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A general problem of parameter sensitivity of non-linear transient thermal systems is considered. The
non-linear sensitivity path is followed by a weighted residual method employing the continuum description.
The resulting finite element equations are derived. Both the direct differentiation and adjoint system
methods are employed to evaluate sensitivity functional increments during the integration time step.
Numerical results illustrate the method proposed.

1. INTRODUCTION

Having efficient computational means for realistic assessment of the nonlinear response of bodies
subject to thermal loadings is crucial for solving very many engineering problems. Sophisticated
FEM-based algorithms have therefore been developed to this purpose, see [2, 9] for instance. A
natural extension of the analysis capabilities has been the developments in the parameter (or design)
sensitivity area for the thermal problems. The so-called design sensitivity analysis (DSA) consists
in computing variations in response quantities with respect to parameters (or design variables)
entering the theory. The sensitivity information so obtained may be used to assess the effect of
uncertainties in the mathematical model, to predict the response changes due to a change in the
parameters, and to optimize the system by using appropriate optimization techniques.

Even if in the last decades DSA has attracted considerable attention in the field of solid and
structural mechanics, relatively little work has been published on it in the thermal problems liter-
ature,

The subject of the design sensitivity analysis in the specific context of thermal systems was
apparently first undertaken in [7]. The steady-state and transient linear and nonlinear problems were
there discussed in the discrete FEM formalism, and a 1D illustration was provided. The two basic
methodologies for solving sensitivity problems, later called the direct differentiation method (DDM)
and the adjoint system method (ASM), were identified. This enlightening contribution was followed
by the articles 3, 4, 11, 12]. In the two-part paper [3, 4] the author put forward the basic continuum
formulation for DSA of linear isotropic thermal systems. Almost every aspect relevant to DSA for
such class of problems was included in the formulation: non-shape and shape sensitivity techniques,
DDM and ASM, steady-state and transient problems, first-and second-order sensitivities, etc. The
shape sensitivity approach was based on the so-called material derivative concept while the ASM
took advantage of the Lagrange multiplier technique resulting in a terminal-value problem for
adjoint temperature field. A time mapping was introduced to transform the terminal-value problem
into an initial-value problem. In papers [11, 12] a formalism was developed for solving thermal
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sensitivity problems by the boundary element method. In [12] nonlinear steady-state problem was
considered and equations describing shape design sensitivity and shape optimization were given
using the material derivative concept within the adjoint system methodology.

First-order design sensitivity for transient conduction problems was analyzed in [14] by the
adjoint method. The approach was based on the mutual energy principles with a terminal-value
problem resulting for the adjoint sensitivity equation. The so-called domain parametrization method
was used for the analysis of shape sensitivities. Both continuum and discretized formalism were
presented.

Shape and non-shape sensitivity formulations for transient nonlinear thermal problems were
subject to scrutinity in [15]. ASM involving the Lagrange multiplier technique was used with convo-
lution replacing multiplication as the operator between the multipliers and the governing equations.
This resulted in an initial-value adjoint problem with no need for additional time mappings. Both
continuum and FEM formulations were employed. In [13] the authors proposed to use the so-called
Kirchhoff transformation for shape sensitivity analysis in nonlinear heat conduction problems.

In some more recent literature [6, 16] the thermal sensitivity analysis is considered as a part of
more general thermo-elastic formulations; the review of the work is beyond the scope of this article,
though.

It appears on the basis of the above discussion that a uniform treatment of the continuum and
discretized, DDM-and ASM-based sensitivity formulations valid for fully nonlinear steady-state
and transient heat conduction problems with anisotropic material properties and various boundary
conditions has never been explicitly given. Such a review task, along with the discussion of some
computational aspects, is undertaken in this article.

2. CONTINUOUS FORMULATION

Design of thermal processing systems requires selecting of some design parameters hy € RP which
describe the material properties and boundary conditions. The parameters can also represent the
geometry (i.e. shape) of the domain § in which the problem is defined; only non-shape design prob-
lems are considered in this paper, though. Since in the sensitivity analysis the nature of the design
dependence of particular functions is of crucial significance, the parameters hy, d = 1,2,..., D will
be explicitly indicated below when formulating the heat transfer initial-boundary value problem.

The governing equations of heat transfer in a thermally anisotropic 3D region  can be written
in a differential form as follows (7,5 = 1,2, 3)

(kiiTj); +Q = e%g : (z,7,h) € @ x T x RP, (1)
with the boundary conditions imposed on the boundary surface temperature,

T=T, (z,7,h) € 80 x T x RD, (2)
and the boundary surface heat flux,

—kiin; Ty = §, (z,7,h) € 0, x T x RP, (3)
and the initial condition imposed on the initial temperature distribution

T =T, (z,7,h) € Q x {to} x R?, (4)
where
T="T{#,7R) is the temperature,

ki; = kij(T(z,7,h),z,h) is the thermal conductivity tensor,
Q=Q(T(z,7,h), Ti(x,7,h),z,7,h) is the rate of heat generated per unit volume,



Sensitivity in nonlinear thermal problems 255

¢=¢&T(z,7,h),z,h) = pc is the material heat capacity,

p=p(T(x;7,h),z,h) is the density of material,

¢ =e{T (8, 7.0),5:h) is the specific heat of material,

T is the position vector which identifies materials particles in the
domain 2,

T denotes time in the domain 7 = [to, tf], to and t; being the initial
and terminal time instances, respectively,

T =T(z,7,h) is the temperature acting on the boundary surface Q7 ,

§.= UT(2:.7,h), %, 7 h) is the heat flux on the complementary boundary surface 09,

n; =i ni(2) is the unit outward-drawn vector normal to 012,

To = To(z‘, h) is the initial temperature

and for any function g, the notation g; stands for the partial differentiation of g with respect to
the spatial coordinate z;.
The Fourier’s constitutive relation reads

¢ = —ki;T;, (5)

¢; being the heat flux vector.

Equation (3) may be specified to include convection boundary conditions on a part 89,(;1) of
09y,

——k,'jan‘,' - f(c)(T - Too) y ((L’,T, h) € anl) X T X RD " (6)

where £ is the (possibly temperature dependent) convection coefficient, and radiation boundary

conditions on a part BQgZ) of 99,

—kijniT; = & (T* - Tgy) = x (T - Ty)) (7)
in which the coefficient &) is computed as
-1
1 1
f(.,) =0V (E + = = 1) (8)
and
x =t (I + 7)) (T + 7o) ©)

where o is the Stefan-Boltzmann constant, T{,) is the temperature of known external radiation
source, V is the radiation view factor, ¢ is the surface emissivity and E(r) the emissivity of the
radiation source.

Looking for an approximate temperature solution to the above initial-boundary value problem
we usually form the residuals (generally non-zero if T is only approximate)

orT
= (kiiTj) — Q@+ - (10)
re = §+ kijn;T; (11)

T1

and then solve the problem (1)-(4) by determining the square integrable temperature field 7
satisfying the temperature boundary condition and zeroeing the following weighted residual

R:/{2r1¢d9+/mq r2d(89) = 0 (12)
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for all square integfable weighting functions ¢(z) that vanish on Q7. The residual (12) can be
transformed as follows

R /Q [— (ki T5) ;0 + <5g—f - Q) ¢] dQ + /mq (4 + kijn;T;) $d(0Q)

Il

= — /zaﬂq kijn;T ;¢ d(09) +/Q [kijT,j¢,i + (Eg—f - Q) qS] dQ + /anq (G + kijn;T;) ¢ d(09)

- [ [k”Td¢ t (C%T— ) ]dQ+/anch¢d(8Q) - 0. (13)

At any given time instant 7, Eq. (13) is clearly nonlinear in T'. To solve it for ' we may use the
iterative technique of Newton-Raphson which is based on zeroeing the ‘next’ (k)-th residual written
as

R® = p=1) 4 =1, s7(k) = : (14)

in which R(*-1) = R(k- ET((E T h),:z: 7,h) corresponds to the ‘last’ (k—1)-th approximation to the
temperature field 7 = T(*~1) assumed known, 67%) is the iterative correction to be determined
from Eq. (14) such that

T®) = plke=1) 4 s7(k) (15)
and Rgc_l) = dR(*=1/dT is the (k—l)—th tangent operator defined by

RT:/[ak,J T, +k”¢l ¢( 9¢ OT gg_a_cg_a_)]dﬂ

aT T oTor 9T " o7, oa

+ / ¢ d(an) (16)

The notation RT * 0T should be clear from the context with * indicating that 67" multiplies the
appropriate integrand rather than the whole integrand expression that defines Ry . The operator
R depends nonlinearly on T, linearly on ¢ and acts linearly on §7'; we shall use the notation

RT[T7 ¢] x0T = RT[T, ¢a 6T]
- / [%T,qu,,-éT + ki;6T 3
Q

T
+¢< oir g-;;g—TéT g‘T%T gﬁ m)} a0
g / ¢ 167 d(09) (17)
ol Sharten
Brll;9) o7 = (KT 61+ K730+ OITi 615 ) +87 = (Kaily 61+ CITs 92 ) o7
(18)
whise
KM =/s)(kij¢,ii a”T ¢,-¢>‘;§, ¢3‘. ) Q+/ ¢ d(an), (19)
- [ <2°>
Kr = KP + kP, (21)

c = /Q¢adn. | (22)
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The iterative procedure can be seen more clearly for a time-discretized formulation in which we
assume that:

(a) solution up to a typical time instant ¢ has been obtained,
(b) solution Ti4a¢ at time ¢ 4+ At is looked for,

(c) a finite difference scheme in time such as the one-step backward Euler scheme is employed so
that

. 1
'} = —(T -T:). 23
i+ At At( t+at — Tt) (23)
and consequently

A (k 1 k
Tt(+)At = At (Tt(+)At - Tt) )

sT® = 61H),, = At 6T,

t+ At
0 oriky — O pmt®) _ 1 omtt) _ 1 ome
EJT( ) = E_‘éTH_At = EaTt+At = E&T( )

Equation (17) written at 7 =t + At then becomes

(k-1) (k) ok (k-1) (k-1), 0
- : = L) L : = e
REOT 61067 = [T N6+ K g
1 9ek-1) 1
sk-1) 1 L (ptk-1y _
+¢(C it o mil )
9Q _0Q 0 \| stk / 94 5r(k)
7 aﬁ)lw a0+ | égreT d(09) (24)

where all the functions (except for T;!) are understood to be computed at time t + At and the
temperature value Tt(f';) . The operator equation (14) with the term RS{C ~DgT(k) given as Eq. (24)
can be solved for 67(%) by any of the known techniques in use for solving PDE’s with respect to
space variables. It should be noted in this context that even though the operator R in Eq. (13)
generates the symmetric finite element ‘secant’ stiffness matrix (dependent on 7T'), the spatial dis-
cretization applied to Eq. (14) with (24) results in a non-symmetric tangent stiffness matrix which
may unfavorably influence the efficiency of the solution procedure typically based on symmetric lin-
ear equations solvers. Therefore, different symmetric approximations to the non-symmetric tangent
stiffness are used in practice with the non-symmetry effects accounted for in an iterative fashion;
we shall further comment on this aspect in Section 3.
Let us now consider a functional

o) = ["Gar = /t’ [/n Gy (T(z,7,h), Ti(x, 1, h), 7,7, h) dQ
to

to

5 /anq Gy (T, 7. 1) dlo. 7, B), 2.7, Ky (69} | dr (25)

whose design gradient dG/dhq is of our concern in sensitivity analysis, G; and G5 are assumed to
be known functions of their indicated arguments and

q = gin; (26)
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is the surface heat flux. The functional (25) may be a cost or constraint functional typical of
optimization methodologies, for instance. We note that even though it is expressed in integral
form, time and or space localized quantities may also be represented by proper choice of weighting
functions (Dirac delta distributions, in particular). By differentiating G with respect to the design
variable hqy we obtain

dg _ tf ‘9_G1 0Gy 3Td / <3G2 @ )
d_hd_/to [/s)(aTTd+8T 9z: +G1d>d9+ Ta+ 5 tas+ Gaa ) 4(09)| dr

(27)

where for any function g the notation g, stands for the partial derivative of g with respect to the
design variable hqy. By noting that the unit normal n; is independent of h,, the design derivative
of the surface heat flux becomes

0q; 0T;  0g; 0q;
: 2d  Hig o
% (aT,j Bz; - 9T % Thg ) " (%)

We may now observe that knowing the time trajectories of T' at any point z computed for the
nominal value of the design vector h (i.e. having solved the heat transfer primary problem) the
only quantity needed to effectively evaluate the gradient (27) is the gradient of temperature 7' with
respect to the design variable k. Therefore we shall concentrate now on ways to compute T} .

Let us start by differentiating Eq. (13) with respect to hy . We obtain

d_R_ dkw 6Td ﬁa_T dQ)]
dhd_/n[dh T ;b +ku¢,1Td,J+¢( -t T o )]0t ¢ ~d(on)" 1(20)

which by noting that the residual R should vanish at both the nominal hd and perturbed hq + 6hy
values of the design, and that

dhy _ 0T Tat ohy’ (30)

d& B LY

dhy ~ T 4T By (31)

dQ _ 0@ 0Q 2Q

dhg ~ or 2t By it g, (32}

a0, 00

ahg —arttt g, 55

becomes
dR [ [0k oLy, D:OT, 0Q, 09,
dhy ~ / [ah T'J¢"Td+k’f¢’Td’J+¢<c_+ AT or ¢~ T ¢ pr, 4 || 40
Bz 8¢ 0T  6Q
+ o sgaTadom + [ [T+ 0 (o5 - 23] 4 +/ b3 4(09).

(34)

If we now observe that the underlined term in Eq. (34) can easily be computed (at the given time
step, after the solution to the primary problem has been obtained) and compare Eq. (34) with
Eq. (17), we conclude that Eq. (34) can be compactly rewritten as a linear in T; equation of the
form

RT*Td

(Kelzs9)+ I ¢]i) ‘T

A #i+4 (555~ 7ie)| 29 - [, o3 4009) (35)
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or
OR
Ohy’
since the right-hand side of Eq. (35) is just the partial (explicit) derivative of the residual (13).

Equation (35) is the result of fundamental significance. It essentially says that having at a given
time instant the temperature distribution 7' and the tangent operator R we may solve Eq. (35)
for Ty at that instant which is the only unknown needed to compute the sensitivity functional (27).
Moreover, while the primary problem requires iterations according to Eq. (14), the sensitivity
gradient Ty can be found directly (i.e. with no iteration) from Eq. (35) in which we just need to
use the last available value of the tangent operator Ry . The above characteristics of the sensitivity
problem has a crucial significance for the efficiency of the appropriate computational process.

The method just discussed is called the direct differentiation method (DDM). An alternative
approach known as the adjoint system method (ASM) attempts to compute directly (i.e. not by
the way of the temperature sensitivities T;) the functional sensitivity dG/dhy by eliminating Ty
through the use of Lagrange multipliers. To do so we consider an augmented functional

G=6+R® (37)
in which G is given in Eq. (25) while R(®) is defined as

t
R®) = / ! {/ 744 [— (ki T5) ; + (Eaji - Q)] dQ +/ T (G + kijan,i)d((?Q)} dr. (38)
to /o ’ or oM

RT * Td = — (36)

We observe that the integral of the time integration is just the residual (12) with the weighting
function ¢ replaced by the adjoint temperature 7(%); we require that the latter vanishes on 0Qr
but it is arbitrary otherwise. Equation (38) becomes

ty oT
(a) — @ |g..7 .7 (~__ ) (a)] / 57(2)
R /to { /n i [k,/r,jfj_jz + (&5, - Q)T da+ aﬂqu d(0Q) ¢ dr. (39)

The variational formalism for the adjoint system method follows here the methodology suggested
in [1]. In it, the adjoint variable 7'(%) is determined from the requirement that the augmented
functional (37) be stationary with respect to the primary variable 7, i.e.

soiig
0rG = — + 6T = 4
Y a7 * 0 (40)
which, by considering T, as a possible specific case of 6T, becomes
Y
== =0. 41
or *1a=0 (41)

According to the ASM variational methodology, the substitution into Eq. (37) of the adjoint variable
T computed from Eq. (41) implies that the desired response functional sensitivity dg /dhg can
be computed as

dg 8¢

= B “2)

in which the right-hand side involves only the explicit design differentiation of G which is straight-
forward to compute as

g /tf 9G, G,
— = —dQ ——d(oQ
Oha - Ju { 0 hs T 00, Ohq (69)

ki 1y () (ﬁé}'j_?ﬁ) (a)] 94 ()
+ f [imal + ohior  oha) 9T fo, Bm, T 4OV (43)



260 M. Kleiber and A. Stuzalec

The above result has been obtained by using the combination of Egs. (25), (37) and (39) which
yields

. t
o= [orruimat + (4 -a) an [ (orsire)aamler.
Q ’ or 90q )

to

The condition (41) is rewritten as

0G d 0G, 0Gy 0Ty | ki (a) a_T,i (@)
——*Td—/to {/[8TTd+8T az +8TTTT + ki iBa; T;

oé oT gjj aQ 8Q aTd (a)
+<6TTd6 te e T ar 4T ot s )T s

45 [anT an (aq,

aT ¢t B ar ¢t

04 014\ | 941 ma)
5T 3 )+8TTT (o) b dr (45)

which by integrating by parts in time the term é7;T(%) and re-ordering the terms becomes
06 [y 3G, 0G10Ty
ar * 14 = /t,, {/Q [8T T4+ o7, oe; | 4
oG oG 0¢; d¢; 0T,
i l ek W (qT+ - d)}d(an)

aT d¢ '\dT" " AT, b«
+/[ 9T, 9T@ ak,JT oT 0T  9¢, T _OT®

¢

9z, 0z; | OT ‘8z, 0a; T oT ‘or o7

Q5 , 99 014\ 1)
(6TT T ax,-) e

Ty 7o,

+ / 94 1 1) g(90) L ar + / T@er, dgl” (46)
a0, 0T Q

to

Consequently, by noting additionally the notation introduced in Eq. (17) and the condition
T@) (1) = 0, (47)

we require that

. 9 e
et o dare a2 e Bt __9G
(I&T[T,T | = C[T; T C’[T,aTT ])*Td T, (48)

=0, (49)
tf

T(a)

in which we used the following property of the operator C,

alr; f]* —= = C’[ z] xf, for any f, g. (50)

Equation (48) is the fundamental equation for solving nonlinear, non-stationary thermal sensi-
tivity problem by the ASM. It is a variational equation for the adjoint temperature field 7(%)(z;),
which has to be satisfied for any Ty . The partial differential equation generated by Eq. (48) has to
be solved backward in time; the time transformation

T’:tf—T (51)
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allows to replace it by the initial-boundary value problem of the form

. oG
(K1) - KP4 s 4 ¢ [15 7)) o T = - 22 e, (52)

T@|  —o, (53)

7'=0
in which all the time derivatives are taken with respect to time 7’.
We may observe that for ¢ = const which implies C = 0 and K ;2) = 0 we have

(L X 0, \(a 0G
(Ap[T;T( N+ C[T; ET( )D #Ty=—22Ta. (54)
Identifying the field T with the weighting function ¢ of Eq. (18), we obtain
G
(AT [T;¢] + C[T; ¢] ) T = —37*¢ (55)
where the following notation is introduced:
ESTIT; ¢ T@ = KO[T;7@)] + 6. (56)

A remarkable formal similarity of the left-hand sides of Eq. (55) and DDM equation (36) is em-
phasized.

3. SEMI-DISCRETIZED FORMULATION

By replacing in Eq. (13) the weighting function ¢ by ¢,, @ = 1,2,..., N, considering for compact-
ness just one design parameter h and using the typical finite element expansion for temperature,
which on the system level reads

Tlz,7.h) = da )0 :h), o by Do s Ve s (57)

where ¢, are the shape functions, 9, are the nodal temperatures and N is the total number of the
degrees of freedom in the discretized system, we obtain from Eq. (12)

| (k060,95 + Sbatiy — Qéa) d2+ [ 46ad(02)

+ [ 60 (Pots = Tw) 2 d(@) + [, x (3685 - Tyy) 8 d(09) = 0 (58)
in which
8%, = 09, \ (00" U 80P) . (59)
Denoting
k® = / kii it ; A9, (60)
k(< /a o E09a984(09) (61)
k() = /aggp X¢ap d(09), (62)
Cap = [ Eadpd®, (63)
i ca= § 4o.d(89), 4
| @dadn- [ o, 892 400) (64)

s /3 i €@ Toata d(0) + /8 i X192 (09), (65)
q q
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we obtain :
Capdp+ (K8 + K+ KQ) 95 = Qu + Qa (66)
: Ko ’ Qo
or, shortly,
Cop¥p + Kap¥p = Qa, (67)

which is the fundamental equation describing nonlinear transient heat transfer in the discretized

£

system. The matrices ng;) , K c(xclg and K gﬁ) may be briefly called the conductivity, convection and
radiation stiffness matrices, respectively. It should be noted, however, that only in the linear analysis
these names (in fact, only the first two since Kc(fﬂ) = 0 then) appear fully legitimate.

The apparently elegant form of ordinary differential equation (67) is somewhat misleading since
the matrices Cpp and Kop (in fact, all the three terms in the latter) and vector @, may generally
depend on the temperature 9, . Therefore, Eq. (67) has to be first linearized with respect to 9,
and only then solved by using an iteration scheme. We also note that the matrices Cop and Kop
are symmetric which is essential for efficiency of computational procedures.

Guided by the linear heat transfer equations we adopt the following linearization assumptions:

t+A At t+At ~t, (t+AL +At

X (Hr T - T(r)) =Y ( T-* T(r)) " (68)
t+At€(c) (H—AtT _ t+AtT°o) ™ tf(c) (t+AtT _ t+AtT°°) , (69)
t+Atkij t+AtT’j o~ tkz‘]' t+AtT,]' , (70)
t+AtE t+Aq"' o tE t+Af/j’V : (71)

We note that (i) the above assumptions are automatically satisfied in the linear analysis in which
§(c) = const, k;; = const and ¢ = const, (ii) iterative solution schemes may fully restore neglected
terms in the nonlinear analysis.

By writing out Eq. (66) for the time instant ¢ + At and using the linearization (68)-(71) we
arrive at

tcaﬁ t+At"9ﬁ ok tKOtﬁ t+At,0ﬁ — t+Athz ) (72)

The right-hand side vector is assumed here as given at ¢+ At — if either Q or § depend in a
given way on the temperature 9, , some resulting contribution will appear on the left-hand side of
Eq. (72).

Using a time integration algorithm, say the one-step backward Euler scheme of the form

t+At,
t+At19 = Vo — t1901
o= ——

K (73)

we may solve Eq. (72) for **A% in terms of all the quantities defined at time ¢ and thus assumed
known using the equation

1 1
(7 Cos +Kag) 4405 = 42 + £ o (74)
or, briefly,
(e 1
tIic(xbﬁ) t+At,l9’@ = t+AtQa + —A_; tCozﬁ tﬂﬁ 3 (75)

The effective ‘stiffness’ matrix tKC(gT) is symmetric. The linearization errors can be removed by
using an iteration algorithm restoring the nonlinear heat flow equilibrium. A commonly employed
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iteration scheme is based on using the constant matrix tIi( ) o solve the following equation for
the k-th correction to the temperature at ¢t + At

KD o) = HORG-D g9 (76)
where the (k—1)-th residual reads

tHAR(k-1) _ t+alg [t+Ath(!1;;—1) t+At19(ﬁk—1) " t+AtI(((:;—1) t+At19(ﬁk—1) (77)
while

k—1
t+Aty(k-1) _ oyl _ gy, (78)
o At ’

t+AtC£’2-1) = Cap (t+At19fyk—1)) , etc., (79)
and

tatg(k) — t+Any(k=1) 4 5y(k) | (80)

The value of *4%9{!) is the one obtained from Eq. (75). The operator form of Eq. (76) reads

(tc ai + fw) e g e = A (81)
because
5 . t+atg(k) _ Wy 1 .
5805 = 60 = § —F— = —gtan() (82)
so that
0., 5o = Lo _sp) 83
“Bor°Th T At "B - &)

A faster convergence can theoretically be achieved by the full Newton-Raphson algorithm, cf.
Eq. (14). Let as rewrite Eq. (67) in the residual form as, cf. Eq. (77),

0
Ra = Qa = (Caﬁ_ + I(aﬁ) ’19[3 (84)
or
and use it to compute the tangent operator Ry
OR,
Rrop69p = 39, T3 00s, (85)
as
8 irs
RTaﬁé’ﬂg = - (CQBE + Ime@) 89 (86)
in which
k¥ K
—— - 13
KTaﬂ = Cay,p0y + Kop + Ka%ﬁ"’v —Qap (87)

(if Qo does not depend on 9, , as assumed previously, then clearly Q45 = 0). We note that for
some minor technical reasons the discretized and continuous residuals in our formulation differ in
sign. Consequently, the adjoint variables 7(*) and (%) in both the formulations will have opposite
signs as well. We also note that even though the matrices Cp and K,p are symmetric, the matrix
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Kt,p is not. This is a serious drawback when it comes to iterative corrections of the solution at a
given time step using the full Newton-Raphson scheme. We have in such a case

thatp(k) _ t+atp(k-1) 4 t+AtR§{;—ﬁl)wg€) =0, (88)
i.e.
t+At~(k=1) 0 t+Aty-(k—1) (k) _ t+Atp(k—1
_t+?t' (k-1)
RTaﬂ
where

itk

t+Atp(k—1) _ t+A¢ _ [ t+AtA(k=1)
R Qa - (el

L (k— e
+ ot & 1)) peag (90)

Equation (89) should be compared against Eq. (81). The operator Rr, s in Eq. (89) guarantees the

faster (quadratic) convergence of the iteration than the operator in eq. (81). However, the latter
is kept constant for every iteration and it generates the symmetric iteration matrix — the factors
which may compensate for a slower convergence rate.

Furthermore, in view of our fundamental observation made with respect to the DDM sensitivity
equation (35), in which precisely the same tangent operator has to be used (in a non-iterative way,
though), the non-symmetry of the tangent matrix presents a similar computational disadvantage.
By differentiating Eq. (72) with respect to the design parameter h we obtain

9 dt+Atg gty 9+ §i+aty
t+At Y At B _ o af t+At af t+At
( Cosgr * I‘Taﬁ) ah oh oh et —%h Us (81)
which may be presented as, cf. Egs. (84), (86),
t+A t+At
H'AtRT d %W _ 0 Ry : (92)

af  dh oh

Equation (92) is linear in d **24%)5/dh with its right-hand side known provided the primary problem
has been solved in the time interval considered.

Equation (92) can be solved either directly (i.e. using the non-symmetric equation solver), in
which case no iterations are required, or it can be transformed to the form

9 d t+aty oi+atp dtt+aty
<t+AtCa55; + t+AtKag> T B _ o - t+AtI(;ﬁ = B (93)
where
t+AtI(;ﬁ — t+AtI(Taﬁ _ H—Atkvaﬁ = t+AtCa‘yﬁ,l§’y by t+AtI(a’y’ﬁ19’y . t+AtQa’ﬂ. (94)

Equation (93) can be solved for the nodal temperature sensitivity vector d 44495 /dh at the desired
time instant by using the direct iteration according to

Atg(k—1)
d+ ‘ﬁﬁ

d t+At,l9(ﬂk) a t+AtRa
N dn

_ t+Atg*
dh oh Kap

)
(“Afcaga + ‘+Af1faﬁ> kL8 o3 v (05)
with dt+At19}(60)/dh assumed zero, or the last value available (i.e. d%,/dh). Which of the above

approaches should be used for a specific problem depends to a large extent on the solution algorithm
employed for solving the primary problem.



Sensitivity in nonlinear thermal problems 265

Using the backward Euler time integration scheme for the sensitivity equation (95),

. dt+At'l9& dtﬁa
dH—At'ﬂa _ dh ~ a3k (96)
dh At ’
Eq. (95) becomes
Atg(k) t+Atg(k—1)
t+AtK(Cﬁ) d+ tﬂﬁ _ at+AtRa _ t+AtI( * d tﬂﬁ s i t+AtCr dtl?ﬁ ) (97)
ap dh dh s dh At *F~dh

Equation (97) can be iteratively solved for d*t+2%),/dh. It requires the storage of the previous
(computed at T = t) sensitivity vector d W,/dh but no such vectors at any earlier time instants.

For problems with temperature sensitivity slowly changing in time the following non-iterative
approximation to Eq. (97) may turn out reasonable

t+AtK(
o

g A1TA0E grrag, 1 d
ﬁﬂ) 7 8. N _ <t+AtI‘.;ﬁ - EHAtCaﬂ) dhﬁ (98)

which combines the advantages of the symmetric governing matrix and lack of iteration at the cost
of a decreased accuracy.

Having an effective technique to compute the temperature sensitivities at every time instant
makes it possible to determine sensitivity of any functional such as, quite generally,

(1) = [ G(0a(r, ), ) d7 + 9(9(t1, ), ). (99)

The functional can be specified to describe the so-called critical time sensitivity (in which the

problem is to find the design gradient of a functional at a pre-set time instant) or the so-called

time interval sensitivity (in which the sensitivity gradient is obtained as the time integral over a

selected time interval). In fact, both these situations could be described just by the first term in

Eq. (99); to be more explicit we have directly included there the term g which is local in time.
Differentiation of Eq. (99) with respect to the parameter h yields

t
dg f (8G dd 8G) PR (E)g dﬂa)

4G _ (110G W, 0GY . (09 d0a)| | Dy
dh — Ji, \0¥4 dh oh 09, dh

100
* (100)

iy
which clearly indicates the algorithm for computing dG/dh in terms of d¥,/dh determined at all
the discrete time instants 7 € [to, 4]

Before moving on to discuss the adjoint system method we shall make another general com-
ment. In discretized nonlinear heat transfer problems the ‘secant’ formulation is given in terms of
the symmetric matrices Cop and K,g, of Eq. (67); the tangent formulation involves KTa 8 which is
not symmetric, cf. Eq. (87). In typical nonlinear solid mechanics problems the secant formulation is
governed by some non-symmetric matrices while the tangent formulation involves symmetric matri-
ces (problems with configuration dependent loadings, boundary friction effects or non-associative
plastic flow rules are notable exceptions in this regard). Since the DDM approach is inherently
based on the tangent matrices, its use in nonlinear solid mechanics appears more straightforward
than in heat transfer problems.

Let us now consider the alternative way of finding dG/dh by using the adjoint system method
(ASM). To this aim we employ again the variational technique of [1] which states that

dg  ag
hoa (101)
provided

G =G+ R, (102)
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and Ao, @ =1,2,..., N are such as to make stationary with respect to 9, , i.e.
iY
—69,=0. 103
99,0 =" (103)
Let us first form the extended functional G as
. t
G(h) = G(h) + f " Aa(NRo(r)dr,  a=1,2,...,N, (104)
to
in which the residuals R, are given by Eq. (84). Considering in Eq. (103) only the design variations
4 d?
o = —-6h 105
09 m (105)

we compute

G .. (ag-
59,0 = (31976’9‘*)

0g - )
s EAN
(o)

which by integrating by parts in time the third term in parentheses and observing Eq. (87) becomes

aé = o (9g = iy iy aG - s s _
5900 = (a—mw”) . /to [ 59, A (=K1 + Car) + ,\acm] 59, dr

tr | 0G 0 : ) _
|4 (@ Cusho- Keoty) 30,0

tr | 0G . ;
% / a9~ T Aa (Qa,'y — Capy¥p — Caplpy
to 807

SRCE g Kaﬂaﬁq)] 59, dr (106)

— (AaCayb95)
ts

(107)
or (note that 69,(tp) = 0)

3G - dg = tr | 0G . . _

—00, = | — — A\,C, 69 —— = Ao ( KTy, — Ca AeCla =i,

09, U (3197 ¢ 7) ts ik to {3197 ( Toy = © 7) el ’YJ o

(108)
The adjoint equation is thus implied to be
; i ) 4G

CopAp — (I‘Tﬁa + Cag) Ag = _E ; T € [to, 4], (109)

with the terminal condition at 7 = t; resulting as the natural boundary condition in the form
g
CopAp = _6170, y T =1f. (110)

It is emphasized that Egs. (109), (110) form a terminal-value problem which is to be integrated
backward in time once the primary problem has been solved forward in time. The adjoint problem
can be formally replaced by an initial-value problem if only we employ the time transformation

=ty -1 (111)
in which case Egs. (109) and (110) become

. ! : oG
Caphp + (AQ) - kP 4 ca[,) p . o ' € [0,t5—to], (112)

Ba Lo 819,,

dg
aBAB = 7o s =

Capho = 5 =0, (113)

where the dot stands now for differentiation with respect to the variable 7/.
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The basic ASM sensitivity relationship, Eq. (100), can be rewritten as

g g . (v [B_G ((')Qa  OKag, 0Cap; )]
w=ont ), antan ~an 2 ah )] 4T (12}

which defines the effective way to determine dG/dh once A, is known at every discrete 7 € [to, f].

Furthermore, we observe that for ¢ = const which implies C’ap = 0 and K:(Fz)ﬁ = 0 we obtain
from Eq. (112)

g
09,

which clearly is the discretized counterpart of the Eq. (55) derived in Section 2. This fact has
tremendous computational significance.
Writing Eq. (112) for the time 7 = ¢ + At we arrive at

Caﬂ/\'@-{-ﬁ(l) )\g = (115)

t+AtCaﬂ t+At)"ﬁ + (t+AtK’.(r1ﬁ) _ t+AtK§:~'ﬂ) + t+AtC’vaﬁ> t+At/\ﬁ _ _a:;;tG . (116)
o o o

The right-hand side vector is assumed given at time ¢ + At. Using the time integration scheme in
the form of the backward Euler algorithm

t+At/\ g— t/\ g
At .
we can solve Eq. (116) for **A%\ in terms of all the quantifies defined at time ¢

L iiai t+Aty-(1 ) _ t+Atg(2) t+AtA )t+At i attaG it+At t
(At C + K KT,Ba + Cag )\g — 59, + Al Caﬂ AB . (118)

It requires storage of the previous adjoint temperature vector “Ag.
Equation (118) can be written in a short form as

A
t+Atg-(a)(eff) t4A8y &G L rae t
Aﬂa Ag = a0, + At Cop s (119)
where THAIK (a)(eﬁ ) is the effective stiffness matrix for the adjoint problem. The matrix 4K | (a)(eﬁ )

is not symmetnc which implies computational disadvantages.
Equation (119) can be solved either directly by using the non-symmetric equation solver or it
can be transformed to the form (note the symmetry of K,p)

1 ias B Lo LR t+At
[E Caﬁ + ( K af + Cotﬂ) Aﬁ
ottaG 1 t+At t t+Aty-(2) t+ At (1)* | t+A¢
where
(1)* (1) - 7
Tgo = KTy, — Kap- (121)

Equation (120) can be solved for the nodal adjoint temperature vector *+A%\ at the desired time
instant by using the direct iteration according to

[ 1 t+AtC i (t+AtK ﬁ+t+AtC )] t+At,\gc)

At
ottaG 1 A 7
; tt+AtCaﬂ t/\ﬁ (t+AtK(?a t+AtK(2a) t+At)\(ﬁk 1) (122)
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with /\}(80) assumed zero, or the last value available (i.e. ‘Ag). Denoting

t+AtI(£Sﬁ)(5ﬁ) _ Zl_it+AtC"ﬁ+ (t+AtKaﬁ+t+Athaﬁ> (123)
and
t+At}r((T3)[3 : t+AtIi’;2)ﬂ _ t+AtI(§}); (124)

Eq. (122) becomes

t+A
_._a ‘G + i t+AtCaﬁ t/\ﬁ R t+AtK(3) t+At)\g€—1) : (125)

(s k
e

Equation (125) can be iteratively solved for t‘*'At/\gc) . It requires storage of the previous adjoint
temperature vector \g.

For problems with temperature sensitivity changing slowly in time the following non-iterative
approximation to Eq. (125) may sometimes be used

t+ At
t+AtK£2(eﬁ)t+At)\ﬁ = 6819 G + (Aitwmcaﬁ + t+AtK§i)ﬁ> t/\ﬁ. (126)

We note in closing that contrary to typical nonlinear solid mechanics problems the tangent
matrix K7 in nonlinear heat transfer problem is non-symmetric, and it is Ky transposed which
appears in the adjoint formulation. Nevertheless, once the primary response is known, the adjoint
response can be obtained numerically in an efficient manner. This is particularly so when sufficient
storage is available and the decomposed stiffness matrix from the primary forward-in-time analysis
at each discrete time instant 7 can be stored and later utilized to determine the adjoint response at
time ¢y — 7 during the backward-in-time non-iterative analysis. Such an algorithm requires neither
additional stiffness matrix assemblies nor decompositions for the adjoint problem; only right-hand
side assemblies and back substitutions are needed to obtain the adjoint solution, [16]. Consequently,
the computational cost for the adjoint analysis is much smaller than that for the primary analysis
which may generally require several iterations to converge at each step.

4. EXAMPLE — ANGULAR SPEED AS THE DESIGN PARAMETER IN FRICTION WELDING

The direct differentiation method has been applied to the sensitivity analysis in which the angular
speed is considered as the design parameter in the problem of friction welding. The finite element
modelling of the friction welding process was undertaken by the authors in [10]. Friction welding
is a process in which the heat for welding is produced by direct conversion of mechanical energy
to thermal energy at the interface of the workpieces without the application of electrical energy,
or heat from other sources, to the workpieces. Friction welds are made by holding a non-rotating
workpiece in contact with a rotating workpiece under constant or gradually increasing pressure
until the interface reaches welding temperature, and then stopping rotation to complete the weld.
The frictional heat developed at the interface rapidly raises the temperature of the workpieces over
a very short axial distance to a value approaching from below the melting point and welding occurs
under the influence of a pressure that is applied while the heated zone is in the plastic range. Friction
welding is classified as a solid-state welding process in which joining occurs at a temperature below
the melting point of the work metal. In the example we will analyse the temperature sensitivity to
the variation of the angular speed of the workpieces. This problem has a clear practical significance
in the welding optimization. Two rods shown schematically in Fig. 1 illustrate the workpieces in
friction welding. The problem can be considered as axisymmetric. The simple triangular finite
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Fig. 1. Geometry and finite element mesh of the workpieces

Table 1. Temperature sensitivity to variation of the angular speed in friction welding

Time | Point Temperature T Sensitivity dT'/dw
linear nonlinear linear nonlinear
analysis analysis analysis analysis
A 256 254 2.328 2.291
1 B 534 531 5.742 5.352
C 371 369 4.217 3.927
A 424 421 3.259 3.127
2 B 815 811 8.038 7.814
C 658 654 5.903 5.643
A 582 578 3.957 3.804
3 B 1034 1029 9.763 8.901
C 893 889 7.169 6.825

elements with linear shape functions in the radial cross-section are used. At the place of abutment
the heat source is given by the following equation

Q .—_/Qauwrdﬂ (127)

where o is the normal stress at the place of contact, p is the coefficient of friction, w is the
angular speed, r is the radius and Q is the surface area upon which the heat acts. Steel rods
of the diameter ¢ = 12mm are considered. In our analysis ou is assumed to be equal to 3 x
107 J/m® and w to 100 sec™!. The material properties are assumed as follows: thermal conductivity
k = 50(140.0017") W/mK, specific heat ¢ = 510(140.027T") Jkg/K, thermal convection coefficient
0.25 W/m?, initial temperature 0°C, surrounding temperature 0°C. The derivatives % : g—; ; g—g
are constant throughout the whole history of the process. The results of the sensitivity analysis %% at
the chosen points A, B, C at subsequent time instants ¢; = 1sec, t; = 2sec, t3 = 3 sec are presented
in Table 1. In order to compare the results with the sensitivity analysis for the corresponding linear
problem the latter results are also displayed in Table 1 to illustrate the influence of nonlinearity on
the sensitivity process.

As it is seen, in the modelling of friction welding the assumption of nonlinearity (i.e. temperature
dependence of the material parameters) may play some role. The observed temperature rise in
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the vicinity of abutment makes the material parameters change in this region. As a result of
the nonlinearity the values of the sensitivity gradient appear to be departing from their ‘linear’
counterparts much more than the values of the temperature itself.

We conclude that the assumption of the linear material properties may lead to some error in
the optimization of friction welding. We can expect the same in other welding processes so that the
nonlinearity appears to be an important factor in optimization of such processes.

5. CONCLUDING REMARKS

General procedures for the design sensitivity analysis of arbitrary nonlinear thermal response have
been discussed. For this purpose the weighted residual method has been adopted. Both the direct
differentiation and adjoint structure methods have been discussed rendering theoretically equivalent
formulations. Any useful sensitivity analysis method must be effective for large-scale problems — the
finite element approach has therefore been employed next. The resulting finite element equations
for the sensitivity analysis of nonlinear thermal transient systems have been derived. In finite
element formulation partial derivatives of the conductivity and heat capacity matrices as well as
of the thermal load vector with respect to the temperature and design variables appear have to be
computed. As it is typical of any incremental strategy, these values have to be updated throughout
the response time interval.
The finite element formulation lends itself to a straightforward computer implementation.
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