maximum value becomes the actual state. Hence,
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substituting the constitutive equations (Egs. (5) and (7)) into the equilibrium equation (Eq. (9))
the mixed extremum principle can be written as follows:

m = max! (11)
(m,M,S,p,U)
subject to

G- (M+k'¢)+S+CTU-mF=0, (12)
M| -M, <0, M =kly (13)
IS|-So <0, §=cCTu, (14)
85;=C;=0 HU; <0, (15)
" [M? ke? 82 CU?]

a ot ¢ | o Hige . 16
;[2k,~+ 2 tag T e kg (16)

The above principle is stated in the form of constrained, nonsmooth, nonlinear mathematical
programming problem. There are several methods in the literature to solve it [10] and among them
the bundle method [11] is one of the most suitable one. The basic algorithm solves unconstrained
nonlinear programming problems with either a smooth or nonsmooth objective function and the
constraints can be taken into account by formulating an L1-penalty function or using some barrier
function techniques. Since our problem consists of smooth intervals, in these intervals smooth
algorithms can be used. Then a search direction for the variables is obtained and a line search is
performed to get a new iteration [12]. On the basis of the above solution techniques a computer
program was implemented in FORTRAN 77 language for IBM 3090 and HP 9730 computers [13].

If the stiffness characteristics k, k, Mg and C, C, Sp of the beam and the foundation, respec-
tively, are known, then during the analysis an appropriate level Iy of the complementary potential
energy has to be assumed rather than the intensity of the load. Then, using the principle and
the solution techniques described above one can determine the load intensity m and all the state
variables corresponding to the assumed energy level of the structure. Repeating this procedure, a
load history analysis can be conducted or the specific state of the structure corresponding to a
requested load intensity can be easily found.

5. IDENTIFICATION OF THE STIFFNESS CHARACTERISTICS

In our former paper [7] using the bilinear material model and the corresponding mixed extremum
principle, we presented the nonlinear analysis of beams on foundation. That analysis made possible
the determination of internal forces and deflections of the structure. The subject of our present
investigation is the inverse problem. Now stiffness characteristics of the beam and the foundation
are unknown, and the deflections and internal forces at certain points at the beam as well as the
load parameter are known from experiments. The goal of the present investigation is to determine
the estimate values of the stiffness characteristics best approximating the real ones by the use of
the mixed variational principle described above and by the application of the identification method
to be presented below.

5.1. Mathematical formulation of identification

Assume a vector valued function f(x) with p real elements, where x = (z1,...,z,) is a real vector
of ¢ unknown parameters. The function f : R? — RP? is generally given by a computer subroutine,
sometimes requiring a rather time-consuming calculation, and the derivatives of f(x) may not be
conveniently available.
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The function f(x) is the solution computed from a mathematical model of the investigated
mechanical structure. This solution depends on the unknown parameters x = (z1,...,2,). Thus,
f(x) represents a class of functions or a class of models depending on vector x. The actual response
of the mechanical structure known from measurements or from more exact analysis of the structure
is given by a real vector f with p real elements.

We are looking for the “best” model of the structure within the mentioned class of models: we

want to find the vector x* = (z7,...,2}), minimizing the norm of an error function

D(x) = f(x) — f (17)

over RY. Since the error (17) is a vector with p real elements, we may use the Euclidean norm, or
more precisely, its square:

1£(x) = £1|* = [£(x) — ) [f(x) - 1]. (18)
We note that the minimization and consequently the identification of vector x = (z1,...,z,) is
equivalent to finding the least squares solution to the nonlinear over-determined system of equations

Dix) =0, i RI-—»RE. B (19)

5.2. Application to the present problem

In the bilinear material model described above the behaviour of hinges and springs is characterised
by three independent parameters. For the sake of simplicity assume that all the hinges and all
the springs, respectively, have the same material characteristics and therefore there are only six
independent parameters: k, k, My, C, C and Sy, as defined in Section 3.1. The parameters are the
elements of the unknown vector x introduced in Section 5.1.

Assume that deflections and internal forces at certain points of the beam are known from
experiments. These quantities constitute the p elements of the vector f. Then for any vector
x = (z1,...,26) = (k, k, Mo, C,C, o) the deflections and internal forces of the beam can be com-
puted using the method described in Section 4. These quantities form the vector-vector function
f(x). Constructing the error function D(x) defined by Eq. (17) the minimizer x* = (z%,...,z§) of
the scalar valued vector function (18) is to be found. In other words, the least squares solution to
the nonlinear, over-determined system of Eqgs. (19) is to be found.

5.3. Numerical techniques

There are several methods for finding the minima of the non-linear, multivariable functional of
Eq. (18). In our investigations, a simple non-derivative method, namely the downhill simplex
method of Nelder and Mead has been used [14]. This method seems to be very efficient and reliable
for problems where the number of unknowns is not greater, say, than six. This solution technique
was implemented in FORTRAN 77 programming language on HP 9730 computer.

6. NUMERICAL EXAMPLE

Consider a nonlinear beam with uniform cross-section subjected to proportional loading and sup-
ported by a nonlinear foundation, as is shown in Fig. 4a. The nonlinear behaviour of the beam and
the foundation are approximated by the bilinear models described above. The unknown material
constants are related to the unknown stiffness characteristics k, k, My, C, C and Sy of the hinge
and spring elements of the discretized structure (Fig. 4b).

Assume that the deflections and internal forces at the hinges of the beam are known from more
accurate analysis of the structure. These results are shown in Table 1. The first column shows the
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Fig. 4. a) Beam on foundation, b) model of the beam and foundation

Table 1. Results of the accurate analysis

ACCURATE RESULTS

PLACE | MOMENT | FORCE | DISPLACEMENT | ROTATION
1 0 0.20731 0.027641 0.002766
2 17.387238 | 1.86685 0.248913 0.00535
3 —7.179371 | 0.315928 0.042124 —0.002209
4 —5.248762 | 0.090487 0.012065 —0.001615
5 4.27111 | 0.833478 0.11113 0.001314
6 15.568603 | 0.788246 0.105099 —0.00479
{4 30.702633 | 3.6171 0.48228 0.009447
8 —16.713154 | 0.778037 0.103738 —0.005143
9 1.125814 | 1.024277 0.13657 0.000346
10 5.607756 | 1.063234 0.141765 0.001725
11 0 0.066862 0.008915 —0.001661

places where the stresses and strains are known. The numbers correspond to the discrete points
1...11 shown in Fig. 4b. The other columns contain the moments and rotations at the hinges and
the forces and displacements of the supporting springs.

Applying the identification method described above, the unknown constants of the springs and
hinges can be determined. They are supposed to best approximate the real values of the charac-
teristics of the discretized structure. The values are as follows: C = 1.501, C' = 3.000, S, = 2. 979,
k = 470.0, k = 1390 and M, = 127.0. Using these material characteristics and the solution method
of Section 4, the deflections and internal forces of the discretized structure have been calculated
and are shown in Table 2 in the same manner as they were given in Table 1. Comparing Tables 1
and 2 one can see that the results of the more accurate analysis and those obtained by the use of
the presented solution method are very close to each other. The average deviation is of the order of
10~%. It shows that the use of the discretized structure and of the bilinear material model provides
approximate solutions and that the identification method described above is an efficient tool for
the determination of the stiffness characteristics of the bilinear material model.

The necessary number of iterations in the downhill simplex method of Nelder and Mead [14]
depends on the required accuracy of the stiffness characteristics. The accuracy was measured by the
Euclidean norm of the error function, see Eq. (17). In our example this dependence is shown in Fig. 5.
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Table 2. Results calculated by the use of characteristics obtained from identification

RESULTS AFTER IDENTIFICATION
PLACE | MOMENT | FORCE | DISPLACEMENT | ROTATION
1 0 0.207301 0.027636 0.002766
2 17.388103 | 1.866886 0.248885 0.00535
3 —7.179103 | 0.31593 0.042118 —0.002209
4 —5.246548 | 0.090426 0.012055 —0.001614
5 4.270807 | 0.833549 0.111125 0.001314
6 —15.568414 | 0.788142 0.105072 —0.00479
7 30.700499 | 3.617273 0.482239 0.009446
8 —16.712816 | 0.777909 0.103707 —0.005142
9 1.123717 | 1.02434 0.13656 0.000346
10 5.606944 | 1.063244 0.141747 0.001725
11 0 0.066846 0.008912 —0.00166
Number of iterations
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Fig. 5. Accuracy of the results in terms of number of iterations

The vertical axis shows the required maximum norm of the error function in logarithmic scale,
while the horizontal axis gives the necessary number of iterations, i.e. the required computer time.
According to Fig. 5, the number of iterations is approximately logarithmically proportional to
the required accuracy, therefore a slight increase of the computer time improves the accuracy
significantly. This rapid convergence allows the efficient application of the identification method to
other similar problems.

7. CONCLUSION

The aim of this paper was to present a method and solution technique for the determination of
unknown material characteristics of nonlinear beams on nonlinear foundation. In the analysis the
beam and the foundation were discretized and special bilinear force-deformation relationships were
applied. The solution based on a mixed variational principle was stated in the form of constrained,
nonsmooth, nonlinear mathematical programming problem [7]. For the determination of the best
values of the material characteristics a special identification technique formulated as a nonlinear
minimization problem was used [8,9].

The applicability of the bilinear material model for the analysis of nonlinear beams on nonlinear
foundation has already been proved previously [7]. This paper shows that this approximate method
can be successfully combined with a special identification techniques and applied to the determi-
nation of the unknown material characteristics. The results of the numerical example illustrate the
efficiency and accuracy of the proposed solution procedure.
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