Computer Assisted Mechanics and Engineering Sciences, 3: 65-74, 1996.
Copyright © 1996 by Polska Akademia Nauk >

A prototype object-oriented
finite element method program:
Class hierarchy and graphic user interface!

R. Robert Gajewski and Tomasz Kowalczyk
Warsaw University of Technology, Faculty of Civil Engineering,
Center of Computer Methods, 00-637 Warszawa, Armii Ludowej 16, Poland

(Received August 7, 1995)

The paper considers the application of an object-oriented approach to the development of FEM software.
A brief introduction to basic concepts of object-oriented modelling is given, followed by a short overview
of developed classes. Objects, classes, methods and inheritance are illustrated using a graphical represen-
tation. The design, implementation and maintenance of an object-oriented program is compared to that
of an equivalent procedural program in order to identify advantages of the object-oriented approach. Some
design problems of conventional finite element analysis software and their possible solutions offered by the
object-oriented methodology are identified and discussed.

1. INTRODUCTION

All large software systems tend to be changed and to evolve over time. When we correct errors
in them we speak about software maintenance and we speak about evolution when we respond to
changing requirements. We can also speak about preservation when we use extraordinary means
to keep an old piece of software in operation. Investments in a large program are spent mostly
during its evolution. Due to the increasing size and complexity of finite element software systems
the traditional algorithm-driven structured programming approach and, in majority of the cases,
FORTRAN as the programming language are no longer adequate. New software architecture and
improved programming paradigms supporting maintainability, which can be defined as a combi-
nation of three qualities: understandability, extendability and easy debugging, should be created.
In this paper an object oriented approach to scientific programming in the field of finite element
analysis is discussed.

All industrial-strength software systems involve elements of great complexity. Only small ap-
plications created by the amateur programmer or the professional developer working in isolation
are not complex. The complexity of software is its essential property, not an accidental one. Today
it is not unusual to find finite element method systems whose size is measured in hundreds of
thousands lines of code written in a high-order programming language. Even if we decompose such
implementation in some meaningful way we still end up with hundreds of separate modules. Qur
failure to master the complexity of software results in the so called software crisis. Moreover, the
more complex the system, the more open it is to total breakdown.

When designing a complex software system it is essential to decompose it into smaller parts each
of which can then be refined independently. Ma, Jority of the programmers have been formally trained
to use the method of top-down structured design. Decomposition is approached as a simple matter
of algorithmic decomposition, wherein each module in the system denotes a major step in some

'The paper was presented at the 12th Polish Conference on Computer Methods in Mechanics in Warsaw-Zegrze
on May 9-13, 1995. Further papers presented at the Conference will be published in the forthcoming issues of this
Journal.

66 R.R. Gajewski and T. Kowalczyk

overall process. There is an alternative decomposition possible for the same problem. The system
can be decomposed according to key abstractions in the problem domain. In this decomposition, we
view the world as a set of individual agents that collaborate to perform some higher level behaviour.
Because such decomposition is not based upon algorithms but upon objects, which embody unique
data and behaviour and model some entities from the real world or mathematical model, we call
this an object-oriented decomposition.

The need of alternative approaches to FEM software is generally recognised. Papers on usage
of C language in finite element programming (see [4,10]) and computer programs written in C
appeared recently. In recent years many papers on the usage of object-oriented techniques in finite
element programming appeared as well (see, e.g. [3,5,6,15]). This methodology is also gaining
interest in Poland (see, e.g. [7,8,13]).

2. OBJECT MODELLING

Object-oriented technology is built upon a foundation whose elements we collectively call the object
model. The object model encompasses the principles of abstraction, modularity, hierarchy, typing,
concurrency and persistence. None of these principles are entirely new, but what is important about
object model is that these elements are brought together in a synergistic way.

Without doubt, object-oriented modelling consisting of analysis and design is fundamentally
different from traditional structured design approach. It requires quite different way of thinking
about decomposition and it produces software architectures that are largely outside the realm of
the structured design culture. The complex systems we deal with have a hierarchical nature. The
levels of this hierarchy represent different levels of abstraction — each of them is built upon the
other and each is understandable by itself.

In the common opinion of the specialists in the field of software engineering, object oriented
approach is more suitable there than procedural one, because it is better at helping us organise the
inherent complexity of software systems.

2.1. Basic terms and concepts

An object is a computer analogue of entities in the real world or mathematical models which
consists of an encapsulated representation (state) and a set of messages (operations, procedures)
that can be applied to the object. In other words, they are capsules of behaviour and state whose
internals are hidden from other objects that use their services. Only the methods of an object have
an access to its state. A method can only be invoked by sending the object a message. Instead of
organising programs into procedures that share global data, the data is packaged with the functions
that access the data.

A class is a collection of objects with common attributes and/or behaviour. An object is an
instance of a class — one of the things in the class (see Fig. 1).

Attribute1
Attribute2

Attribute1
Attribute2

Servicel
Service2

Servicel
Service2

CLA

Fig. 1. Classes with and without instances

Object-oriented FEM program 67

Inheritance is an ability to define a new class that is just like an old one except for a few
differences. Classes may share in this way their common attributes and methods.

Polymorphism is an ability of different objects to respond differently to the same message.

All these features can potentially improve the limitations of procedural programming. The de-
composition performed in terms of objects better parallels the real-world problems or mathematical
models. The concept of classes provides mechanisms to reduce the contact surfaces between software
modules. The mechanism of inheritance allows the reuse of software. The concept of polymorphism
enables the construction of programs on a higher level of abstraction.

2.2. Object oriented analysis and design

One of the main questions confronting a software developer is: Which is the right way to decompose
a complex engineering software system — by algorithms or by objects? The right answer is that both
views are important. However, we cannot construct a complex system in both ways simultaneously.
It is due to the fact that these views are orthogonal, representing active and static points of view
which are dual by their nature. Experiences of many researchers led the authors to apply the
object-oriented view.

Despite individual differences in all object-oriented system development methodologies, they
always contain three components corresponding to analysis, design and implementation/program-
ming.

Analysis involves problem definition and modelling (see [1] or [2] for more details).
Object-oriented analysis models the problem domain by identifying and specifying a set of se-
mantic objects which represent things or concepts rather than a solution method. They are called
semantic objects because they have meaning in the problem domain.

Design focuses on solution specification and modelling. Object oriented design transforms the
problem representation into solution representation. The solution domain includes semantic classes
with possible additions and interface, application and base/utility objects defined in the design
process. During the design phase the emphasis is on defining a solution. Object-oriented design
should be still language-independent. It precedes physical design (implementation, programming).

The most important part of problem domain analysis process is connected with identification
of attributes, behaviour and classes and final organisation of them. Attributes and behaviour must
be distributed among appropriate classes. Then classes are arranged into predefined relationships
or organisations.

The two primary ways of organising objects, or two kinds of generic relationships among objects
are (see Fig. 2):

e a-kind-of structure (generalization-specialization),

e a-part-of structure (whole—part, aggregation).

Specialization2

4
R L RV ARV

CLASSIFICATION STRUCTURE ASSEMBLY STRUCTURE

Fig. 2. Basic static relationships between objects

68 R.R. Gajewski and T. Kowalczyk

A-kind-of structure uses inheritance, which is the major feature distinguishing the object ap-
proach from other approaches. It is used as a mechanism to create objects that share properties
with similar objects.

Inheritance is not the only way to share code and promote reuse. A-part-of structure uses parts
which enable the construction of compound objects such as windows system in the graphic user
interface. They are used as a mechanism for assembling composite objects. In the description of
composite objects it is necessary to outline how they are created and how components are added
and modified.

In the assembly structure, objects of the class Whole contain exactly two objects of the class
Part2 and at least one object of the class Partl. On the other hand, object of the class Partl is a
part of at least one and at most three objects of the class Whole. Finally, object of the class Part2
can be a part of any number of objects of the class Whole.

Figure 2 addresses only structural (static) aspects of object-oriented analysis and design, i.e., the
object model. There is also a dynamic model which describes the aspects of a system that change
over time. It is used to specify and implement the control aspects of the system. Such dynamic
considerations, namely message-passing between objects, are presented on Fig. 3. The third model,
functional model, used to describe the data value transformations within the system will not be
discussed here.

Fig. 3. Dynamic aspects of object-oriented analysis and design

3. OBJECT ORIENTED FINITE ELEMENT PROGRAMMING

Nearly all FEM software is based on computational methods unchanged since the time when the
batch mode of computer data processing was the norm (see, e.g. [11,14]). FORTRAN dominates
in the field of scientific computing both in commercial packages and university programs. This is
mainly due to the assumption that structural analysis is performed on well defined and static data.

A typical FEM code consists of a processor hidden from the user by pre- and postprocessing
software. The analysis is mainly performed in batch mode. This approach has its natural limitations.
Complex control and artificial data structures result in difficulties of development and maintenance
of such conventional software.

3.1. Graphic User Interface

Graphic User Interfaces (GUIs) are becoming standards for user-oriented applications. They are
consistent across applications and easy to learn and use. Each FEM program invariably consists
of a preprocessor, processor and postprocessor, which, in the majority of commercially available
packages, still comprise three separate blocks of code. Pre- and postprocessing modules have become
an important part of any finite element system. In the future, the analysis modules will rather be
part of graphical modules and not the other way round. Therefore it is imperative to employ novel
software structures if these objectives are to be met.

Object-oriented FEM program 69

While designing an application it is reasonable to separate the part of the system responsible for
calculations, i.e. the solver, from the GUI classes to make them independent and thus more flexible.
We encounter here problems with establishing proper relations between these two modules.

The essence of a GUI are GraphicObjects. These objects posses two important abilities. First,
they can display themselves on the specialised Projection Window, and next, they can communicate
with the user (e.g. through the dialogue box), to let him change their characteristic features.

It is obvious that some of the GraphicObjects should represent Nodes, Elements and Loads which
are the part of the solver and thus, as the objects responsible for calculations, they should not make
assumptions about the graphics.

There are generally two ways of designing GraphicObjects. In the first approach, full indepen-
dence of the solver from the graphic environment is assumed. The solver and its classes, written in
the purely portable code, are completely separated from the rest of the system. GraphicObjects are
not derived from the objects they represent. They are only Handles to them. Additional messages
between the modules are necessary — from the Handles to the objects they represent — in order
to retrieve their data.

In the second solution, the solver and the graphic environment are connected through the same
objects they operate on. Nodes, Elements and Loads are themselves GraphicObjects. Thus both the
solver and the graphic environment can operate directly and independently on the same objects.
It is important that we can still logically separate the two parts of the classes: responsible for
calculations and responsible for graphic representation. No additional messages between the two
modules are necessary here.

Comparison of the two possible solutions is summarised in Fig. 4.

Due to the lack of fully portable graphic library, the first solution in which the role separation
is assumed was chosen in our project [12]. The proposed class hierarchy of such a GUI is depicted
in Fig. 5.

Separation Integration
Handles The same objects
— Introduction of additional, unnatural | + Clarity of the concept of “both calculated
idea of Handles, which has not its coun- and visible” objects. Easy development
terpart in OO Analysis and is outside the of object’s specialized features.
Problem Domain.
+ Full portability of the solver. — The whole code is not portable as long
as we do not have the portable graphic
library.

Graphics depends on the platform and must | Graphics is written once, but its portabil-
be written separately for different ones. ity depends on the availability of the same
graphic library on the other platform.

Fig. 4. Comparison between two ideas of GUI

3.2. Class hierarchy for the solution part

In the current state of the project, a revised version of a class structure for the finite element analysis
program was developed (see Fig. 6). According to the object-oriented philosophy, the kernel of it is
formed by classes which are connected with entities like element, node, load, material and structure
(see also [9]).

The element plays the central role in the classical FEM applications. It includes all necessary
information about the set of partial differential equations that will be solved. In the object-oriented

R.R. Gajewski and T. Kowalczyk

T
Crap Ic_ﬁ) ‘ Window }

GraphicElement

GraphicNode

FENP SR ecow

‘ Structure i

m

StaticSolver

1
Material

Fig. 6. Class hierarchy for the solution part of the FEM program

Object-oriented FEM program ‘71

SpecificElement

(ApproxGeomEIement)
sl

(PlanelzoparamElement)

Fig. 7. Class Element

approach it has the same key role. The virtual class Element is designed to perform such tasks as
computing the stiffness matrix and assembling the contributions to the linear system. The element
also knows how to create itself and how to identify its attributes like nodes or material.

Structure of Element class is shown in Fig. 7. Any specific element performs similar actions,
like calculations of stiffness matrix. The algorithm to carry out the action will differ depending on
element’s characteristics. Therefore elements are defined through inheritance.

This structure allows for straightforward inclusion of new elements. Each element should only
have information about topology, connectivity and material properties. Each element object is
only responsible for shape function calculations and numerical integration. Physical model of the
problem is represented by the class Material. It can not only define material constants but also
more complicated constitutive relations.

3.3. Implementation

The results of the performed object-oriented analysis and design have been coded and implemented
in the C++ language, a C extension for object-oriented programming. The program PRO_MES
was developed for Microsoft Windows GUI and DOS operating system (see Fig. 8). The Borland
C++ compiler was chosen for the project development. It supports the concept of object-oriented
programming by expanding the environment using Object Window Library, which permits the reuse
of classes already defined. Windows environment gives many benefits like a device-independent
graphics, support for a wide range of printers, monitors and pointing devices, a rich library of
graphical routines, more memory than plain DOS for large programs and support for menus and
icons.

The prototype program was tested on many benchmark problems from theory of elasticity.
Sample results of calculations for the problem from Fig. 8 are depicted in Fig. 9.

3.4. Benefits of object-oriented approach

Encapsulation and information hiding reduce the contact area between the ob Jjects and localise the
implementation details. Data structure and some (private) methods are hidden and can only be
accessed through the public methods forming object’s interface.

72

R.R. Gajewski and T. Kowalczyk

__ProMES - Tarcze - (CAPROMES{TESTA.KON)

Fig. 8. Graphic User Interface for FEM calculations

4.6018

— 3. 27066

— 1.93951

L 0.60836

— -0.722789

I— -2.05394

-2.7195

Fig. 9. 011 stress

Object-oriented FEM program 73

With inheritance the programmer can define a new class and add data items or methods as
necessary. The derived class inherits all attributes of the parent class. The added data and methods
either create new behaviour or modify the defined behaviour. Inheritance encourages software
re-use, reduces the code size and finally enhances the flexibility of programming.

Polymorphic operations, having multiple meanings depending on the type of the object they
operate on, allow a programmer to implement a cleaner design at a higher level of abstraction.

Last but not least, object-oriented approach enables easy program evolvability. This seems to
be very important feature because in practice not all facilities of FEM code could be fully foreseen
at the time it was initially designed.

4. CONCLUSIONS

The results obtained from the prototype program show many advantages of an object-oriented
approach. It can solve all the longstanding problems with the development of engineering soft-
ware systems, e.g. finite element analysis programs, like: maintainability, understandability, read-
ability, homogeneity, extendability, efficiency. Object-oriented programming enables a programmer
to create very high level operations and therefore increase productivity. Moreover, with this ap-
proach prototyping of a software system can be fast and inexpensive. The general conclusion is
that object-oriented programming is a powerful tool and can be easily used to improve the qual-
ity of engineering software. In contrast to procedural programming, object-oriented programming
results in smaller programs, provides better management of data and procedures, and makes easy
extension of the program possible.

ACKNOWLEDGEMENTS

Partial financial support received under a grant from the Rector of Warsaw University of Technology
is gratefully acknowledged. The first author also wishes to thank Monica for her inspiration, helpful
comments, assistance and criticism.

REFERENCES

[1] G. Booch. Object-Oriented Analysis and Design with Applications. The Benjamin/Cummings Publishing Com-
pany, 1994. '

(2] P. Coad, E. Yourdon. Object-Oriented Analysis. Yourdon Press, Prentice Hall, Englewood Cliffs, 1990.

[3] Y. Dubois-Pellerin, Th. Zimmermann. Object-oriented finite element programming: III. An efficient implemen-
tation in C++. Computer Methods in Applied Mechanics and Engineering, 108: 165-183, 1993.

(4] P. Fazio, K. Gavri. Structural analysis software and the C programming language. Computers and Structures,
25: 463-465, 1987.

[5] J.5.R.A. Filho, P.R.B. Devloo. Object-oriented programming in scientific computations: the beginning of a new
era. Engineering Computations, 4: 81-87, 1991.

(6] B.W.R. Forde, R.B. Foshi, S.F. Stiemer. Object-oriented finite element analysis. Computers and Structures, 34:
355-374, 1990.

[7] R.R. Gajewski. An object oriented approach to finite element programming. In: B.H.V. Topping, M.
Papadrakakis, Artificial Intelligence and Object Oriented Approaches for Structural Engineering, 107-113.
Civil-Comp Press, 1994.

[8] R.R. Gajewski, T. Kowalczyk. Object-oriented finite element programming: new stage or curiosity?. Computer
Methods in Civil Engineering, 4: 71-82, 1994 (in Polish).

[9] R.R. Gajewski, T. Kowalczyk, S.A.S. Zielifiski. Class hierarchy for the prototype FEM program. In: Proceedings
of the XII Polish Conference on Computer Methods in Mechanics, 108-109. Military University of Technology,
Warsaw, 1995.

[10] K.H. Ha. C language for finite element programming. Computers and Structures, 37: 873-880, 1990.
(11] E. Hinton, D.R.J. Owen. Finite Element Programming. Academic Press, London, 1977.

74 R.R. Gajewski and T. Kowalczyk

[12] T. Kowalczyk, R.R. Gajewski. An object-oriented graphic user interface for finite element applications. In:
Proceedings of the XII Polish Conference on Computer Methods in Mechanics, 169-170. Military University of
Technology, Warsaw, 1995.

[13] P. Lezariski, J. Orkisz, P. Przybylski, R. Schaefer. Fundamentals of an open distributed system for CAD purposes.
In: Proceedings of the XII Polish Conference on Computer Methods in Mechanics, 194-195. Military University
of Technology, Warsaw, 1995.

[14] I.M. Smith, D.V. Griffiths. Programming the Finite Element Method. John Wiley, Chichester, 1988.

[15] Th. Zimmermann, Y. Dubois-Pellerin, P. Bomme. Object-oriented finite element programming: I. Governing
principles. Computer Methods in Applied Mechanics and Engineering, 98: 291-303, 1992.

